MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimcf Structured version   Visualization version   GIF version

Theorem flimcf 23708
Description: Fineness is properly characterized by the property that every limit point of a filter in the finer topology is a limit point in the coarser topology. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
flimcf ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) β†’ (𝐽 βŠ† 𝐾 ↔ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)))
Distinct variable groups:   𝑓,𝐽   𝑓,𝐾   𝑓,𝑋

Proof of Theorem flimcf
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 771 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ 𝐽 βŠ† 𝐾) ∧ (𝑓 ∈ (Filβ€˜π‘‹) ∧ π‘₯ ∈ (𝐾 fLim 𝑓))) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
2 simprl 767 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ 𝐽 βŠ† 𝐾) ∧ (𝑓 ∈ (Filβ€˜π‘‹) ∧ π‘₯ ∈ (𝐾 fLim 𝑓))) β†’ 𝑓 ∈ (Filβ€˜π‘‹))
3 simplr 765 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ 𝐽 βŠ† 𝐾) ∧ (𝑓 ∈ (Filβ€˜π‘‹) ∧ π‘₯ ∈ (𝐾 fLim 𝑓))) β†’ 𝐽 βŠ† 𝐾)
4 flimss1 23699 . . . . . . 7 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑓 ∈ (Filβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ (𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓))
51, 2, 3, 4syl3anc 1369 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ 𝐽 βŠ† 𝐾) ∧ (𝑓 ∈ (Filβ€˜π‘‹) ∧ π‘₯ ∈ (𝐾 fLim 𝑓))) β†’ (𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓))
6 simprr 769 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ 𝐽 βŠ† 𝐾) ∧ (𝑓 ∈ (Filβ€˜π‘‹) ∧ π‘₯ ∈ (𝐾 fLim 𝑓))) β†’ π‘₯ ∈ (𝐾 fLim 𝑓))
75, 6sseldd 3984 . . . . 5 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ 𝐽 βŠ† 𝐾) ∧ (𝑓 ∈ (Filβ€˜π‘‹) ∧ π‘₯ ∈ (𝐾 fLim 𝑓))) β†’ π‘₯ ∈ (𝐽 fLim 𝑓))
87expr 455 . . . 4 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (Filβ€˜π‘‹)) β†’ (π‘₯ ∈ (𝐾 fLim 𝑓) β†’ π‘₯ ∈ (𝐽 fLim 𝑓)))
98ssrdv 3989 . . 3 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (Filβ€˜π‘‹)) β†’ (𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓))
109ralrimiva 3144 . 2 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ 𝐽 βŠ† 𝐾) β†’ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓))
11 oveq2 7421 . . . . . . . . . . . 12 (𝑓 = ((neiβ€˜πΎ)β€˜{𝑦}) β†’ (𝐾 fLim 𝑓) = (𝐾 fLim ((neiβ€˜πΎ)β€˜{𝑦})))
12 oveq2 7421 . . . . . . . . . . . 12 (𝑓 = ((neiβ€˜πΎ)β€˜{𝑦}) β†’ (𝐽 fLim 𝑓) = (𝐽 fLim ((neiβ€˜πΎ)β€˜{𝑦})))
1311, 12sseq12d 4016 . . . . . . . . . . 11 (𝑓 = ((neiβ€˜πΎ)β€˜{𝑦}) β†’ ((𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓) ↔ (𝐾 fLim ((neiβ€˜πΎ)β€˜{𝑦})) βŠ† (𝐽 fLim ((neiβ€˜πΎ)β€˜{𝑦}))))
14 simplr 765 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓))
15 simpllr 772 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ 𝐾 ∈ (TopOnβ€˜π‘‹))
16 simplll 771 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
17 simprl 767 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ π‘₯ ∈ 𝐽)
18 toponss 22651 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘₯ ∈ 𝐽) β†’ π‘₯ βŠ† 𝑋)
1916, 17, 18syl2anc 582 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ π‘₯ βŠ† 𝑋)
20 simprr 769 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ 𝑦 ∈ π‘₯)
2119, 20sseldd 3984 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ 𝑦 ∈ 𝑋)
