Step | Hyp | Ref
| Expression |
1 | | cnpf2 22736 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶𝑌) |
2 | 1 | 3expa 1119 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶𝑌) |
3 | 2 | 3adantl3 1169 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶𝑌) |
4 | | simpl1 1192 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ (TopOn‘𝑋)) |
5 | | simpl3 1194 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ 𝑋) |
6 | | neiflim 23460 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴}))) |
7 | | cnpflf2.3 |
. . . . . . 7
⊢ 𝐿 = ((nei‘𝐽)‘{𝐴}) |
8 | 7 | oveq2i 7415 |
. . . . . 6
⊢ (𝐽 fLim 𝐿) = (𝐽 fLim ((nei‘𝐽)‘{𝐴})) |
9 | 6, 8 | eleqtrrdi 2845 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝐽 fLim 𝐿)) |
10 | 4, 5, 9 | syl2anc 585 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ (𝐽 fLim 𝐿)) |
11 | | simpr 486 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |
12 | | cnpflfi 23485 |
. . . 4
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹)) |
13 | 10, 11, 12 | syl2anc 585 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹)) |
14 | 3, 13 | jca 513 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))) |
15 | | simpl1 1192 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐽 ∈ (TopOn‘𝑋)) |
16 | | topontop 22397 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
17 | 15, 16 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐽 ∈ Top) |
18 | | simpl3 1194 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐴 ∈ 𝑋) |
19 | | toponuni 22398 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
20 | 15, 19 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝑋 = ∪ 𝐽) |
21 | 18, 20 | eleqtrd 2836 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐴 ∈ ∪ 𝐽) |
22 | 7 | eleq2i 2826 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝐿 ↔ 𝑧 ∈ ((nei‘𝐽)‘{𝐴})) |
23 | | eqid 2733 |
. . . . . . . . . . . . 13
⊢ ∪ 𝐽 =
∪ 𝐽 |
24 | 23 | isneip 22591 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ ∪ 𝐽)
→ (𝑧 ∈
((nei‘𝐽)‘{𝐴}) ↔ (𝑧 ⊆ ∪ 𝐽 ∧ ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)))) |
25 | 22, 24 | bitrid 283 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ ∪ 𝐽)
→ (𝑧 ∈ 𝐿 ↔ (𝑧 ⊆ ∪ 𝐽 ∧ ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)))) |
26 | 17, 21, 25 | syl2anc 585 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (𝑧 ∈ 𝐿 ↔ (𝑧 ⊆ ∪ 𝐽 ∧ ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)))) |
27 | | sstr2 3988 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 “ 𝑣) ⊆ (𝐹 “ 𝑧) → ((𝐹 “ 𝑧) ⊆ 𝑢 → (𝐹 “ 𝑣) ⊆ 𝑢)) |
28 | | imass2 6098 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ⊆ 𝑧 → (𝐹 “ 𝑣) ⊆ (𝐹 “ 𝑧)) |
29 | 27, 28 | syl11 33 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 “ 𝑧) ⊆ 𝑢 → (𝑣 ⊆ 𝑧 → (𝐹 “ 𝑣) ⊆ 𝑢)) |
30 | 29 | anim2d 613 |
. . . . . . . . . . . . 13
⊢ ((𝐹 “ 𝑧) ⊆ 𝑢 → ((𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧) → (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
31 | 30 | reximdv 3171 |
. . . . . . . . . . . 12
⊢ ((𝐹 “ 𝑧) ⊆ 𝑢 → (∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧) → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
32 | 31 | com12 32 |
. . . . . . . . . . 11
⊢
(∃𝑣 ∈
𝐽 (𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧) → ((𝐹 “ 𝑧) ⊆ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
33 | 32 | adantl 483 |
. . . . . . . . . 10
⊢ ((𝑧 ⊆ ∪ 𝐽
∧ ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)) → ((𝐹 “ 𝑧) ⊆ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
34 | 26, 33 | syl6bi 253 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (𝑧 ∈ 𝐿 → ((𝐹 “ 𝑧) ⊆ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)))) |
35 | 34 | rexlimdv 3154 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
36 | 35 | imim2d 57 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (((𝐹‘𝐴) ∈ 𝑢 → ∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢) → ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)))) |
37 | 36 | ralimdv 3170 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢) → ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)))) |
38 | | simpr 486 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐹:𝑋⟶𝑌) |
39 | 37, 38 | jctild 527 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))))) |
40 | 39 | adantld 492 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (((𝐹‘𝐴) ∈ 𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))))) |
41 | | simpl2 1193 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐾 ∈ (TopOn‘𝑌)) |
42 | 18 | snssd 4811 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → {𝐴} ⊆ 𝑋) |
43 | 18 | snn0d 4778 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → {𝐴} ≠ ∅) |
44 | | neifil 23366 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) |
45 | 15, 42, 43, 44 | syl3anc 1372 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) |
46 | 7, 45 | eqeltrid 2838 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐿 ∈ (Fil‘𝑋)) |
47 | | isflf 23479 |
. . . . 5
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹‘𝐴) ∈ 𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢)))) |
48 | 41, 46, 38, 47 | syl3anc 1372 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹‘𝐴) ∈ 𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢)))) |
49 | | iscnp 22723 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))))) |
50 | 49 | adantr 482 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))))) |
51 | 40, 48, 50 | 3imtr4d 294 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))) |
52 | 51 | impr 456 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |
53 | 14, 52 | impbida 800 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹)))) |