Step | Hyp | Ref
| Expression |
1 | | simplll 771 |
. . . . . . 7
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π½ β πΎ) β§ (π β (Filβπ) β§ π₯ β (πΎ fLim π))) β π½ β (TopOnβπ)) |
2 | | simprl 767 |
. . . . . . 7
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π½ β πΎ) β§ (π β (Filβπ) β§ π₯ β (πΎ fLim π))) β π β (Filβπ)) |
3 | | simplr 765 |
. . . . . . 7
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π½ β πΎ) β§ (π β (Filβπ) β§ π₯ β (πΎ fLim π))) β π½ β πΎ) |
4 | | flimss1 23699 |
. . . . . . 7
β’ ((π½ β (TopOnβπ) β§ π β (Filβπ) β§ π½ β πΎ) β (πΎ fLim π) β (π½ fLim π)) |
5 | 1, 2, 3, 4 | syl3anc 1369 |
. . . . . 6
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π½ β πΎ) β§ (π β (Filβπ) β§ π₯ β (πΎ fLim π))) β (πΎ fLim π) β (π½ fLim π)) |
6 | | simprr 769 |
. . . . . 6
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π½ β πΎ) β§ (π β (Filβπ) β§ π₯ β (πΎ fLim π))) β π₯ β (πΎ fLim π)) |
7 | 5, 6 | sseldd 3984 |
. . . . 5
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π½ β πΎ) β§ (π β (Filβπ) β§ π₯ β (πΎ fLim π))) β π₯ β (π½ fLim π)) |
8 | 7 | expr 455 |
. . . 4
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π½ β πΎ) β§ π β (Filβπ)) β (π₯ β (πΎ fLim π) β π₯ β (π½ fLim π))) |
9 | 8 | ssrdv 3989 |
. . 3
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π½ β πΎ) β§ π β (Filβπ)) β (πΎ fLim π) β (π½ fLim π)) |
10 | 9 | ralrimiva 3144 |
. 2
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π½ β πΎ) β βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) |
11 | | oveq2 7421 |
. . . . . . . . . . . 12
β’ (π = ((neiβπΎ)β{π¦}) β (πΎ fLim π) = (πΎ fLim ((neiβπΎ)β{π¦}))) |
12 | | oveq2 7421 |
. . . . . . . . . . . 12
β’ (π = ((neiβπΎ)β{π¦}) β (π½ fLim π) = (π½ fLim ((neiβπΎ)β{π¦}))) |
13 | 11, 12 | sseq12d 4016 |
. . . . . . . . . . 11
β’ (π = ((neiβπΎ)β{π¦}) β ((πΎ fLim π) β (π½ fLim π) β (πΎ fLim ((neiβπΎ)β{π¦})) β (π½ fLim ((neiβπΎ)β{π¦})))) |
14 | | simplr 765 |
. . . . . . . . . . 11
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ (π₯ β π½ β§ π¦ β π₯)) β βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) |
15 | | simpllr 772 |
. . . . . . . . . . . 12
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ (π₯ β π½ β§ π¦ β π₯)) β πΎ β (TopOnβπ)) |
16 | | simplll 771 |
. . . . . . . . . . . . . . 15
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ (π₯ β π½ β§ π¦ β π₯)) β π½ β (TopOnβπ)) |
17 | | simprl 767 |
. . . . . . . . . . . . . . 15
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ (π₯ β π½ β§ π¦ β π₯)) β π₯ β π½) |
18 | | toponss 22651 |
. . . . . . . . . . . . . . 15
β’ ((π½ β (TopOnβπ) β§ π₯ β π½) β π₯ β π) |
19 | 16, 17, 18 | syl2anc 582 |
. . . . . . . . . . . . . 14
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ (π₯ β π½ β§ π¦ β π₯)) β π₯ β π) |
20 | | simprr 769 |
. . . . . . . . . . . . . 14
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ (π₯ β π½ β§ π¦ β π₯)) β π¦ β π₯) |
21 | 19, 20 | sseldd 3984 |
. . . . . . . . . . . . 13
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ (π₯ β π½ β§ π¦ β π₯)) β π¦ β π) |
22 | 21 | snssd 4813 |
. . . . . . . . . . . 12
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ (π₯ β π½ β§ π¦ β π₯)) β {π¦} β π) |
