Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnovollem3 Structured version   Visualization version   GIF version

Theorem ovnovollem3 44086
Description: The 1-dimensional Lebesgue outer measure agrees with the Lebesgue outer measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnovollem3.a (𝜑𝐴𝑉)
ovnovollem3.b (𝜑𝐵 ⊆ ℝ)
ovnovollem3.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
ovnovollem3.n 𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
Assertion
Ref Expression
ovnovollem3 (𝜑 → ((voln*‘{𝐴})‘(𝐵m {𝐴})) = (vol*‘𝐵))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑗,𝑘,𝑧   𝐵,𝑓,𝑖,𝑗,𝑘,𝑧   𝑧,𝑁   𝑘,𝑉   𝜑,𝑓,𝑖,𝑗,𝑘,𝑧
Allowed substitution hints:   𝑀(𝑧,𝑓,𝑖,𝑗,𝑘)   𝑁(𝑓,𝑖,𝑗,𝑘)   𝑉(𝑧,𝑓,𝑖,𝑗)

Proof of Theorem ovnovollem3
Dummy variables 𝑛 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovnovollem3.a . . . . 5 (𝜑𝐴𝑉)
21snn0d 4708 . . . 4 (𝜑 → {𝐴} ≠ ∅)
32neneqd 2947 . . 3 (𝜑 → ¬ {𝐴} = ∅)
43iffalsed 4467 . 2 (𝜑 → if({𝐴} = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < ))
5 snfi 8788 . . . 4 {𝐴} ∈ Fin
65a1i 11 . . 3 (𝜑 → {𝐴} ∈ Fin)
7 reex 10893 . . . . 5 ℝ ∈ V
87a1i 11 . . . 4 (𝜑 → ℝ ∈ V)
9 ovnovollem3.b . . . 4 (𝜑𝐵 ⊆ ℝ)
10 mapss 8635 . . . 4 ((ℝ ∈ V ∧ 𝐵 ⊆ ℝ) → (𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
118, 9, 10syl2anc 583 . . 3 (𝜑 → (𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
12 ovnovollem3.m . . 3 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
136, 11, 12ovnval2 43973 . 2 (𝜑 → ((voln*‘{𝐴})‘(𝐵m {𝐴})) = if({𝐴} = ∅, 0, inf(𝑀, ℝ*, < )))
14 ovnovollem3.n . . . 4 𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
159, 14ovolval5 44083 . . 3 (𝜑 → (vol*‘𝐵) = inf(𝑁, ℝ*, < ))
161ad2antrr 722 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐴𝑉)
17 simplr 765 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑓 ∈ ((ℝ × ℝ) ↑m ℕ))
18 fveq2 6756 . . . . . . . . . . . 12 (𝑛 = 𝑗 → (𝑓𝑛) = (𝑓𝑗))
1918opeq2d 4808 . . . . . . . . . . 11 (𝑛 = 𝑗 → ⟨𝐴, (𝑓𝑛)⟩ = ⟨𝐴, (𝑓𝑗)⟩)
2019sneqd 4570 . . . . . . . . . 10 (𝑛 = 𝑗 → {⟨𝐴, (𝑓𝑛)⟩} = {⟨𝐴, (𝑓𝑗)⟩})
2120cbvmptv 5183 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ {⟨𝐴, (𝑓𝑛)⟩}) = (𝑗 ∈ ℕ ↦ {⟨𝐴, (𝑓𝑗)⟩})
22 simprl 767 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐵 ran ([,) ∘ 𝑓))
238, 9ssexd 5243 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
2423adantr 480 . . . . . . . . . 10 ((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) → 𝐵 ∈ V)
2524adantr 480 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐵 ∈ V)
26 simprr 769 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
2716, 17, 21, 22, 25, 26ovnovollem1 44084 . . . . . . . 8 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
2827rexlimdva2 3215 . . . . . . 7 (𝜑 → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
2913ad2ant1 1131 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝐴𝑉)
30233ad2ant1 1131 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝐵 ∈ V)
31 simp2 1135 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ))
32 simp3l 1199 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘))
33 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑛 → (𝑖𝑗) = (𝑖𝑛))
3433coeq2d 5760 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑛 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝑖𝑛)))
3534fveq1d 6758 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝑖𝑛))‘𝑘))
3635ixpeq2dv 8659 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑘))
37 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → (([,) ∘ (𝑖𝑛))‘𝑘) = (([,) ∘ (𝑖𝑛))‘𝑙))
3837cbvixpv 8661 . . . . . . . . . . . . . . . 16 X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑘) = X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙)
3938a1i 11 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑘) = X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4036, 39eqtrd 2778 . . . . . . . . . . . . . 14 (𝑗 = 𝑛X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4140cbviunv 4966 . . . . . . . . . . . . 13 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙)
