Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnovollem3 Structured version   Visualization version   GIF version

Theorem ovnovollem3 44800
Description: The 1-dimensional Lebesgue outer measure agrees with the Lebesgue outer measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnovollem3.a (𝜑𝐴𝑉)
ovnovollem3.b (𝜑𝐵 ⊆ ℝ)
ovnovollem3.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
ovnovollem3.n 𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
Assertion
Ref Expression
ovnovollem3 (𝜑 → ((voln*‘{𝐴})‘(𝐵m {𝐴})) = (vol*‘𝐵))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑗,𝑘,𝑧   𝐵,𝑓,𝑖,𝑗,𝑘,𝑧   𝑧,𝑁   𝑘,𝑉   𝜑,𝑓,𝑖,𝑗,𝑘,𝑧
Allowed substitution hints:   𝑀(𝑧,𝑓,𝑖,𝑗,𝑘)   𝑁(𝑓,𝑖,𝑗,𝑘)   𝑉(𝑧,𝑓,𝑖,𝑗)

Proof of Theorem ovnovollem3
Dummy variables 𝑛 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovnovollem3.a . . . . 5 (𝜑𝐴𝑉)
21snn0d 4734 . . . 4 (𝜑 → {𝐴} ≠ ∅)
32neneqd 2946 . . 3 (𝜑 → ¬ {𝐴} = ∅)
43iffalsed 4495 . 2 (𝜑 → if({𝐴} = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < ))
5 snfi 8946 . . . 4 {𝐴} ∈ Fin
65a1i 11 . . 3 (𝜑 → {𝐴} ∈ Fin)
7 reex 11100 . . . . 5 ℝ ∈ V
87a1i 11 . . . 4 (𝜑 → ℝ ∈ V)
9 ovnovollem3.b . . . 4 (𝜑𝐵 ⊆ ℝ)
10 mapss 8785 . . . 4 ((ℝ ∈ V ∧ 𝐵 ⊆ ℝ) → (𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
118, 9, 10syl2anc 584 . . 3 (𝜑 → (𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
12 ovnovollem3.m . . 3 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
136, 11, 12ovnval2 44687 . 2 (𝜑 → ((voln*‘{𝐴})‘(𝐵m {𝐴})) = if({𝐴} = ∅, 0, inf(𝑀, ℝ*, < )))
14 ovnovollem3.n . . . 4 𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
159, 14ovolval5 44797 . . 3 (𝜑 → (vol*‘𝐵) = inf(𝑁, ℝ*, < ))
161ad2antrr 724 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐴𝑉)
17 simplr 767 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑓 ∈ ((ℝ × ℝ) ↑m ℕ))
18 fveq2 6839 . . . . . . . . . . . 12 (𝑛 = 𝑗 → (𝑓𝑛) = (𝑓𝑗))
1918opeq2d 4835 . . . . . . . . . . 11 (𝑛 = 𝑗 → ⟨𝐴, (𝑓𝑛)⟩ = ⟨𝐴, (𝑓𝑗)⟩)
2019sneqd 4596 . . . . . . . . . 10 (𝑛 = 𝑗 → {⟨𝐴, (𝑓𝑛)⟩} = {⟨𝐴, (𝑓𝑗)⟩})
2120cbvmptv 5216 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ {⟨𝐴, (𝑓𝑛)⟩}) = (𝑗 ∈ ℕ ↦ {⟨𝐴, (𝑓𝑗)⟩})
22 simprl 769 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐵 ran ([,) ∘ 𝑓))
238, 9ssexd 5279 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
2423adantr 481 . . . . . . . . . 10 ((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) → 𝐵 ∈ V)
2524adantr 481 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐵 ∈ V)
26 simprr 771 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
2716, 17, 21, 22, 25, 26ovnovollem1 44798 . . . . . . . 8 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
2827rexlimdva2 3152 . . . . . . 7 (𝜑 → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
2913ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝐴𝑉)
30233ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝐵 ∈ V)
31 simp2 1137 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ))
32 simp3l 1201 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘))
33 fveq2 6839 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑛 → (𝑖𝑗) = (𝑖𝑛))
3433coeq2d 5816 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑛 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝑖𝑛)))
3534fveq1d 6841 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝑖𝑛))‘𝑘))
3635ixpeq2dv 8809 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑘))
37 fveq2 6839 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → (([,) ∘ (𝑖𝑛))‘𝑘) = (([,) ∘ (𝑖𝑛))‘𝑙))
3837cbvixpv 8811 . . . . . . . . . . . . . . . 16 X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑘) = X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙)
3938a1i 11 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑘) = X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4036, 39eqtrd 2777 . . . . . . . . . . . . . 14 (𝑗 = 𝑛X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4140cbviunv 4998 . . . . . . . . . . . . 13 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙)
4241sseq2i 3971 . . . . . . . . . . . 12 ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ↔ (𝐵m {𝐴}) ⊆ 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4342biimpi 215 . . . . . . . . . . 11 ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) → (𝐵m {𝐴}) ⊆ 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4432, 43syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝐵m {𝐴}) ⊆ 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