23 | 20 | snn0d 4780 |
. . . . . . . . . . . 12
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ (π₯ β π½ β§ π¦ β π₯)) β {π¦} β β
) |
24 | | neifil 23606 |
. . . . . . . . . . . 12
β’ ((πΎ β (TopOnβπ) β§ {π¦} β π β§ {π¦} β β
) β ((neiβπΎ)β{π¦}) β (Filβπ)) |
25 | 15, 22, 23, 24 | syl3anc 1369 |
. . . . . . . . . . 11
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ (π₯ β π½ β§ π¦ β π₯)) β ((neiβπΎ)β{π¦}) β (Filβπ)) |
26 | 13, 14, 25 | rspcdva 3614 |
. . . . . . . . . 10
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ (π₯ β π½ β§ π¦ β π₯)) β (πΎ fLim ((neiβπΎ)β{π¦})) β (π½ fLim ((neiβπΎ)β{π¦}))) |
27 | | neiflim 23700 |
. . . . . . . . . . 11
β’ ((πΎ β (TopOnβπ) β§ π¦ β π) β π¦ β (πΎ fLim ((neiβπΎ)β{π¦}))) |
28 | 15, 21, 27 | syl2anc 582 |
. . . . . . . . . 10
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ (π₯ β π½ β§ π¦ β π₯)) β π¦ β (πΎ fLim ((neiβπΎ)β{π¦}))) |
29 | 26, 28 | sseldd 3984 |
. . . . . . . . 9
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ (π₯ β π½ β§ π¦ β π₯)) β π¦ β (π½ fLim ((neiβπΎ)β{π¦}))) |
30 | | flimneiss 23692 |
. . . . . . . . 9
β’ (π¦ β (π½ fLim ((neiβπΎ)β{π¦})) β ((neiβπ½)β{π¦}) β ((neiβπΎ)β{π¦})) |
31 | 29, 30 | syl 17 |
. . . . . . . 8
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ (π₯ β π½ β§ π¦ β π₯)) β ((neiβπ½)β{π¦}) β ((neiβπΎ)β{π¦})) |
32 | | topontop 22637 |
. . . . . . . . . 10
β’ (π½ β (TopOnβπ) β π½ β Top) |
33 | 16, 32 | syl 17 |
. . . . . . . . 9
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ (π₯ β π½ β§ π¦ β π₯)) β π½ β Top) |
34 | | opnneip 22845 |
. . . . . . . . 9
β’ ((π½ β Top β§ π₯ β π½ β§ π¦ β π₯) β π₯ β ((neiβπ½)β{π¦})) |
35 | 33, 17, 20, 34 | syl3anc 1369 |
. . . . . . . 8
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ (π₯ β π½ β§ π¦ β π₯)) β π₯ β ((neiβπ½)β{π¦})) |
36 | 31, 35 | sseldd 3984 |
. . . . . . 7
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ (π₯ β π½ β§ π¦ β π₯)) β π₯ β ((neiβπΎ)β{π¦})) |
37 | 36 | anassrs 466 |
. . . . . 6
β’
(((((π½ β
(TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ π₯ β π½) β§ π¦ β π₯) β π₯ β ((neiβπΎ)β{π¦})) |
38 | 37 | ralrimiva 3144 |
. . . . 5
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ π₯ β π½) β βπ¦ β π₯ π₯ β ((neiβπΎ)β{π¦})) |
39 | | simpllr 772 |
. . . . . 6
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ π₯ β π½) β πΎ β (TopOnβπ)) |
40 | | topontop 22637 |
. . . . . 6
β’ (πΎ β (TopOnβπ) β πΎ β Top) |
41 | | opnnei 22846 |
. . . . . 6
β’ (πΎ β Top β (π₯ β πΎ β βπ¦ β π₯ π₯ β ((neiβπΎ)β{π¦}))) |
42 | 39, 40, 41 | 3syl 18 |
. . . . 5
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ π₯ β π½) β (π₯ β πΎ β βπ¦ β π₯ π₯ β ((neiβπΎ)β{π¦}))) |
43 | 38, 42 | mpbird 256 |
. . . 4
β’ ((((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β§ π₯ β π½) β π₯ β πΎ) |
44 | 43 | ex 411 |
. . 3
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β (π₯ β π½ β π₯ β πΎ)) |
45 | 44 | ssrdv 3989 |
. 2
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π)) β π½ β πΎ) |
46 | 10, 45 | impbida 797 |
1
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (π½ β πΎ β βπ β (Filβπ)(πΎ fLim π) β (π½ fLim π))) |