Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnovollem3 Structured version   Visualization version   GIF version

Theorem ovnovollem3 42502
Description: The 1-dimensional Lebesgue outer measure agrees with the Lebesgue outer measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnovollem3.a (𝜑𝐴𝑉)
ovnovollem3.b (𝜑𝐵 ⊆ ℝ)
ovnovollem3.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ)((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
ovnovollem3.n 𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
Assertion
Ref Expression
ovnovollem3 (𝜑 → ((voln*‘{𝐴})‘(𝐵𝑚 {𝐴})) = (vol*‘𝐵))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑗,𝑘,𝑧   𝐵,𝑓,𝑖,𝑗,𝑘,𝑧   𝑧,𝑁   𝑘,𝑉   𝜑,𝑓,𝑖,𝑗,𝑘,𝑧
Allowed substitution hints:   𝑀(𝑧,𝑓,𝑖,𝑗,𝑘)   𝑁(𝑓,𝑖,𝑗,𝑘)   𝑉(𝑧,𝑓,𝑖,𝑗)

Proof of Theorem ovnovollem3
Dummy variables 𝑛 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovnovollem3.a . . . . 5 (𝜑𝐴𝑉)
2 snnzg 4617 . . . . 5 (𝐴𝑉 → {𝐴} ≠ ∅)
31, 2syl 17 . . . 4 (𝜑 → {𝐴} ≠ ∅)
43neneqd 2989 . . 3 (𝜑 → ¬ {𝐴} = ∅)
54iffalsed 4392 . 2 (𝜑 → if({𝐴} = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < ))
6 snfi 8442 . . . 4 {𝐴} ∈ Fin
76a1i 11 . . 3 (𝜑 → {𝐴} ∈ Fin)
8 reex 10474 . . . . 5 ℝ ∈ V
98a1i 11 . . . 4 (𝜑 → ℝ ∈ V)
10 ovnovollem3.b . . . 4 (𝜑𝐵 ⊆ ℝ)
11 mapss 8302 . . . 4 ((ℝ ∈ V ∧ 𝐵 ⊆ ℝ) → (𝐵𝑚 {𝐴}) ⊆ (ℝ ↑𝑚 {𝐴}))
129, 10, 11syl2anc 584 . . 3 (𝜑 → (𝐵𝑚 {𝐴}) ⊆ (ℝ ↑𝑚 {𝐴}))
13 ovnovollem3.m . . 3 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ)((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
147, 12, 13ovnval2 42389 . 2 (𝜑 → ((voln*‘{𝐴})‘(𝐵𝑚 {𝐴})) = if({𝐴} = ∅, 0, inf(𝑀, ℝ*, < )))
15 ovnovollem3.n . . . 4 𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))}
1610, 15ovolval5 42499 . . 3 (𝜑 → (vol*‘𝐵) = inf(𝑁, ℝ*, < ))
171ad2antrr 722 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐴𝑉)
18 simplr 765 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ))
19 fveq2 6538 . . . . . . . . . . . 12 (𝑛 = 𝑗 → (𝑓𝑛) = (𝑓𝑗))
2019opeq2d 4717 . . . . . . . . . . 11 (𝑛 = 𝑗 → ⟨𝐴, (𝑓𝑛)⟩ = ⟨𝐴, (𝑓𝑗)⟩)
2120sneqd 4484 . . . . . . . . . 10 (𝑛 = 𝑗 → {⟨𝐴, (𝑓𝑛)⟩} = {⟨𝐴, (𝑓𝑗)⟩})
2221cbvmptv 5061 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ {⟨𝐴, (𝑓𝑛)⟩}) = (𝑗 ∈ ℕ ↦ {⟨𝐴, (𝑓𝑗)⟩})
23 simprl 767 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐵 ran ([,) ∘ 𝑓))
249, 10ssexd 5119 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
2524adantr 481 . . . . . . . . . 10 ((𝜑𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)) → 𝐵 ∈ V)
2625adantr 481 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝐵 ∈ V)
27 simprr 769 . . . . . . . . 9 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))
2817, 18, 22, 23, 26, 27ovnovollem1 42500 . . . . . . . 8 (((𝜑𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)) ∧ (𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ)((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
2928rexlimdva2 3250 . . . . . . 7 (𝜑 → (∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ)((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
3013ad2ant1 1126 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ) ∧ ((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝐴𝑉)
31243ad2ant1 1126 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ) ∧ ((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝐵 ∈ V)
32 simp2 1130 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ) ∧ ((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ))
33 simp3l 1194 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ) ∧ ((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘))
34 fveq2 6538 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑛 → (𝑖𝑗) = (𝑖𝑛))
3534coeq2d 5619 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑛 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝑖𝑛)))
3635fveq1d 6540 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝑖𝑛))‘𝑘))
3736ixpeq2dv 8326 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑘))
38 fveq2 6538 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → (([,) ∘ (𝑖𝑛))‘𝑘) = (([,) ∘ (𝑖𝑛))‘𝑙))
3938cbvixpv 8328 . . . . . . . . . . . . . . . 16 X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑘) = X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙)
4039a1i 11 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑘) = X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4137, 40eqtrd 2831 . . . . . . . . . . . . . 14 (𝑗 = 𝑛X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4241cbviunv 4866 . . . . . . . . . . . . 13 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙)
