MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimcf Structured version   Visualization version   GIF version

Theorem flimcf 23925
Description: Fineness is properly characterized by the property that every limit point of a filter in the finer topology is a limit point in the coarser topology. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
flimcf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (𝐽𝐾 ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)))
Distinct variable groups:   𝑓,𝐽   𝑓,𝐾   𝑓,𝑋

Proof of Theorem flimcf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 774 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝐽 ∈ (TopOn‘𝑋))
2 simprl 770 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝑓 ∈ (Fil‘𝑋))
3 simplr 768 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝐽𝐾)
4 flimss1 23916 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) → (𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
51, 2, 3, 4syl3anc 1373 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → (𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
6 simprr 772 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝑥 ∈ (𝐾 fLim 𝑓))
75, 6sseldd 3964 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝑥 ∈ (𝐽 fLim 𝑓))
87expr 456 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐾 fLim 𝑓) → 𝑥 ∈ (𝐽 fLim 𝑓)))
98ssrdv 3969 . . 3 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (Fil‘𝑋)) → (𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
109ralrimiva 3133 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) → ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
11 oveq2 7418 . . . . . . . . . . . 12 (𝑓 = ((nei‘𝐾)‘{𝑦}) → (𝐾 fLim 𝑓) = (𝐾 fLim ((nei‘𝐾)‘{𝑦})))
12 oveq2 7418 . . . . . . . . . . . 12 (𝑓 = ((nei‘𝐾)‘{𝑦}) → (𝐽 fLim 𝑓) = (𝐽 fLim ((nei‘𝐾)‘{𝑦})))
1311, 12sseq12d 3997 . . . . . . . . . . 11 (𝑓 = ((nei‘𝐾)‘{𝑦}) → ((𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓) ↔ (𝐾 fLim ((nei‘𝐾)‘{𝑦})) ⊆ (𝐽 fLim ((nei‘𝐾)‘{𝑦}))))
14 simplr 768 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
15 simpllr 775 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝐾 ∈ (TopOn‘𝑋))
16 simplll 774 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ (TopOn‘𝑋))
17 simprl 770 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥𝐽)
18 toponss 22870 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
1916, 17, 18syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥𝑋)
20 simprr 772 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦𝑥)
2119, 20sseldd 3964 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦𝑋)
2221snssd 4790 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → {𝑦} ⊆ 𝑋)
2320snn0d 4756 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → {𝑦} ≠ ∅)
24 neifil 23823 . . . . . . . . . . . 12 ((𝐾 ∈ (TopOn‘𝑋) ∧ {𝑦} ⊆ 𝑋 ∧ {𝑦} ≠ ∅) → ((nei‘𝐾)‘{𝑦}) ∈ (Fil‘𝑋))
2515, 22, 23, 24syl3anc 1373 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → ((nei‘𝐾)‘{𝑦}) ∈ (Fil‘𝑋))
2613, 14, 25rspcdva 3607 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → (𝐾 fLim ((nei‘𝐾)‘{𝑦})) ⊆ (𝐽 fLim ((nei‘𝐾)‘{𝑦})))
27 neiflim 23917 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → 𝑦 ∈ (𝐾 fLim ((nei‘𝐾)‘{𝑦})))
2815, 21, 27syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 ∈ (𝐾 fLim ((nei‘𝐾)‘{𝑦})))
2926, 28sseldd 3964 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 ∈ (𝐽 fLim ((nei‘𝐾)‘{𝑦})))
30 flimneiss 23909 . . . . . . . . 9 (𝑦 ∈ (𝐽 fLim ((nei‘𝐾)‘{𝑦})) → ((nei‘𝐽)‘{𝑦}) ⊆ ((nei‘𝐾)‘{𝑦}))
3129, 30syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → ((nei‘𝐽)‘{𝑦}) ⊆ ((nei‘𝐾)‘{𝑦}))
32 topontop 22856 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3316, 32syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Top)
34 opnneip 23062 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑦𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝑦}))
3533, 17, 20, 34syl3anc 1373 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘{𝑦}))
3631, 35sseldd 3964 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥 ∈ ((nei‘𝐾)‘{𝑦}))
3736anassrs 467 . . . . . 6 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) ∧ 𝑦𝑥) → 𝑥 ∈ ((nei‘𝐾)‘{𝑦}))
3837ralrimiva 3133 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) → ∀𝑦𝑥 𝑥 ∈ ((nei‘𝐾)‘{𝑦}))
39 simpllr 775 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) → 𝐾 ∈ (TopOn‘𝑋))
40 topontop 22856 . . . . . 6 (𝐾 ∈ (TopOn‘𝑋) → 𝐾 ∈ Top)
41 opnnei 23063 . . . . . 6 (𝐾 ∈ Top → (𝑥𝐾 ↔ ∀𝑦𝑥 𝑥 ∈ ((nei‘𝐾)‘{𝑦})))
4239, 40, 413syl 18 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) → (𝑥𝐾 ↔ ∀𝑦𝑥 𝑥 ∈ ((nei‘𝐾)‘{𝑦})))
4338, 42mpbird 257 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) → 𝑥𝐾)
4443ex 412 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) → (𝑥𝐽𝑥𝐾))
4544ssrdv 3969 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) → 𝐽𝐾)
4610, 45impbida 800 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (𝐽𝐾 ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  wss 3931  c0 4313  {csn 4606  cfv 6536  (class class class)co 7410  Topctop 22836  TopOnctopon 22853  neicnei 23040  Filcfil 23788   fLim cflim 23877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-fbas 21317  df-top 22837  df-topon 22854  df-ntr 22963  df-nei 23041  df-fil 23789  df-flim 23882
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator