Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnovollem3 Structured version   Visualization version   GIF version

Theorem ovnovollem3 42960
Description: The 1-dimensional Lebesgue outer measure agrees with the Lebesgue outer measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnovollem3.a (𝜑𝐴𝑉)
ovnovollem3.b (𝜑𝐵 ⊆ ℝ)
ovnovollem3.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
ovnovollem3.n 𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
Assertion
Ref Expression
ovnovollem3 (𝜑 → ((voln*‘{𝐴})‘(𝐵m {𝐴})) = (vol*‘𝐵))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑗,𝑘,𝑧   𝐵,𝑓,𝑖,𝑗,𝑘,𝑧   𝑧,𝑁   𝑘,𝑉   𝜑,𝑓,𝑖,𝑗,𝑘,𝑧
Allowed substitution hints:   𝑀(𝑧,𝑓,𝑖,𝑗,𝑘)   𝑁(𝑓,𝑖,𝑗,𝑘)   𝑉(𝑧,𝑓,𝑖,𝑗)

Proof of Theorem ovnovollem3
Dummy variables 𝑛 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovnovollem3.a . . . . 5 (𝜑𝐴𝑉)
2 snnzg 4710 . . . . 5 (𝐴𝑉 → {𝐴} ≠ ∅)
31, 2syl 17 . . . 4 (𝜑 → {𝐴} ≠ ∅)
43neneqd 3021 . . 3 (𝜑 → ¬ {𝐴} = ∅)
54iffalsed 4478 . 2 (𝜑 → if({𝐴} = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < ))
6 snfi 8594 . . . 4 {𝐴} ∈ Fin
76a1i 11 . . 3 (𝜑 → {𝐴} ∈ Fin)
8 reex 10628 . . . . 5 ℝ ∈ V
98a1i 11 . . . 4 (𝜑 → ℝ ∈ V)
10 ovnovollem3.b . . . 4 (𝜑𝐵 ⊆ ℝ)
11 mapss 8453 . . . 4 ((ℝ ∈ V ∧ 𝐵 ⊆ ℝ) → (𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
129, 10, 11syl2anc 586 . . 3 (𝜑 → (𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
13 ovnovollem3.m . . 3 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
147, 12, 13ovnval2 42847 . 2 (𝜑 → ((voln*‘{𝐴})‘(𝐵m {𝐴})) = if({𝐴} = ∅, 0, inf(𝑀, ℝ*, < )))
15 ovnovollem3.n . . . 4 𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
1610, 15ovolval5 42957 . . 3 (𝜑 → (vol*‘𝐵) = inf(𝑁, ℝ*, < ))
171ad2antrr 724 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐴𝑉)
18 simplr 767 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑓 ∈ ((ℝ × ℝ) ↑m ℕ))
19 fveq2 6670 . . . . . . . . . . . 12 (𝑛 = 𝑗 → (𝑓𝑛) = (𝑓𝑗))
2019opeq2d 4810 . . . . . . . . . . 11 (𝑛 = 𝑗 → ⟨𝐴, (𝑓𝑛)⟩ = ⟨𝐴, (𝑓𝑗)⟩)
2120sneqd 4579 . . . . . . . . . 10 (𝑛 = 𝑗 → {⟨𝐴, (𝑓𝑛)⟩} = {⟨𝐴, (𝑓𝑗)⟩})
2221cbvmptv 5169 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ {⟨𝐴, (𝑓𝑛)⟩}) = (𝑗 ∈ ℕ ↦ {⟨𝐴, (𝑓𝑗)⟩})
23 simprl 769 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐵 ran ([,) ∘ 𝑓))
249, 10ssexd 5228 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
2524adantr 483 . . . . . . . . . 10 ((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) → 𝐵 ∈ V)
2625adantr 483 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐵 ∈ V)
27 simprr 771 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
2817, 18, 22, 23, 26, 27ovnovollem1 42958 . . . . . . . 8 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
2928rexlimdva2 3287 . . . . . . 7 (𝜑 → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
3013ad2ant1 1129 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝐴𝑉)
31243ad2ant1 1129 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝐵 ∈ V)
32 simp2 1133 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ))
33 simp3l 1197 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘))
34 fveq2 6670 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑛 → (𝑖𝑗) = (𝑖𝑛))
3534coeq2d 5733 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑛 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝑖𝑛)))
3635fveq1d 6672 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝑖𝑛))‘𝑘))
3736ixpeq2dv 8477 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑘))
38 fveq2 6670 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → (([,) ∘ (𝑖𝑛))‘𝑘) = (([,) ∘ (𝑖𝑛))‘𝑙))
3938cbvixpv 8479 . . . . . . . . . . . . . . . 16 X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑘) = X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙)
4039a1i 11 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑘) = X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4137, 40eqtrd 2856 . . . . . . . . . . . . . 14 (𝑗 = 𝑛X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4241cbviunv 4965 . . . . . . . . . . . . 13 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙)