4342sseq2i 3917 . . . . . . . . . . . 12 ((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ↔ (𝐵𝑚 {𝐴}) ⊆ 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4443biimpi 217 . . . . . . . . . . 11 ((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) → (𝐵𝑚 {𝐴}) ⊆ 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
4533, 44syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ) ∧ ((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝐵𝑚 {𝐴}) ⊆ 𝑛 ∈ ℕ X𝑙 ∈ {𝐴} (([,) ∘ (𝑖𝑛))‘𝑙))
46 simp3r 1195 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ) ∧ ((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
4736fveq2d 6542 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑛 → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)))
4847prodeq2ad 41434 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)))
4938fveq2d 6542 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)) = (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
5049cbvprodv 15103 . . . . . . . . . . . . . . . . 17 𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)) = ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙))
5150a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑛 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑘)) = ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
5248, 51eqtrd 2831 . . . . . . . . . . . . . . 15 (𝑗 = 𝑛 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
5352cbvmptv 5061 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))
5453fveq2i 6541 . . . . . . . . . . . . 13 ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙))))
5554eqeq2i 2807 . . . . . . . . . . . 12 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ 𝑧 = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))))
5655biimpi 217 . . . . . . . . . . 11 (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) → 𝑧 = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))))
5746, 56syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ) ∧ ((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑧 = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑙 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑛))‘𝑙)))))
58 fveq2 6538 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑖𝑚) = (𝑖𝑛))
5958fveq1d 6540 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑖𝑚)‘𝐴) = ((𝑖𝑛)‘𝐴))
6059cbvmptv 5061 . . . . . . . . . 10 (𝑚 ∈ ℕ ↦ ((𝑖𝑚)‘𝐴)) = (𝑛 ∈ ℕ ↦ ((𝑖𝑛)‘𝐴))
6130, 31, 32, 45, 57, 60ovnovollem2 42501 . . . . . . . . 9 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ) ∧ ((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
62613exp 1112 . . . . . . . 8 (𝜑 → (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ) → (((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))))
6362rexlimdv 3246 . . . . . . 7 (𝜑 → (∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ)((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))))
6429, 63impbid 213 . . . . . 6 (𝜑 → (∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ)((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
6564rabbidv 3425 . . . . 5 (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ)((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
6615a1i 11 . . . . 5 (𝜑𝑁 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)))})
6713a1i 11 . . . . 5 (𝜑𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 {𝐴}) ↑𝑚 ℕ)((𝐵𝑚 {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
6865, 66, 673eqtr4d 2841 . . . 4 (𝜑𝑁 = 𝑀)
6968infeq1d 8787 . . 3 (𝜑 → inf(𝑁, ℝ*, < ) = inf(𝑀, ℝ*, < ))
7016, 69eqtrd 2831 . 2 (𝜑 → (vol*‘𝐵) = inf(𝑀, ℝ*, < ))
715, 14, 703eqtr4d 2841 1 (𝜑 → ((voln*‘{𝐴})‘(𝐵𝑚 {𝐴})) = (vol*‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984  wrex 3106  {crab 3109  Vcvv 3437  wss 3859  c0 4211  ifcif 4381  {csn 4472  cop 4478   cuni 4745   ciun 4825  cmpt 5041   × cxp 5441  ran crn 5444  ccom 5447  cfv 6225  (class class class)co 7016  𝑚 cmap 8256  Xcixp 8310  Fincfn 8357  infcinf 8751  cr 10382  0cc0 10383  *cxr 10520   < clt 10521  cn 11486  [,)cico 12590  cprod 15092  vol*covol 23746  volcvol 23747  Σ^csumge0 42206  voln*covoln 42380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-dju 9176  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-z 11830  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-rlim 14680  df-sum 14877  df-prod 15093  df-rest 16525  df-topgen 16546  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-top 21186  df-topon 21203  df-bases 21238  df-cmp 21679  df-ovol 23748  df-vol 23749  df-sumge0 42207  df-ovoln 42381
This theorem is referenced by:  ovnovol  42503
  Copyright terms: Public domain W3C validator