Step | Hyp | Ref
| Expression |
1 | | ovnovollem3.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
2 | 1 | snn0d 4708 |
. . . 4
⊢ (𝜑 → {𝐴} ≠ ∅) |
3 | 2 | neneqd 2947 |
. . 3
⊢ (𝜑 → ¬ {𝐴} = ∅) |
4 | 3 | iffalsed 4467 |
. 2
⊢ (𝜑 → if({𝐴} = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, <
)) |
5 | | snfi 8788 |
. . . 4
⊢ {𝐴} ∈ Fin |
6 | 5 | a1i 11 |
. . 3
⊢ (𝜑 → {𝐴} ∈ Fin) |
7 | | reex 10893 |
. . . . 5
⊢ ℝ
∈ V |
8 | 7 | a1i 11 |
. . . 4
⊢ (𝜑 → ℝ ∈
V) |
9 | | ovnovollem3.b |
. . . 4
⊢ (𝜑 → 𝐵 ⊆ ℝ) |
10 | | mapss 8635 |
. . . 4
⊢ ((ℝ
∈ V ∧ 𝐵 ⊆
ℝ) → (𝐵
↑m {𝐴})
⊆ (ℝ ↑m {𝐴})) |
11 | 8, 9, 10 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐵 ↑m {𝐴}) ⊆ (ℝ ↑m
{𝐴})) |
12 | | ovnovollem3.m |
. . 3
⊢ 𝑀 = {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
13 | 6, 11, 12 | ovnval2 43973 |
. 2
⊢ (𝜑 → ((voln*‘{𝐴})‘(𝐵 ↑m {𝐴})) = if({𝐴} = ∅, 0, inf(𝑀, ℝ*, <
))) |
14 | | ovnovollem3.n |
. . . 4
⊢ 𝑁 = {𝑧 ∈ ℝ* ∣
∃𝑓 ∈ ((ℝ
× ℝ) ↑m ℕ)(𝐵 ⊆ ∪ ran
([,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓)))} |
15 | 9, 14 | ovolval5 44083 |
. . 3
⊢ (𝜑 → (vol*‘𝐵) = inf(𝑁, ℝ*, <
)) |
16 | 1 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)) ∧ (𝐵 ⊆ ∪ ran
([,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐴 ∈ 𝑉) |
17 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)) ∧ (𝐵 ⊆ ∪ ran
([,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)) |
18 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑗 → (𝑓‘𝑛) = (𝑓‘𝑗)) |
19 | 18 | opeq2d 4808 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑗 → 〈𝐴, (𝑓‘𝑛)〉 = 〈𝐴, (𝑓‘𝑗)〉) |
20 | 19 | sneqd 4570 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑗 → {〈𝐴, (𝑓‘𝑛)〉} = {〈𝐴, (𝑓‘𝑗)〉}) |
21 | 20 | cbvmptv 5183 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦
{〈𝐴, (𝑓‘𝑛)〉}) = (𝑗 ∈ ℕ ↦ {〈𝐴, (𝑓‘𝑗)〉}) |
22 | | simprl 767 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)) ∧ (𝐵 ⊆ ∪ ran
([,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐵 ⊆ ∪ ran
([,) ∘ 𝑓)) |
23 | 8, 9 | ssexd 5243 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ V) |
24 | 23 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)) → 𝐵 ∈ V) |
25 | 24 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)) ∧ (𝐵 ⊆ ∪ ran
([,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐵 ∈ V) |
26 | | simprr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)) ∧ (𝐵 ⊆ ∪ ran
([,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑧 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓))) |
27 | 16, 17, 21, 22, 25, 26 | ovnovollem1 44084 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)) ∧ (𝐵 ⊆ ∪ ran
([,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → ∃𝑖 ∈ (((ℝ ×
ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |
28 | 27 | rexlimdva2 3215 |
. . . . . . 7
⊢ (𝜑 → (∃𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)(𝐵 ⊆ ∪ ran
([,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓))) → ∃𝑖 ∈ (((ℝ ×
ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
29 | 1 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑m {𝐴})
↑m ℕ) ∧ ((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → 𝐴 ∈ 𝑉) |
30 | 23 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑m {𝐴})
↑m ℕ) ∧ ((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → 𝐵 ∈ V) |
31 | | simp2 1135 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑m {𝐴})
↑m ℕ) ∧ ((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → 𝑖 ∈ (((ℝ × ℝ)
↑m {𝐴})
↑m ℕ)) |
32 | | simp3l 1199 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑m {𝐴})
↑m ℕ) ∧ ((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → (𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘)) |
33 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑛 → (𝑖‘𝑗) = (𝑖‘𝑛)) |
34 | 33 | coeq2d 5760 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑛 → ([,) ∘ (𝑖‘𝑗)) = ([,) ∘ (𝑖‘𝑛))) |
35 | 34 | fveq1d 6758 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑛 → (([,) ∘ (𝑖‘𝑗))‘𝑘) = (([,) ∘ (𝑖‘𝑛))‘𝑘)) |
36 | 35 | ixpeq2dv 8659 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑛 → X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) = X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑛))‘𝑘)) |
37 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑙 → (([,) ∘ (𝑖‘𝑛))‘𝑘) = (([,) ∘ (𝑖‘𝑛))‘𝑙)) |
38 | 37 | cbvixpv 8661 |
. . . . . . . . . . . . . . . 16
⊢ X𝑘 ∈
{𝐴} (([,) ∘ (𝑖‘𝑛))‘𝑘) = X𝑙 ∈ {𝐴} (([,) ∘ (𝑖‘𝑛))‘𝑙) |
39 | 38 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑛 → X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑛))‘𝑘) = X𝑙 ∈ {𝐴} (([,) ∘ (𝑖‘𝑛))‘𝑙)) |
40 | 36, 39 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑛 → X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) = X𝑙 ∈ {𝐴} (([,) ∘ (𝑖‘𝑛))‘𝑙)) |
41 | 40 | cbviunv 4966 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) = ∪ 𝑛 ∈ ℕ X𝑙 ∈
