MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpflf2 Structured version   Visualization version   GIF version

Theorem cnpflf2 23151
Description: 𝐹 is continuous at point 𝐴 iff a limit of 𝐹 when 𝑥 tends to 𝐴 is (𝐹𝐴). Proposition 9 of [BourbakiTop1] p. TG I.50. (Contributed by FL, 29-May-2011.) (Revised by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
cnpflf2.3 𝐿 = ((nei‘𝐽)‘{𝐴})
Assertion
Ref Expression
cnpflf2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))))

Proof of Theorem cnpflf2
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnpf2 22401 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
213expa 1117 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
323adantl3 1167 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
4 simpl1 1190 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ (TopOn‘𝑋))
5 simpl3 1192 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴𝑋)
6 neiflim 23125 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})))
7 cnpflf2.3 . . . . . . 7 𝐿 = ((nei‘𝐽)‘{𝐴})
87oveq2i 7286 . . . . . 6 (𝐽 fLim 𝐿) = (𝐽 fLim ((nei‘𝐽)‘{𝐴}))
96, 8eleqtrrdi 2850 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽 fLim 𝐿))
104, 5, 9syl2anc 584 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ (𝐽 fLim 𝐿))
11 simpr 485 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
12 cnpflfi 23150 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))
1310, 11, 12syl2anc 584 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))
143, 13jca 512 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹:𝑋𝑌 ∧ (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹)))
15 simpl1 1190 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ (TopOn‘𝑋))
16 topontop 22062 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1715, 16syl 17 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ Top)
18 simpl3 1192 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐴𝑋)
19 toponuni 22063 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2015, 19syl 17 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝑋 = 𝐽)
2118, 20eleqtrd 2841 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐴 𝐽)
227eleq2i 2830 . . . . . . . . . . . 12 (𝑧𝐿𝑧 ∈ ((nei‘𝐽)‘{𝐴}))
23 eqid 2738 . . . . . . . . . . . . 13 𝐽 = 𝐽
2423isneip 22256 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → (𝑧 ∈ ((nei‘𝐽)‘{𝐴}) ↔ (𝑧 𝐽 ∧ ∃𝑣𝐽 (𝐴𝑣𝑣𝑧))))
2522, 24bitrid 282 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → (𝑧𝐿 ↔ (𝑧 𝐽 ∧ ∃𝑣𝐽 (𝐴𝑣𝑣𝑧))))
2617, 21, 25syl2anc 584 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (𝑧𝐿 ↔ (𝑧 𝐽 ∧ ∃𝑣𝐽 (𝐴𝑣𝑣𝑧))))
27 sstr2 3928 . . . . . . . . . . . . . . 15 ((𝐹𝑣) ⊆ (𝐹𝑧) → ((𝐹𝑧) ⊆ 𝑢 → (𝐹𝑣) ⊆ 𝑢))
28 imass2 6010 . . . . . . . . . . . . . . 15 (𝑣𝑧 → (𝐹𝑣) ⊆ (𝐹𝑧))
2927, 28syl11 33 . . . . . . . . . . . . . 14 ((𝐹𝑧) ⊆ 𝑢 → (𝑣𝑧 → (𝐹𝑣) ⊆ 𝑢))
3029anim2d 612 . . . . . . . . . . . . 13 ((𝐹𝑧) ⊆ 𝑢 → ((𝐴𝑣𝑣𝑧) → (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
3130reximdv 3202 . . . . . . . . . . . 12 ((𝐹𝑧) ⊆ 𝑢 → (∃𝑣𝐽 (𝐴𝑣𝑣𝑧) → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
3231com12 32 . . . . . . . . . . 11 (∃𝑣𝐽 (𝐴𝑣𝑣𝑧) → ((𝐹𝑧) ⊆ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
3332adantl 482 . . . . . . . . . 10 ((𝑧 𝐽 ∧ ∃𝑣𝐽 (𝐴𝑣𝑣𝑧)) → ((𝐹𝑧) ⊆ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
3426, 33syl6bi 252 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (𝑧𝐿 → ((𝐹𝑧) ⊆ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
3534rexlimdv 3212 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
3635imim2d 57 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (((𝐹𝐴) ∈ 𝑢 → ∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢) → ((𝐹𝐴) ∈ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
3736ralimdv 3109 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢) → ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
38 simpr 485 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐹:𝑋𝑌)
3937, 38jctild 526 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢) → (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
4039adantld 491 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (((𝐹𝐴) ∈ 𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢)) → (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
41 simpl2 1191 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐾 ∈ (TopOn‘𝑌))
4218snssd 4742 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → {𝐴} ⊆ 𝑋)
4318snn0d 4711 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → {𝐴} ≠ ∅)
44 neifil 23031 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
4515, 42, 43, 44syl3anc 1370 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
467, 45eqeltrid 2843 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐿 ∈ (Fil‘𝑋))
47 isflf 23144 . . . . 5 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑋𝑌) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹𝐴) ∈ 𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢))))
4841, 46, 38, 47syl3anc 1370 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹𝐴) ∈ 𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢))))
49 iscnp 22388 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
5049adantr 481 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
5140, 48, 503imtr4d 294 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)))
5251impr 455 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ (𝐹:𝑋𝑌 ∧ (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
5314, 52impbida 798 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  wss 3887  c0 4256  {csn 4561   cuni 4839  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  Topctop 22042  TopOnctopon 22059  neicnei 22248   CnP ccnp 22376  Filcfil 22996   fLim cflim 23085   fLimf cflf 23086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-ntr 22171  df-nei 22249  df-cnp 22379  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091
This theorem is referenced by:  cnpflf  23152
  Copyright terms: Public domain W3C validator