45 simp3r 1202 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
4635fveq2d 6843 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑛 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)))
4746prodeq2ad 43734 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)))
4837fveq2d 6843 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)) = (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
4948cbvprodv 15759 . . . . . . . . . . . . . . . . 17 𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)) = ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙))
5049a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)) = ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
5147, 50eqtrd 2777 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
5251cbvmptv 5216 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
5352fveq2i 6842 . . . . . . . . . . . . 13 ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙))))
5453eqeq2i 2750 . . . . . . . . . . . 12 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ 𝑧 = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))))
5554biimpi 215 . . . . . . . . . . 11 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) → 𝑧 = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))))
5645, 55syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑧 = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))))
57 fveq2 6839 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑖𝑚) = (𝑖𝑛))
5857fveq1d 6841 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑖𝑚)‘𝐴) = ((𝑖𝑛)‘𝐴))
5958cbvmptv 5216 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ ((𝑖𝑚)‘𝐴)) = (𝑛 ∈ ℕ ↦ ((𝑖𝑛)‘𝐴))
6029, 30, 31, 44, 56, 59ovnovollem2 44799 . . . . . . . . 9 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
61603exp 1119 . . . . . . . 8 (𝜑 → (𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) → (((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))))
6261rexlimdv 3148 . . . . . . 7 (𝜑 → (∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
6328, 62impbid 211 . . . . . 6 (𝜑 → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
6463rabbidv 3413 . . . . 5 (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
6514a1i 11 . . . . 5 (𝜑𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))})
6612a1i 11 . . . . 5 (𝜑𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
6764, 65, 663eqtr4d 2787 . . . 4 (𝜑𝑁 = 𝑀)
6867infeq1d 9371 . . 3 (𝜑 → inf(𝑁, ℝ*, < ) = inf(𝑀, ℝ*, < ))
6915, 68eqtrd 2777 . 2 (𝜑 → (vol*‘𝐵) = inf(𝑀, ℝ*, < ))
704, 13, 693eqtr4d 2787 1 (𝜑 → ((voln*‘{𝐴})‘(𝐵m {𝐴})) = (vol*‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3071  {crab 3405  Vcvv 3443  wss 3908  c0 4280  ifcif 4484  {csn 4584  cop 4590   cuni 4863   ciun 4952  cmpt 5186   × cxp 5629  ran crn 5632  ccom 5635  cfv 6493  (class class class)co 7351  m cmap 8723  Xcixp 8793  Fincfn 8841  infcinf 9335  cr 11008  0cc0 11009  *cxr 11146   < clt 11147  cn 12111  [,)cico 13220  cprod 15748  vol*covol 24778  volcvol 24779  Σ^csumge0 44504  voln*covoln 44678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-inf2 9535  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-of 7609  df-om 7795  df-1st 7913  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-1o 8404  df-2o 8405  df-er 8606  df-map 8725  df-pm 8726  df-ixp 8794  df-en 8842  df-dom 8843  df-sdom 8844  df-fin 8845  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9404  df-dju 9795  df-card 9833  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-div 11771  df-nn 12112  df-2 12174  df-3 12175  df-n0 12372  df-z 12458  df-uz 12722  df-q 12828  df-rp 12870  df-xneg 12987  df-xadd 12988  df-xmul 12989  df-ioo 13222  df-ico 13224  df-icc 13225  df-fz 13379  df-fzo 13522  df-fl 13651  df-seq 13861  df-exp 13922  df-hash 14185  df-cj 14944  df-re 14945  df-im 14946  df-sqrt 15080  df-abs 15081  df-clim 15330  df-rlim 15331  df-sum 15531  df-prod 15749  df-rest 17264  df-topgen 17285  df-psmet 20741  df-xmet 20742  df-met 20743  df-bl 20744  df-mopn 20745  df-top 22195  df-topon 22212  df-bases 22248  df-cmp 22690  df-ovol 24780  df-vol 24781  df-sumge0 44505  df-ovoln 44679
This theorem is referenced by:  ovnovol  44801
  Copyright terms: Public domain W3C validator