{𝐴} (([,) ∘ (𝑖‘𝑛))‘𝑙) |
42 | 41 | sseq2i 3946 |
. . . . . . . . . . . 12
⊢ ((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ↔ (𝐵 ↑m {𝐴}) ⊆ ∪ 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖‘𝑛))‘𝑙)) |
43 | 42 | biimpi 215 |
. . . . . . . . . . 11
⊢ ((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) → (𝐵 ↑m {𝐴}) ⊆ ∪ 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖‘𝑛))‘𝑙)) |
44 | 32, 43 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑m {𝐴})
↑m ℕ) ∧ ((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → (𝐵 ↑m {𝐴}) ⊆ ∪ 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖‘𝑛))‘𝑙)) |
45 | | simp3r 1200 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑m {𝐴})
↑m ℕ) ∧ ((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) |
46 | 35 | fveq2d 6760 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑛 → (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝑖‘𝑛))‘𝑘))) |
47 | 46 | prodeq2ad 43023 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑛 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑛))‘𝑘))) |
48 | 37 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑙 → (vol‘(([,) ∘ (𝑖‘𝑛))‘𝑘)) = (vol‘(([,) ∘ (𝑖‘𝑛))‘𝑙))) |
49 | 48 | cbvprodv 15554 |
. . . . . . . . . . . . . . . . 17
⊢
∏𝑘 ∈
{𝐴} (vol‘(([,)
∘ (𝑖‘𝑛))‘𝑘)) = ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑛))‘𝑙)) |
50 | 49 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑛 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑛))‘𝑘)) = ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑛))‘𝑙))) |
51 | 47, 50 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑛 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑛))‘𝑙))) |
52 | 51 | cbvmptv 5183 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ ↦
∏𝑘 ∈ {𝐴} (vol‘(([,) ∘
(𝑖‘𝑗))‘𝑘))) = (𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑛))‘𝑙))) |
53 | 52 | fveq2i 6759 |
. . . . . . . . . . . . 13
⊢
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) =
(Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑛))‘𝑙)))) |
54 | 53 | eqeq2i 2751 |
. . . . . . . . . . . 12
⊢ (𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ↔ 𝑧 =
(Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑛))‘𝑙))))) |
55 | 54 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) → 𝑧 =
(Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑛))‘𝑙))))) |
56 | 45, 55 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑m {𝐴})
↑m ℕ) ∧ ((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → 𝑧 =
(Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑛))‘𝑙))))) |
57 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (𝑖‘𝑚) = (𝑖‘𝑛)) |
58 | 57 | fveq1d 6758 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → ((𝑖‘𝑚)‘𝐴) = ((𝑖‘𝑛)‘𝐴)) |
59 | 58 | cbvmptv 5183 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ ↦ ((𝑖‘𝑚)‘𝐴)) = (𝑛 ∈ ℕ ↦ ((𝑖‘𝑛)‘𝐴)) |
60 | 29, 30, 31, 44, 56, 59 | ovnovollem2 44085 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ)
↑m {𝐴})
↑m ℕ) ∧ ((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → ∃𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)(𝐵 ⊆ ∪ ran
([,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓)))) |
61 | 60 | 3exp 1117 |
. . . . . . . 8
⊢ (𝜑 → (𝑖 ∈ (((ℝ × ℝ)
↑m {𝐴})
↑m ℕ) → (((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → ∃𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)(𝐵 ⊆ ∪ ran
([,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓)))))) |
62 | 61 | rexlimdv 3211 |
. . . . . . 7
⊢ (𝜑 → (∃𝑖 ∈ (((ℝ × ℝ)
↑m {𝐴})
↑m ℕ)((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → ∃𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)(𝐵 ⊆ ∪ ran
([,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓))))) |
63 | 28, 62 | impbid 211 |
. . . . . 6
⊢ (𝜑 → (∃𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)(𝐵 ⊆ ∪ ran
([,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓))) ↔ ∃𝑖 ∈ (((ℝ ×
ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
64 | 63 | rabbidv 3404 |
. . . . 5
⊢ (𝜑 → {𝑧 ∈ ℝ* ∣
∃𝑓 ∈ ((ℝ
× ℝ) ↑m ℕ)(𝐵 ⊆ ∪ ran
([,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓)))} = {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) |
65 | 14 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑁 = {𝑧 ∈ ℝ* ∣
∃𝑓 ∈ ((ℝ
× ℝ) ↑m ℕ)(𝐵 ⊆ ∪ ran
([,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓)))}) |
66 | 12 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑀 = {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) |
67 | 64, 65, 66 | 3eqtr4d 2788 |
. . . 4
⊢ (𝜑 → 𝑁 = 𝑀) |
68 | 67 | infeq1d 9166 |
. . 3
⊢ (𝜑 → inf(𝑁, ℝ*, < ) = inf(𝑀, ℝ*, <
)) |
69 | 15, 68 | eqtrd 2778 |
. 2
⊢ (𝜑 → (vol*‘𝐵) = inf(𝑀, ℝ*, <
)) |
70 | 4, 13, 69 | 3eqtr4d 2788 |
1
⊢ (𝜑 → ((voln*‘{𝐴})‘(𝐵 ↑m {𝐴})) = (vol*‘𝐵)) |