4342sseq2i 3996 . . . . . . . . . . . 12 ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ↔ (𝐵m {𝐴}) ⊆ 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4443biimpi 218 . . . . . . . . . . 11 ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) → (𝐵m {𝐴}) ⊆ 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4533, 44syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝐵m {𝐴}) ⊆ 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
46 simp3r 1198 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
4736fveq2d 6674 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑛 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)))
4847prodeq2ad 41893 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)))
4938fveq2d 6674 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)) = (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
5049cbvprodv 15270 . . . . . . . . . . . . . . . . 17 𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)) = ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙))
5150a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)) = ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
5248, 51eqtrd 2856 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
5352cbvmptv 5169 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
5453fveq2i 6673 . . . . . . . . . . . . 13 ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙))))
5554eqeq2i 2834 . . . . . . . . . . . 12 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ 𝑧 = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))))
5655biimpi 218 . . . . . . . . . . 11 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) → 𝑧 = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))))
5746, 56syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑧 = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))))
58 fveq2 6670 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑖𝑚) = (𝑖𝑛))
5958fveq1d 6672 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑖𝑚)‘𝐴) = ((𝑖𝑛)‘𝐴))
6059cbvmptv 5169 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ ((𝑖𝑚)‘𝐴)) = (𝑛 ∈ ℕ ↦ ((𝑖𝑛)‘𝐴))
6130, 31, 32, 45, 57, 60ovnovollem2 42959 . . . . . . . . 9 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
62613exp 1115 . . . . . . . 8 (𝜑 → (𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) → (((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))))
6362rexlimdv 3283 . . . . . . 7 (𝜑 → (∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
6429, 63impbid 214 . . . . . 6 (𝜑 → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
6564rabbidv 3480 . . . . 5 (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
6615a1i 11 . . . . 5 (𝜑𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))})
6713a1i 11 . . . . 5 (𝜑𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
6865, 66, 673eqtr4d 2866 . . . 4 (𝜑𝑁 = 𝑀)
6968infeq1d 8941 . . 3 (𝜑 → inf(𝑁, ℝ*, < ) = inf(𝑀, ℝ*, < ))
7016, 69eqtrd 2856 . 2 (𝜑 → (vol*‘𝐵) = inf(𝑀, ℝ*, < ))
715, 14, 703eqtr4d 2866 1 (𝜑 → ((voln*‘{𝐴})‘(𝐵m {𝐴})) = (vol*‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139  {crab 3142  Vcvv 3494  wss 3936  c0 4291  ifcif 4467  {csn 4567  cop 4573   cuni 4838   ciun 4919  cmpt 5146   × cxp 5553  ran crn 5556  ccom 5559  cfv 6355  (class class class)co 7156  m cmap 8406  Xcixp 8461  Fincfn 8509  infcinf 8905  cr 10536  0cc0 10537  *cxr 10674   < clt 10675  cn 11638  [,)cico 12741  cprod 15259  vol*covol 24063  volcvol 24064  Σ^csumge0 42664  voln*covoln 42838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-prod 15260  df-rest 16696  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-bases 21554  df-cmp 21995  df-ovol 24065  df-vol 24066  df-sumge0 42665  df-ovoln 42839
This theorem is referenced by:  ovnovol  42961
  Copyright terms: Public domain W3C validator