MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpflf2 Structured version   Visualization version   GIF version

Theorem cnpflf2 24024
Description: 𝐹 is continuous at point 𝐴 iff a limit of 𝐹 when 𝑥 tends to 𝐴 is (𝐹𝐴). Proposition 9 of [BourbakiTop1] p. TG I.50. (Contributed by FL, 29-May-2011.) (Revised by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
cnpflf2.3 𝐿 = ((nei‘𝐽)‘{𝐴})
Assertion
Ref Expression
cnpflf2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))))

Proof of Theorem cnpflf2
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnpf2 23274 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
213expa 1117 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
323adantl3 1167 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
4 simpl1 1190 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ (TopOn‘𝑋))
5 simpl3 1192 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴𝑋)
6 neiflim 23998 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})))
7 cnpflf2.3 . . . . . . 7 𝐿 = ((nei‘𝐽)‘{𝐴})
87oveq2i 7442 . . . . . 6 (𝐽 fLim 𝐿) = (𝐽 fLim ((nei‘𝐽)‘{𝐴}))
96, 8eleqtrrdi 2850 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽 fLim 𝐿))
104, 5, 9syl2anc 584 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ (𝐽 fLim 𝐿))
11 simpr 484 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
12 cnpflfi 24023 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))
1310, 11, 12syl2anc 584 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))
143, 13jca 511 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹:𝑋𝑌 ∧ (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹)))
15 simpl1 1190 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ (TopOn‘𝑋))
16 topontop 22935 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1715, 16syl 17 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ Top)
18 simpl3 1192 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐴𝑋)
19 toponuni 22936 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2015, 19syl 17 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝑋 = 𝐽)
2118, 20eleqtrd 2841 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐴 𝐽)
227eleq2i 2831 . . . . . . . . . . . 12 (𝑧𝐿𝑧 ∈ ((nei‘𝐽)‘{𝐴}))
23 eqid 2735 . . . . . . . . . . . . 13 𝐽 = 𝐽
2423isneip 23129 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → (𝑧 ∈ ((nei‘𝐽)‘{𝐴}) ↔ (𝑧 𝐽 ∧ ∃𝑣𝐽 (𝐴𝑣𝑣𝑧))))
2522, 24bitrid 283 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → (𝑧𝐿 ↔ (𝑧 𝐽 ∧ ∃𝑣𝐽 (𝐴𝑣𝑣𝑧))))
2617, 21, 25syl2anc 584 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (𝑧𝐿 ↔ (𝑧 𝐽 ∧ ∃𝑣𝐽 (𝐴𝑣𝑣𝑧))))
27 sstr2 4002 . . . . . . . . . . . . . . 15 ((𝐹𝑣) ⊆ (𝐹𝑧) → ((𝐹𝑧) ⊆ 𝑢 → (𝐹𝑣) ⊆ 𝑢))
28 imass2 6123 . . . . . . . . . . . . . . 15 (𝑣𝑧 → (𝐹𝑣) ⊆ (𝐹𝑧))
2927, 28syl11 33 . . . . . . . . . . . . . 14 ((𝐹𝑧) ⊆ 𝑢 → (𝑣𝑧 → (𝐹𝑣) ⊆ 𝑢))
3029anim2d 612 . . . . . . . . . . . . 13 ((𝐹𝑧) ⊆ 𝑢 → ((𝐴𝑣𝑣𝑧) → (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
3130reximdv 3168 . . . . . . . . . . . 12 ((𝐹𝑧) ⊆ 𝑢 → (∃𝑣𝐽 (𝐴𝑣𝑣𝑧) → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
3231com12 32 . . . . . . . . . . 11 (∃𝑣𝐽 (𝐴𝑣𝑣𝑧) → ((𝐹𝑧) ⊆ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
3332adantl 481 . . . . . . . . . 10 ((𝑧 𝐽 ∧ ∃𝑣𝐽 (𝐴𝑣𝑣𝑧)) → ((𝐹𝑧) ⊆ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
3426, 33biimtrdi 253 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (𝑧𝐿 → ((𝐹𝑧) ⊆ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
3534rexlimdv 3151 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
3635imim2d 57 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (((𝐹𝐴) ∈ 𝑢 → ∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢) → ((𝐹𝐴) ∈ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
3736ralimdv 3167 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢) → ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
38 simpr 484 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐹:𝑋𝑌)
3937, 38jctild 525 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢) → (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
4039adantld 490 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (((𝐹𝐴) ∈ 𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢)) → (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
41 simpl2 1191 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐾 ∈ (TopOn‘𝑌))
4218snssd 4814 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → {𝐴} ⊆ 𝑋)
4318snn0d 4780 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → {𝐴} ≠ ∅)
44 neifil 23904 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
4515, 42, 43, 44syl3anc 1370 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
467, 45eqeltrid 2843 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐿 ∈ (Fil‘𝑋))
47 isflf 24017 . . . . 5 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑋𝑌) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹𝐴) ∈ 𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢))))
4841, 46, 38, 47syl3anc 1370 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹𝐴) ∈ 𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢))))
49 iscnp 23261 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
5049adantr 480 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
5140, 48, 503imtr4d 294 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)))
5251impr 454 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ (𝐹:𝑋𝑌 ∧ (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
5314, 52impbida 801 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  wss 3963  c0 4339  {csn 4631   cuni 4912  cima 5692  wf 6559  cfv 6563  (class class class)co 7431  Topctop 22915  TopOnctopon 22932  neicnei 23121   CnP ccnp 23249  Filcfil 23869   fLim cflim 23958   fLimf cflf 23959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867  df-fbas 21379  df-fg 21380  df-top 22916  df-topon 22933  df-ntr 23044  df-nei 23122  df-cnp 23252  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964
This theorem is referenced by:  cnpflf  24025
  Copyright terms: Public domain W3C validator