MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimcf Structured version   Visualization version   GIF version

Theorem flimcf 23131
Description: Fineness is properly characterized by the property that every limit point of a filter in the finer topology is a limit point in the coarser topology. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
flimcf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (𝐽𝐾 ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)))
Distinct variable groups:   𝑓,𝐽   𝑓,𝐾   𝑓,𝑋

Proof of Theorem flimcf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 772 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝐽 ∈ (TopOn‘𝑋))
2 simprl 768 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝑓 ∈ (Fil‘𝑋))
3 simplr 766 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝐽𝐾)
4 flimss1 23122 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) → (𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
51, 2, 3, 4syl3anc 1370 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → (𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
6 simprr 770 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝑥 ∈ (𝐾 fLim 𝑓))
75, 6sseldd 3923 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝑥 ∈ (𝐽 fLim 𝑓))
87expr 457 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐾 fLim 𝑓) → 𝑥 ∈ (𝐽 fLim 𝑓)))
98ssrdv 3928 . . 3 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (Fil‘𝑋)) → (𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
109ralrimiva 3103 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) → ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
11 oveq2 7285 . . . . . . . . . . . 12 (𝑓 = ((nei‘𝐾)‘{𝑦}) → (𝐾 fLim 𝑓) = (𝐾 fLim ((nei‘𝐾)‘{𝑦})))
12 oveq2 7285 . . . . . . . . . . . 12 (𝑓 = ((nei‘𝐾)‘{𝑦}) → (𝐽 fLim 𝑓) = (𝐽 fLim ((nei‘𝐾)‘{𝑦})))
1311, 12sseq12d 3955 . . . . . . . . . . 11 (𝑓 = ((nei‘𝐾)‘{𝑦}) → ((𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓) ↔ (𝐾 fLim ((nei‘𝐾)‘{𝑦})) ⊆ (𝐽 fLim ((nei‘𝐾)‘{𝑦}))))
14 simplr 766 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
15 simpllr 773 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝐾 ∈ (TopOn‘𝑋))
16 simplll 772 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ (TopOn‘𝑋))
17 simprl 768 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥𝐽)
18 toponss 22074 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
1916, 17, 18syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥𝑋)
20 simprr 770 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦𝑥)
2119, 20sseldd 3923 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦𝑋)
2221snssd 4744 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → {𝑦} ⊆ 𝑋)
2320snn0d 4713 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → {𝑦} ≠ ∅)
24 neifil 23029 . . . . . . . . . . . 12 ((𝐾 ∈ (TopOn‘𝑋) ∧ {𝑦} ⊆ 𝑋 ∧ {𝑦} ≠ ∅) → ((nei‘𝐾)‘{𝑦}) ∈ (Fil‘𝑋))
2515, 22, 23, 24syl3anc 1370 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → ((nei‘𝐾)‘{𝑦}) ∈ (Fil‘𝑋))
2613, 14, 25rspcdva 3563 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → (𝐾 fLim ((nei‘𝐾)‘{𝑦})) ⊆ (𝐽 fLim ((nei‘𝐾)‘{𝑦})))
27 neiflim 23123 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → 𝑦 ∈ (𝐾 fLim ((nei‘𝐾)‘{𝑦})))
2815, 21, 27syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 ∈ (𝐾 fLim ((nei‘𝐾)‘{𝑦})))
2926, 28sseldd 3923 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 ∈ (𝐽 fLim ((nei‘𝐾)‘{𝑦})))
30 flimneiss 23115 . . . . . . . . 9 (𝑦 ∈ (𝐽 fLim ((nei‘𝐾)‘{𝑦})) → ((nei‘𝐽)‘{𝑦}) ⊆ ((nei‘𝐾)‘{𝑦}))
3129, 30syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → ((nei‘𝐽)‘{𝑦}) ⊆ ((nei‘𝐾)‘{𝑦}))
32 topontop 22060 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3316, 32syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Top)
34 opnneip 22268 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑦𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝑦}))
3533, 17, 20, 34syl3anc 1370 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘{𝑦}))
3631, 35sseldd 3923 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥 ∈ ((nei‘𝐾)‘{𝑦}))
3736anassrs 468 . . . . . 6 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) ∧ 𝑦𝑥) → 𝑥 ∈ ((nei‘𝐾)‘{𝑦}))
3837ralrimiva 3103 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) → ∀𝑦𝑥 𝑥 ∈ ((nei‘𝐾)‘{𝑦}))
39 simpllr 773 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) → 𝐾 ∈ (TopOn‘𝑋))
40 topontop 22060 . . . . . 6 (𝐾 ∈ (TopOn‘𝑋) → 𝐾 ∈ Top)
41 opnnei 22269 . . . . . 6 (𝐾 ∈ Top → (𝑥𝐾 ↔ ∀𝑦𝑥 𝑥 ∈ ((nei‘𝐾)‘{𝑦})))
4239, 40, 413syl 18 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) → (𝑥𝐾 ↔ ∀𝑦𝑥 𝑥 ∈ ((nei‘𝐾)‘{𝑦})))
4338, 42mpbird 256 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) → 𝑥𝐾)
4443ex 413 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) → (𝑥𝐽𝑥𝐾))
4544ssrdv 3928 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) → 𝐽𝐾)
4610, 45impbida 798 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (𝐽𝐾 ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wss 3888  c0 4258  {csn 4563  cfv 6435  (class class class)co 7277  Topctop 22040  TopOnctopon 22057  neicnei 22246  Filcfil 22994   fLim cflim 23083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-ov 7280  df-oprab 7281  df-mpo 7282  df-fbas 20592  df-top 22041  df-topon 22058  df-ntr 22169  df-nei 22247  df-fil 22995  df-flim 23088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator