MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimcf Structured version   Visualization version   GIF version

Theorem flimcf 23897
Description: Fineness is properly characterized by the property that every limit point of a filter in the finer topology is a limit point in the coarser topology. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
flimcf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (𝐽𝐾 ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)))
Distinct variable groups:   𝑓,𝐽   𝑓,𝐾   𝑓,𝑋

Proof of Theorem flimcf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 774 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝐽 ∈ (TopOn‘𝑋))
2 simprl 770 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝑓 ∈ (Fil‘𝑋))
3 simplr 768 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝐽𝐾)
4 flimss1 23888 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) → (𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
51, 2, 3, 4syl3anc 1373 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → (𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
6 simprr 772 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝑥 ∈ (𝐾 fLim 𝑓))
75, 6sseldd 3930 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝑥 ∈ (𝐽 fLim 𝑓))
87expr 456 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐾 fLim 𝑓) → 𝑥 ∈ (𝐽 fLim 𝑓)))
98ssrdv 3935 . . 3 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (Fil‘𝑋)) → (𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
109ralrimiva 3124 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) → ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
11 oveq2 7354 . . . . . . . . . . . 12 (𝑓 = ((nei‘𝐾)‘{𝑦}) → (𝐾 fLim 𝑓) = (𝐾 fLim ((nei‘𝐾)‘{𝑦})))
12 oveq2 7354 . . . . . . . . . . . 12 (𝑓 = ((nei‘𝐾)‘{𝑦}) → (𝐽 fLim 𝑓) = (𝐽 fLim ((nei‘𝐾)‘{𝑦})))
1311, 12sseq12d 3963 . . . . . . . . . . 11 (𝑓 = ((nei‘𝐾)‘{𝑦}) → ((𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓) ↔ (𝐾 fLim ((nei‘𝐾)‘{𝑦})) ⊆ (𝐽 fLim ((nei‘𝐾)‘{𝑦}))))
14 simplr 768 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
15 simpllr 775 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝐾 ∈ (TopOn‘𝑋))
16 simplll 774 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ (TopOn‘𝑋))
17 simprl 770 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥𝐽)
18 toponss 22842 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
1916, 17, 18syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥𝑋)
20 simprr 772 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦𝑥)
2119, 20sseldd 3930 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦𝑋)
2221snssd 4758 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → {𝑦} ⊆ 𝑋)
2320snn0d 4725 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → {𝑦} ≠ ∅)
24 neifil 23795 . . . . . . . . . . . 12 ((𝐾 ∈ (TopOn‘𝑋) ∧ {𝑦} ⊆ 𝑋 ∧ {𝑦} ≠ ∅) → ((nei‘𝐾)‘{𝑦}) ∈ (Fil‘𝑋))
2515, 22, 23, 24syl3anc 1373 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → ((nei‘𝐾)‘{𝑦}) ∈ (Fil‘𝑋))
2613, 14, 25rspcdva 3573 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → (𝐾 fLim ((nei‘𝐾)‘{𝑦})) ⊆ (𝐽 fLim ((nei‘𝐾)‘{𝑦})))
27 neiflim 23889 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → 𝑦 ∈ (𝐾 fLim ((nei‘𝐾)‘{𝑦})))
2815, 21, 27syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 ∈ (𝐾 fLim ((nei‘𝐾)‘{𝑦})))
2926, 28sseldd 3930 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 ∈ (𝐽 fLim ((nei‘𝐾)‘{𝑦})))
30 flimneiss 23881 . . . . . . . . 9 (𝑦 ∈ (𝐽 fLim ((nei‘𝐾)‘{𝑦})) → ((nei‘𝐽)‘{𝑦}) ⊆ ((nei‘𝐾)‘{𝑦}))
3129, 30syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → ((nei‘𝐽)‘{𝑦}) ⊆ ((nei‘𝐾)‘{𝑦}))
32 topontop 22828 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3316, 32syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Top)
34 opnneip 23034 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑦𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝑦}))
3533, 17, 20, 34syl3anc 1373 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘{𝑦}))
3631, 35sseldd 3930 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥 ∈ ((nei‘𝐾)‘{𝑦}))
3736anassrs 467 . . . . . 6 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) ∧ 𝑦𝑥) → 𝑥 ∈ ((nei‘𝐾)‘{𝑦}))
3837ralrimiva 3124 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) → ∀𝑦𝑥 𝑥 ∈ ((nei‘𝐾)‘{𝑦}))
39 simpllr 775 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) → 𝐾 ∈ (TopOn‘𝑋))
40 topontop 22828 . . . . . 6 (𝐾 ∈ (TopOn‘𝑋) → 𝐾 ∈ Top)
41 opnnei 23035 . . . . . 6 (𝐾 ∈ Top → (𝑥𝐾 ↔ ∀𝑦𝑥 𝑥 ∈ ((nei‘𝐾)‘{𝑦})))
4239, 40, 413syl 18 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) → (𝑥𝐾 ↔ ∀𝑦𝑥 𝑥 ∈ ((nei‘𝐾)‘{𝑦})))
4338, 42mpbird 257 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) → 𝑥𝐾)
4443ex 412 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) → (𝑥𝐽𝑥𝐾))
4544ssrdv 3935 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) → 𝐽𝐾)
4610, 45impbida 800 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (𝐽𝐾 ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wss 3897  c0 4280  {csn 4573  cfv 6481  (class class class)co 7346  Topctop 22808  TopOnctopon 22825  neicnei 23012  Filcfil 23760   fLim cflim 23849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-fbas 21288  df-top 22809  df-topon 22826  df-ntr 22935  df-nei 23013  df-fil 23761  df-flim 23854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator