Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnovollem3 Structured version   Visualization version   GIF version

Theorem ovnovollem3 46755
Description: The 1-dimensional Lebesgue outer measure agrees with the Lebesgue outer measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnovollem3.a (𝜑𝐴𝑉)
ovnovollem3.b (𝜑𝐵 ⊆ ℝ)
ovnovollem3.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
ovnovollem3.n 𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
Assertion
Ref Expression
ovnovollem3 (𝜑 → ((voln*‘{𝐴})‘(𝐵m {𝐴})) = (vol*‘𝐵))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑗,𝑘,𝑧   𝐵,𝑓,𝑖,𝑗,𝑘,𝑧   𝑧,𝑁   𝑘,𝑉   𝜑,𝑓,𝑖,𝑗,𝑘,𝑧
Allowed substitution hints:   𝑀(𝑧,𝑓,𝑖,𝑗,𝑘)   𝑁(𝑓,𝑖,𝑗,𝑘)   𝑉(𝑧,𝑓,𝑖,𝑗)

Proof of Theorem ovnovollem3
Dummy variables 𝑛 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovnovollem3.a . . . . 5 (𝜑𝐴𝑉)
21snn0d 4725 . . . 4 (𝜑 → {𝐴} ≠ ∅)
32neneqd 2933 . . 3 (𝜑 → ¬ {𝐴} = ∅)
43iffalsed 4483 . 2 (𝜑 → if({𝐴} = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < ))
5 snfi 8965 . . . 4 {𝐴} ∈ Fin
65a1i 11 . . 3 (𝜑 → {𝐴} ∈ Fin)
7 reex 11097 . . . . 5 ℝ ∈ V
87a1i 11 . . . 4 (𝜑 → ℝ ∈ V)
9 ovnovollem3.b . . . 4 (𝜑𝐵 ⊆ ℝ)
10 mapss 8813 . . . 4 ((ℝ ∈ V ∧ 𝐵 ⊆ ℝ) → (𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
118, 9, 10syl2anc 584 . . 3 (𝜑 → (𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
12 ovnovollem3.m . . 3 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
136, 11, 12ovnval2 46642 . 2 (𝜑 → ((voln*‘{𝐴})‘(𝐵m {𝐴})) = if({𝐴} = ∅, 0, inf(𝑀, ℝ*, < )))
14 ovnovollem3.n . . . 4 𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
159, 14ovolval5 46752 . . 3 (𝜑 → (vol*‘𝐵) = inf(𝑁, ℝ*, < ))
161ad2antrr 726 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐴𝑉)
17 simplr 768 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑓 ∈ ((ℝ × ℝ) ↑m ℕ))
18 fveq2 6822 . . . . . . . . . . . 12 (𝑛 = 𝑗 → (𝑓𝑛) = (𝑓𝑗))
1918opeq2d 4829 . . . . . . . . . . 11 (𝑛 = 𝑗 → ⟨𝐴, (𝑓𝑛)⟩ = ⟨𝐴, (𝑓𝑗)⟩)
2019sneqd 4585 . . . . . . . . . 10 (𝑛 = 𝑗 → {⟨𝐴, (𝑓𝑛)⟩} = {⟨𝐴, (𝑓𝑗)⟩})
2120cbvmptv 5193 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ {⟨𝐴, (𝑓𝑛)⟩}) = (𝑗 ∈ ℕ ↦ {⟨𝐴, (𝑓𝑗)⟩})
22 simprl 770 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐵 ran ([,) ∘ 𝑓))
238, 9ssexd 5260 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
2423adantr 480 . . . . . . . . . 10 ((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) → 𝐵 ∈ V)
2524adantr 480 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐵 ∈ V)
26 simprr 772 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
2716, 17, 21, 22, 25, 26ovnovollem1 46753 . . . . . . . 8 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
2827rexlimdva2 3135 . . . . . . 7 (𝜑 → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
2913ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝐴𝑉)
30233ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝐵 ∈ V)
31 simp2 1137 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ))
32 simp3l 1202 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘))
33 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑛 → (𝑖𝑗) = (𝑖𝑛))
3433coeq2d 5801 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑛 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝑖𝑛)))
3534fveq1d 6824 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝑖𝑛))‘𝑘))
3635ixpeq2dv 8837 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑘))
37 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → (([,) ∘ (𝑖𝑛))‘𝑘) = (([,) ∘ (𝑖𝑛))‘𝑙))
3837cbvixpv 8839 . . . . . . . . . . . . . . . 16 X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑘) = X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙)
3938a1i 11 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑘) = X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4036, 39eqtrd 2766 . . . . . . . . . . . . . 14 (𝑗 = 𝑛X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4140cbviunv 4987 . . . . . . . . . . . . 13 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙)
