| Step | Hyp | Ref
| Expression |
| 1 | | cnpf2 23188 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶𝑌) |
| 2 | 1 | 3expa 1118 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶𝑌) |
| 3 | 2 | 3adantl3 1169 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶𝑌) |
| 4 | | simpl1 1192 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | | simpl3 1194 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ 𝑋) |
| 6 | | neiflim 23912 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴}))) |
| 7 | | cnpflf2.3 |
. . . . . . 7
⊢ 𝐿 = ((nei‘𝐽)‘{𝐴}) |
| 8 | 7 | oveq2i 7416 |
. . . . . 6
⊢ (𝐽 fLim 𝐿) = (𝐽 fLim ((nei‘𝐽)‘{𝐴})) |
| 9 | 6, 8 | eleqtrrdi 2845 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝐽 fLim 𝐿)) |
| 10 | 4, 5, 9 | syl2anc 584 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ (𝐽 fLim 𝐿)) |
| 11 | | simpr 484 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |
| 12 | | cnpflfi 23937 |
. . . 4
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹)) |
| 13 | 10, 11, 12 | syl2anc 584 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹)) |
| 14 | 3, 13 | jca 511 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))) |
| 15 | | simpl1 1192 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐽 ∈ (TopOn‘𝑋)) |
| 16 | | topontop 22851 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 17 | 15, 16 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐽 ∈ Top) |
| 18 | | simpl3 1194 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐴 ∈ 𝑋) |
| 19 | | toponuni 22852 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 20 | 15, 19 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝑋 = ∪ 𝐽) |
| 21 | 18, 20 | eleqtrd 2836 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐴 ∈ ∪ 𝐽) |
| 22 | 7 | eleq2i 2826 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝐿 ↔ 𝑧 ∈ ((nei‘𝐽)‘{𝐴})) |
| 23 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 24 | 23 | isneip 23043 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ ∪ 𝐽)
→ (𝑧 ∈
((nei‘𝐽)‘{𝐴}) ↔ (𝑧 ⊆ ∪ 𝐽 ∧ ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)))) |
| 25 | 22, 24 | bitrid 283 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ ∪ 𝐽)
→ (𝑧 ∈ 𝐿 ↔ (𝑧 ⊆ ∪ 𝐽 ∧ ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)))) |
| 26 | 17, 21, 25 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (𝑧 ∈ 𝐿 ↔ (𝑧 ⊆ ∪ 𝐽 ∧ ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)))) |
| 27 | | sstr2 3965 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 “ 𝑣) ⊆ (𝐹 “ 𝑧) → ((𝐹 “ 𝑧) ⊆ 𝑢 → (𝐹 “ 𝑣) ⊆ 𝑢)) |
| 28 | | imass2 6089 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ⊆ 𝑧 → (𝐹 “ 𝑣) ⊆ (𝐹 “ 𝑧)) |
| 29 | 27, 28 | syl11 33 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 “ 𝑧) ⊆ 𝑢 → (𝑣 ⊆ 𝑧 → (𝐹 “ 𝑣) ⊆ 𝑢)) |
| 30 | 29 | anim2d 612 |
. . . . . . . . . . . . 13
⊢ ((𝐹 “ 𝑧) ⊆ 𝑢 → ((𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧) → (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
| 31 | 30 | reximdv 3155 |
. . . . . . . . . . . 12
⊢ ((𝐹 “ 𝑧) ⊆ 𝑢 → (∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧) → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
| 32 | 31 | com12 32 |
. . . . . . . . . . 11
⊢
(∃𝑣 ∈
𝐽 (𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧) → ((𝐹 “ 𝑧) ⊆ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
| 33 | 32 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑧 ⊆ ∪ 𝐽
∧ ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)) → ((𝐹 “ 𝑧) ⊆ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
| 34 | 26, 33 | biimtrdi 253 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (𝑧 ∈ 𝐿 → ((𝐹 “ 𝑧) ⊆ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)))) |
| 35 | 34 | rexlimdv 3139 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
| 36 | 35 | imim2d 57 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (((𝐹‘𝐴) ∈ 𝑢 → ∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢) → ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)))) |
| 37 | 36 | ralimdv 3154 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢) → ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)))) |
| 38 | | simpr 484 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐹:𝑋⟶𝑌) |
| 39 | 37, 38 | jctild 525 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))))) |
| 40 | 39 | adantld 490 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (((𝐹‘𝐴) ∈ 𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))))) |
| 41 | | simpl2 1193 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐾 ∈ (TopOn‘𝑌)) |
| 42 | 18 | snssd 4785 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → {𝐴} ⊆ 𝑋) |
| 43 | 18 | snn0d 4751 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → {𝐴} ≠ ∅) |
| 44 | | neifil 23818 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) |
| 45 | 15, 42, 43, 44 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) |
| 46 | 7, 45 | eqeltrid 2838 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐿 ∈ (Fil‘𝑋)) |
| 47 | | isflf 23931 |
. . . . 5
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹‘𝐴) ∈ 𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢)))) |
| 48 | 41, 46, 38, 47 | syl3anc 1373 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹‘𝐴) ∈ 𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑧 ∈ 𝐿 (𝐹 “ 𝑧) ⊆ 𝑢)))) |
| 49 | | iscnp 23175 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))))) |
| 50 | 49 | adantr 480 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝐾 ((𝐹‘𝐴) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝐴 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))))) |
| 51 | 40, 48, 50 | 3imtr4d 294 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))) |
| 52 | 51 | impr 454 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |
| 53 | 14, 52 | impbida 800 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹)))) |