MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpflf2 Structured version   Visualization version   GIF version

Theorem cnpflf2 23486
Description: 𝐹 is continuous at point 𝐴 iff a limit of 𝐹 when 𝑥 tends to 𝐴 is (𝐹𝐴). Proposition 9 of [BourbakiTop1] p. TG I.50. (Contributed by FL, 29-May-2011.) (Revised by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
cnpflf2.3 𝐿 = ((nei‘𝐽)‘{𝐴})
Assertion
Ref Expression
cnpflf2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))))

Proof of Theorem cnpflf2
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnpf2 22736 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
213expa 1119 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
323adantl3 1169 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋𝑌)
4 simpl1 1192 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ (TopOn‘𝑋))
5 simpl3 1194 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴𝑋)
6 neiflim 23460 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴})))
7 cnpflf2.3 . . . . . . 7 𝐿 = ((nei‘𝐽)‘{𝐴})
87oveq2i 7415 . . . . . 6 (𝐽 fLim 𝐿) = (𝐽 fLim ((nei‘𝐽)‘{𝐴}))
96, 8eleqtrrdi 2845 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽 fLim 𝐿))
104, 5, 9syl2anc 585 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ (𝐽 fLim 𝐿))
11 simpr 486 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
12 cnpflfi 23485 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))
1310, 11, 12syl2anc 585 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))
143, 13jca 513 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹:𝑋𝑌 ∧ (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹)))
15 simpl1 1192 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ (TopOn‘𝑋))
16 topontop 22397 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1715, 16syl 17 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐽 ∈ Top)
18 simpl3 1194 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐴𝑋)
19 toponuni 22398 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2015, 19syl 17 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝑋 = 𝐽)
2118, 20eleqtrd 2836 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐴 𝐽)
227eleq2i 2826 . . . . . . . . . . . 12 (𝑧𝐿𝑧 ∈ ((nei‘𝐽)‘{𝐴}))
23 eqid 2733 . . . . . . . . . . . . 13 𝐽 = 𝐽
2423isneip 22591 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → (𝑧 ∈ ((nei‘𝐽)‘{𝐴}) ↔ (𝑧 𝐽 ∧ ∃𝑣𝐽 (𝐴𝑣𝑣𝑧))))
2522, 24bitrid 283 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → (𝑧𝐿 ↔ (𝑧 𝐽 ∧ ∃𝑣𝐽 (𝐴𝑣𝑣𝑧))))
2617, 21, 25syl2anc 585 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (𝑧𝐿 ↔ (𝑧 𝐽 ∧ ∃𝑣𝐽 (𝐴𝑣𝑣𝑧))))
27 sstr2 3988 . . . . . . . . . . . . . . 15 ((𝐹𝑣) ⊆ (𝐹𝑧) → ((𝐹𝑧) ⊆ 𝑢 → (𝐹𝑣) ⊆ 𝑢))
28 imass2 6098 . . . . . . . . . . . . . . 15 (𝑣𝑧 → (𝐹𝑣) ⊆ (𝐹𝑧))
2927, 28syl11 33 . . . . . . . . . . . . . 14 ((𝐹𝑧) ⊆ 𝑢 → (𝑣𝑧 → (𝐹𝑣) ⊆ 𝑢))
3029anim2d 613 . . . . . . . . . . . . 13 ((𝐹𝑧) ⊆ 𝑢 → ((𝐴𝑣𝑣𝑧) → (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
3130reximdv 3171 . . . . . . . . . . . 12 ((𝐹𝑧) ⊆ 𝑢 → (∃𝑣𝐽 (𝐴𝑣𝑣𝑧) → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
3231com12 32 . . . . . . . . . . 11 (∃𝑣𝐽 (𝐴𝑣𝑣𝑧) → ((𝐹𝑧) ⊆ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
3332adantl 483 . . . . . . . . . 10 ((𝑧 𝐽 ∧ ∃𝑣𝐽 (𝐴𝑣𝑣𝑧)) → ((𝐹𝑧) ⊆ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
3426, 33syl6bi 253 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (𝑧𝐿 → ((𝐹𝑧) ⊆ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
3534rexlimdv 3154 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
3635imim2d 57 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (((𝐹𝐴) ∈ 𝑢 → ∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢) → ((𝐹𝐴) ∈ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
3736ralimdv 3170 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢) → ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
38 simpr 486 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐹:𝑋𝑌)
3937, 38jctild 527 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢) → (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
4039adantld 492 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (((𝐹𝐴) ∈ 𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢)) → (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
41 simpl2 1193 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐾 ∈ (TopOn‘𝑌))
4218snssd 4811 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → {𝐴} ⊆ 𝑋)
4318snn0d 4778 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → {𝐴} ≠ ∅)
44 neifil 23366 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
4515, 42, 43, 44syl3anc 1372 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
467, 45eqeltrid 2838 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → 𝐿 ∈ (Fil‘𝑋))
47 isflf 23479 . . . . 5 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑋𝑌) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹𝐴) ∈ 𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢))))
4841, 46, 38, 47syl3anc 1372 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹𝐴) ∈ 𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑧𝐿 (𝐹𝑧) ⊆ 𝑢))))
49 iscnp 22723 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
5049adantr 482 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝐴) ∈ 𝑢 → ∃𝑣𝐽 (𝐴𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
5140, 48, 503imtr4d 294 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ 𝐹:𝑋𝑌) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)))
5251impr 456 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ (𝐹:𝑋𝑌 ∧ (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
5314, 52impbida 800 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋𝑌 ∧ (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  wss 3947  c0 4321  {csn 4627   cuni 4907  cima 5678  wf 6536  cfv 6540  (class class class)co 7404  Topctop 22377  TopOnctopon 22394  neicnei 22583   CnP ccnp 22711  Filcfil 23331   fLim cflim 23420   fLimf cflf 23421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7970  df-2nd 7971  df-map 8818  df-fbas 20926  df-fg 20927  df-top 22378  df-topon 22395  df-ntr 22506  df-nei 22584  df-cnp 22714  df-fil 23332  df-fm 23424  df-flim 23425  df-flf 23426
This theorem is referenced by:  cnpflf  23487
  Copyright terms: Public domain W3C validator