4241sseq2i 3946 . . . . . . . . . . . 12 ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ↔ (𝐵m {𝐴}) ⊆ 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4342biimpi 215 . . . . . . . . . . 11 ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) → (𝐵m {𝐴}) ⊆ 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4432, 43syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝐵m {𝐴}) ⊆ 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
45 simp3r 1200 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
4635fveq2d 6760 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑛 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)))
4746prodeq2ad 43023 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)))
4837fveq2d 6760 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)) = (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
4948cbvprodv 15554 . . . . . . . . . . . . . . . . 17 𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)) = ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙))
5049a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)) = ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
5147, 50eqtrd 2778 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
5251cbvmptv 5183 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
5352fveq2i 6759 . . . . . . . . . . . . 13 ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙))))
5453eqeq2i 2751 . . . . . . . . . . . 12 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ 𝑧 = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))))
5554biimpi 215 . . . . . . . . . . 11 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) → 𝑧 = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))))
5645, 55syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑧 = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))))
57 fveq2 6756 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑖𝑚) = (𝑖𝑛))
5857fveq1d 6758 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑖𝑚)‘𝐴) = ((𝑖𝑛)‘𝐴))
5958cbvmptv 5183 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ ((𝑖𝑚)‘𝐴)) = (𝑛 ∈ ℕ ↦ ((𝑖𝑛)‘𝐴))
6029, 30, 31, 44, 56, 59ovnovollem2 44085 . . . . . . . . 9 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
61603exp 1117 . . . . . . . 8 (𝜑 → (𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) → (((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))))
6261rexlimdv 3211 . . . . . . 7 (𝜑 → (∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
6328, 62impbid 211 . . . . . 6 (𝜑 → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
6463rabbidv 3404 . . . . 5 (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
6514a1i 11 . . . . 5 (𝜑𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))})
6612a1i 11 . . . . 5 (𝜑𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
6764, 65, 663eqtr4d 2788 . . . 4 (𝜑𝑁 = 𝑀)
6867infeq1d 9166 . . 3 (𝜑 → inf(𝑁, ℝ*, < ) = inf(𝑀, ℝ*, < ))
6915, 68eqtrd 2778 . 2 (𝜑 → (vol*‘𝐵) = inf(𝑀, ℝ*, < ))
704, 13, 693eqtr4d 2788 1 (𝜑 → ((voln*‘{𝐴})‘(𝐵m {𝐴})) = (vol*‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253  ifcif 4456  {csn 4558  cop 4564   cuni 4836   ciun 4921  cmpt 5153   × cxp 5578  ran crn 5581  ccom 5584  cfv 6418  (class class class)co 7255  m cmap 8573  Xcixp 8643  Fincfn 8691  infcinf 9130  cr 10801  0cc0 10802  *cxr 10939   < clt 10940  cn 11903  [,)cico 13010  cprod 15543  vol*covol 24531  volcvol 24532  Σ^csumge0 43790  voln*covoln 43964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-prod 15544  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534  df-sumge0 43791  df-ovoln 43965
This theorem is referenced by:  ovnovol  44087
  Copyright terms: Public domain W3C validator