4241sseq2i 3959 . . . . . . . . . . . 12 ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ↔ (𝐵m {𝐴}) ⊆ 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4342biimpi 216 . . . . . . . . . . 11 ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) → (𝐵m {𝐴}) ⊆ 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4432, 43syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝐵m {𝐴}) ⊆ 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
45 simp3r 1203 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
4635fveq2d 6826 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑛 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)))
4746prodeq2ad 45691 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)))
4837fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)) = (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
4948cbvprodv 15821 . . . . . . . . . . . . . . . . 17 𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)) = ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙))
5049a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)) = ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
5147, 50eqtrd 2766 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
5251cbvmptv 5193 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
5352fveq2i 6825 . . . . . . . . . . . . 13 ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙))))
5453eqeq2i 2744 . . . . . . . . . . . 12 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ 𝑧 = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))))
5554biimpi 216 . . . . . . . . . . 11 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) → 𝑧 = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))))
5645, 55syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑧 = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))))
57 fveq2 6822 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑖𝑚) = (𝑖𝑛))
5857fveq1d 6824 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑖𝑚)‘𝐴) = ((𝑖𝑛)‘𝐴))
5958cbvmptv 5193 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ ((𝑖𝑚)‘𝐴)) = (𝑛 ∈ ℕ ↦ ((𝑖𝑛)‘𝐴))
6029, 30, 31, 44, 56, 59ovnovollem2 46754 . . . . . . . . 9 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
61603exp 1119 . . . . . . . 8 (𝜑 → (𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) → (((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))))
6261rexlimdv 3131 . . . . . . 7 (𝜑 → (∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
6328, 62impbid 212 . . . . . 6 (𝜑 → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
6463rabbidv 3402 . . . . 5 (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
6514a1i 11 . . . . 5 (𝜑𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))})
6612a1i 11 . . . . 5 (𝜑𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
6764, 65, 663eqtr4d 2776 . . . 4 (𝜑𝑁 = 𝑀)
6867infeq1d 9362 . . 3 (𝜑 → inf(𝑁, ℝ*, < ) = inf(𝑀, ℝ*, < ))
6915, 68eqtrd 2766 . 2 (𝜑 → (vol*‘𝐵) = inf(𝑀, ℝ*, < ))
704, 13, 693eqtr4d 2776 1 (𝜑 → ((voln*‘{𝐴})‘(𝐵m {𝐴})) = (vol*‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  c0 4280  ifcif 4472  {csn 4573  cop 4579   cuni 4856   ciun 4939  cmpt 5170   × cxp 5612  ran crn 5615  ccom 5618  cfv 6481  (class class class)co 7346  m cmap 8750  Xcixp 8821  Fincfn 8869  infcinf 9325  cr 11005  0cc0 11006  *cxr 11145   < clt 11146  cn 12125  [,)cico 13247  cprod 15810  vol*covol 25390  volcvol 25391  Σ^csumge0 46459  voln*covoln 46633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-rest 17326  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-bases 22861  df-cmp 23302  df-ovol 25392  df-vol 25393  df-sumge0 46460  df-ovoln 46634
This theorem is referenced by:  ovnovol  46756
  Copyright terms: Public domain W3C validator