| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cnpf2 23258 | . . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶𝑌) | 
| 2 | 1 | 3expa 1119 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶𝑌) | 
| 3 | 2 | 3adantl3 1169 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶𝑌) | 
| 4 |  | simpl1 1192 | . . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 5 |  | simpl3 1194 | . . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ 𝑋) | 
| 6 |  | neiflim 23982 | . . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴}))) | 
| 7 |  | cnpflf2.3 | . . . . . . 7
⊢ 𝐿 = ((nei‘𝐽)‘{𝐴}) | 
| 8 | 7 | oveq2i 7442 | . . . . . 6
⊢ (𝐽 fLim 𝐿) = (𝐽 fLim ((nei‘𝐽)‘{𝐴})) | 
| 9 | 6, 8 | eleqtrrdi 2852 | . . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝐽 fLim 𝐿)) | 
| 10 | 4, 5, 9 | syl2anc 584 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ (𝐽 fLim 𝐿)) | 
| 11 |  | simpr 484 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) | 
| 12 |  | cnpflfi 24007 | . . . 4
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹)) | 
| 13 | 10, 11, 12 | syl2anc 584 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹)) | 
| 14 | 3, 13 | jca 511 | . 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))) | 
| 15 |  | simpl1 1192 | . . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 16 |  | topontop 22919 | . . . . . . . . . . . 12
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | 
| 17 | 15, 16 | syl 17 | . . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐽 ∈ Top) | 
| 18 |  | simpl3 1194 | . . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐴 ∈ 𝑋) | 
| 19 |  | toponuni 22920 | . . . . . . . . . . . . 13
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | 
| 20 | 15, 19 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝑋 = ∪ 𝐽) | 
| 21 | 18, 20 | eleqtrd 2843 | . . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐴 ∈ ∪ 𝐽) | 
| 22 | 7 | eleq2i 2833 | . . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝐿 ↔ 𝑧 ∈ ((nei‘𝐽)‘{𝐴})) | 
| 23 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 24 | 23 | isneip 23113 | . . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ ∪ 𝐽)
→ (𝑧 ∈
((nei‘𝐽)‘{𝐴}) ↔ (𝑧 ⊆ ∪ 𝐽 ∧ ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)))) | 
| 25 | 22, 24 | bitrid 283 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ ∪ 𝐽)
→ (𝑧 ∈ 𝐿 ↔ (𝑧 ⊆ ∪ 𝐽 ∧ ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)))) | 
| 26 | 17, 21, 25 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (𝑧 ∈ 𝐿 ↔ (𝑧 ⊆ ∪ 𝐽 ∧ ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)))) | 
| 27 |  | sstr2 3990 | . . . . . . . . . . . . . . 15
⊢ ((𝐹 “ 𝑣) ⊆ (𝐹 “ 𝑧) → ((𝐹 “ 𝑧) ⊆ 𝑢 → (𝐹 “ 𝑣) ⊆ 𝑢)) | 
| 28 |  | imass2 6120 | . . . . . . . . . . . . . . 15
⊢ (𝑣 ⊆ 𝑧 → (𝐹 “ 𝑣) ⊆ (𝐹 “ 𝑧)) | 
| 29 | 27, 28 | syl11 33 | . . . . . . . . . . . . . 14
⊢ ((𝐹 “ 𝑧) ⊆ 𝑢 → (𝑣 ⊆ 𝑧 → (𝐹 “ 𝑣) ⊆ 𝑢)) | 
| 30 | 29 | anim2d 612 | . . . . . . . . . . . . 13
⊢ ((𝐹 “ 𝑧) ⊆ 𝑢 → ((𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧) → (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) | 
| 31 | 30 | reximdv 3170 | . . . . . . . . . . . 12
⊢ ((𝐹 “ 𝑧) ⊆ 𝑢 → (∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧) → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) | 
| 32 | 31 | com12 32 | . . . . . . . . . . 11
⊢
(∃𝑣 ∈
𝐽 (𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧) → ((𝐹 “ 𝑧) ⊆ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) | 
| 33 | 32 | adantl 481 | . . . . . . . . . 10
⊢ ((𝑧 ⊆ ∪ 𝐽
∧ ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)) → ((𝐹 “ 𝑧) ⊆ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) | 
| 34 | 26, 33 | biimtrdi 253 | . . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (𝑧 ∈ 𝐿 → ((𝐹 “ 𝑧) ⊆ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)))) | 
| 35 | 34 | rexlimdv 3153 | . . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) | 
| 36 | 35 | imim2d 57 | . . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (((𝐹‘𝐴) ∈ 𝑢 → ∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢) → ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)))) | 
| 37 | 36 | ralimdv 3169 | . . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢) → ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)))) | 
| 38 |  | simpr 484 | . . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐹:𝑋⟶𝑌) | 
| 39 | 37, 38 | jctild 525 | . . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))))) | 
| 40 | 39 | adantld 490 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (((𝐹‘𝐴) ∈ 𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))))) | 
| 41 |  | simpl2 1193 | . . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐾 ∈ (TopOn‘𝑌)) | 
| 42 | 18 | snssd 4809 | . . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → {𝐴} ⊆ 𝑋) | 
| 43 | 18 | snn0d 4775 | . . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → {𝐴} ≠ ∅) | 
| 44 |  | neifil 23888 | . . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) | 
| 45 | 15, 42, 43, 44 | syl3anc 1373 | . . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) | 
| 46 | 7, 45 | eqeltrid 2845 | . . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐿 ∈ (Fil‘𝑋)) | 
| 47 |  | isflf 24001 | . . . . 5
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹‘𝐴) ∈ 𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢)))) | 
| 48 | 41, 46, 38, 47 | syl3anc 1373 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹‘𝐴) ∈ 𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢)))) | 
| 49 |  | iscnp 23245 | . . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))))) | 
| 50 | 49 | adantr 480 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))))) | 
| 51 | 40, 48, 50 | 3imtr4d 294 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))) | 
| 52 | 51 | impr 454 | . 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) | 
| 53 | 14, 52 | impbida 801 | 1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹)))) |