2221snssd 4813 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ {𝑦} βŠ† 𝑋)
2320snn0d 4780 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ {𝑦} β‰  βˆ…)
24 neifil 23606 . . . . . . . . . . . 12 ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ {𝑦} βŠ† 𝑋 ∧ {𝑦} β‰  βˆ…) β†’ ((neiβ€˜πΎ)β€˜{𝑦}) ∈ (Filβ€˜π‘‹))
2515, 22, 23, 24syl3anc 1369 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ ((neiβ€˜πΎ)β€˜{𝑦}) ∈ (Filβ€˜π‘‹))
2613, 14, 25rspcdva 3614 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ (𝐾 fLim ((neiβ€˜πΎ)β€˜{𝑦})) βŠ† (𝐽 fLim ((neiβ€˜πΎ)β€˜{𝑦})))
27 neiflim 23700 . . . . . . . . . . 11 ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) β†’ 𝑦 ∈ (𝐾 fLim ((neiβ€˜πΎ)β€˜{𝑦})))
2815, 21, 27syl2anc 582 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ 𝑦 ∈ (𝐾 fLim ((neiβ€˜πΎ)β€˜{𝑦})))
2926, 28sseldd 3984 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ 𝑦 ∈ (𝐽 fLim ((neiβ€˜πΎ)β€˜{𝑦})))
30 flimneiss 23692 . . . . . . . . 9 (𝑦 ∈ (𝐽 fLim ((neiβ€˜πΎ)β€˜{𝑦})) β†’ ((neiβ€˜π½)β€˜{𝑦}) βŠ† ((neiβ€˜πΎ)β€˜{𝑦}))
3129, 30syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ ((neiβ€˜π½)β€˜{𝑦}) βŠ† ((neiβ€˜πΎ)β€˜{𝑦}))
32 topontop 22637 . . . . . . . . . 10 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐽 ∈ Top)
3316, 32syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ 𝐽 ∈ Top)
34 opnneip 22845 . . . . . . . . 9 ((𝐽 ∈ Top ∧ π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯) β†’ π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑦}))
3533, 17, 20, 34syl3anc 1369 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ π‘₯ ∈ ((neiβ€˜π½)β€˜{𝑦}))
3631, 35sseldd 3984 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ π‘₯)) β†’ π‘₯ ∈ ((neiβ€˜πΎ)β€˜{𝑦}))
3736anassrs 466 . . . . . 6 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ π‘₯ ∈ 𝐽) ∧ 𝑦 ∈ π‘₯) β†’ π‘₯ ∈ ((neiβ€˜πΎ)β€˜{𝑦}))
3837ralrimiva 3144 . . . . 5 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ π‘₯ ∈ 𝐽) β†’ βˆ€π‘¦ ∈ π‘₯ π‘₯ ∈ ((neiβ€˜πΎ)β€˜{𝑦}))
39 simpllr 772 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ π‘₯ ∈ 𝐽) β†’ 𝐾 ∈ (TopOnβ€˜π‘‹))
40 topontop 22637 . . . . . 6 (𝐾 ∈ (TopOnβ€˜π‘‹) β†’ 𝐾 ∈ Top)
41 opnnei 22846 . . . . . 6 (𝐾 ∈ Top β†’ (π‘₯ ∈ 𝐾 ↔ βˆ€π‘¦ ∈ π‘₯ π‘₯ ∈ ((neiβ€˜πΎ)β€˜{𝑦})))
4239, 40, 413syl 18 . . . . 5 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ π‘₯ ∈ 𝐽) β†’ (π‘₯ ∈ 𝐾 ↔ βˆ€π‘¦ ∈ π‘₯ π‘₯ ∈ ((neiβ€˜πΎ)β€˜{𝑦})))
4338, 42mpbird 256 . . . 4 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) ∧ π‘₯ ∈ 𝐽) β†’ π‘₯ ∈ 𝐾)
4443ex 411 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) β†’ (π‘₯ ∈ 𝐽 β†’ π‘₯ ∈ 𝐾))
4544ssrdv 3989 . 2 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)) β†’ 𝐽 βŠ† 𝐾)
4610, 45impbida 797 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) β†’ (𝐽 βŠ† 𝐾 ↔ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐾 fLim 𝑓) βŠ† (𝐽 fLim 𝑓)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059   βŠ† wss 3949  βˆ…c0 4323  {csn 4629  β€˜cfv 6544  (class class class)co 7413  Topctop 22617  TopOnctopon 22634  neicnei 22823  Filcfil 23571   fLim cflim 23660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-fbas 21143  df-top 22618  df-topon 22635  df-ntr 22746  df-nei 22824  df-fil 23572  df-flim 23665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator