Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnovollem1 Structured version   Visualization version   GIF version

Theorem ovnovollem1 45857
Description: if 𝐹 is a cover of 𝐡 in ℝ, then 𝐼 is the corresponding cover in the space of 1-dimensional reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnovollem1.a (πœ‘ β†’ 𝐴 ∈ 𝑉)
ovnovollem1.f (πœ‘ β†’ 𝐹 ∈ ((ℝ Γ— ℝ) ↑m β„•))
ovnovollem1.i 𝐼 = (𝑗 ∈ β„• ↦ {⟨𝐴, (πΉβ€˜π‘—)⟩})
ovnovollem1.s (πœ‘ β†’ 𝐡 βŠ† βˆͺ ran ([,) ∘ 𝐹))
ovnovollem1.b (πœ‘ β†’ 𝐡 ∈ π‘Š)
ovnovollem1.z (πœ‘ β†’ 𝑍 = (Ξ£^β€˜((vol ∘ [,)) ∘ 𝐹)))
Assertion
Ref Expression
ovnovollem1 (πœ‘ β†’ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m {𝐴}) ↑m β„•)((𝐡 ↑m {𝐴}) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ {𝐴} (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑍 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜))))))
Distinct variable groups:   𝐴,𝑖,𝑗,π‘˜   𝐡,𝑖   𝑗,𝐹,π‘˜   𝑖,𝐼,𝑗,π‘˜   π‘˜,𝑉   𝑖,𝑍   πœ‘,𝑗,π‘˜
Allowed substitution hints:   πœ‘(𝑖)   𝐡(𝑗,π‘˜)   𝐹(𝑖)   𝑉(𝑖,𝑗)   π‘Š(𝑖,𝑗,π‘˜)   𝑍(𝑗,π‘˜)

Proof of Theorem ovnovollem1
StepHypRef Expression
1 eqidd 2725 . . . . . . 7 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ {⟨𝐴, (πΉβ€˜π‘—)⟩} = {⟨𝐴, (πΉβ€˜π‘—)⟩})
2 ovnovollem1.a . . . . . . . . 9 (πœ‘ β†’ 𝐴 ∈ 𝑉)
32adantr 480 . . . . . . . 8 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ 𝐴 ∈ 𝑉)
4 ovnovollem1.f . . . . . . . . . 10 (πœ‘ β†’ 𝐹 ∈ ((ℝ Γ— ℝ) ↑m β„•))
5 elmapi 8839 . . . . . . . . . 10 (𝐹 ∈ ((ℝ Γ— ℝ) ↑m β„•) β†’ 𝐹:β„•βŸΆ(ℝ Γ— ℝ))
64, 5syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝐹:β„•βŸΆ(ℝ Γ— ℝ))
76ffvelcdmda 7076 . . . . . . . 8 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (πΉβ€˜π‘—) ∈ (ℝ Γ— ℝ))
8 fsng 7127 . . . . . . . 8 ((𝐴 ∈ 𝑉 ∧ (πΉβ€˜π‘—) ∈ (ℝ Γ— ℝ)) β†’ ({⟨𝐴, (πΉβ€˜π‘—)⟩}:{𝐴}⟢{(πΉβ€˜π‘—)} ↔ {⟨𝐴, (πΉβ€˜π‘—)⟩} = {⟨𝐴, (πΉβ€˜π‘—)⟩}))
93, 7, 8syl2anc 583 . . . . . . 7 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ ({⟨𝐴, (πΉβ€˜π‘—)⟩}:{𝐴}⟢{(πΉβ€˜π‘—)} ↔ {⟨𝐴, (πΉβ€˜π‘—)⟩} = {⟨𝐴, (πΉβ€˜π‘—)⟩}))
101, 9mpbird 257 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ {⟨𝐴, (πΉβ€˜π‘—)⟩}:{𝐴}⟢{(πΉβ€˜π‘—)})
117snssd 4804 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ {(πΉβ€˜π‘—)} βŠ† (ℝ Γ— ℝ))
1210, 11fssd 6725 . . . . 5 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ {⟨𝐴, (πΉβ€˜π‘—)⟩}:{𝐴}⟢(ℝ Γ— ℝ))
13 reex 11197 . . . . . . . 8 ℝ ∈ V
1413, 13xpex 7733 . . . . . . 7 (ℝ Γ— ℝ) ∈ V
1514a1i 11 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (ℝ Γ— ℝ) ∈ V)
16 snex 5421 . . . . . . 7 {𝐴} ∈ V
1716a1i 11 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ {𝐴} ∈ V)
1815, 17elmapd 8830 . . . . 5 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ ({⟨𝐴, (πΉβ€˜π‘—)⟩} ∈ ((ℝ Γ— ℝ) ↑m {𝐴}) ↔ {⟨𝐴, (πΉβ€˜π‘—)⟩}:{𝐴}⟢(ℝ Γ— ℝ)))
1912, 18mpbird 257 . . . 4 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ {⟨𝐴, (πΉβ€˜π‘—)⟩} ∈ ((ℝ Γ— ℝ) ↑m {𝐴}))
20 ovnovollem1.i . . . 4 𝐼 = (𝑗 ∈ β„• ↦ {⟨𝐴, (πΉβ€˜π‘—)⟩})
2119, 20fmptd 7105 . . 3 (πœ‘ β†’ 𝐼:β„•βŸΆ((ℝ Γ— ℝ) ↑m {𝐴}))
22 ovexd 7436 . . . 4 (πœ‘ β†’ ((ℝ Γ— ℝ) ↑m {𝐴}) ∈ V)
23 nnex 12215 . . . . 5 β„• ∈ V
2423a1i 11 . . . 4 (πœ‘ β†’ β„• ∈ V)
2522, 24elmapd 8830 . . 3 (πœ‘ β†’ (𝐼 ∈ (((ℝ Γ— ℝ) ↑m {𝐴}) ↑m β„•) ↔ 𝐼:β„•βŸΆ((ℝ Γ— ℝ) ↑m {𝐴})))
2621, 25mpbird 257 . 2 (πœ‘ β†’ 𝐼 ∈ (((ℝ Γ— ℝ) ↑m {𝐴}) ↑m β„•))
27 ovnovollem1.s . . . . . 6 (πœ‘ β†’ 𝐡 βŠ† βˆͺ ran ([,) ∘ 𝐹))
28 icof 44403 . . . . . . . . . . 11 [,):(ℝ* Γ— ℝ*)βŸΆπ’« ℝ*
2928a1i 11 . . . . . . . . . 10 (πœ‘ β†’ [,):(ℝ* Γ— ℝ*)βŸΆπ’« ℝ*)
30 rexpssxrxp 11256 . . . . . . . . . . 11 (ℝ Γ— ℝ) βŠ† (ℝ* Γ— ℝ*)
3130a1i 11 . . . . . . . . . 10 (πœ‘ β†’ (ℝ Γ— ℝ) βŠ† (ℝ* Γ— ℝ*))
3229, 31, 6fcoss 44394 . . . . . . . . 9 (πœ‘ β†’ ([,) ∘ 𝐹):β„•βŸΆπ’« ℝ*)
3332ffnd 6708 . . . . . . . 8 (πœ‘ β†’ ([,) ∘ 𝐹) Fn β„•)
34 fniunfv 7238 . . . . . . . 8 (([,) ∘ 𝐹) Fn β„• β†’ βˆͺ 𝑗 ∈ β„• (([,) ∘ 𝐹)β€˜π‘—) = βˆͺ ran ([,) ∘ 𝐹))
3533, 34syl 17 . . . . . . 7 (πœ‘ β†’ βˆͺ 𝑗 ∈ β„• (([,) ∘ 𝐹)β€˜π‘—) = βˆͺ ran ([,) ∘ 𝐹))
3635eqcomd 2730 . . . . . 6 (πœ‘ β†’ βˆͺ ran ([,) ∘ 𝐹) = βˆͺ 𝑗 ∈ β„• (([,) ∘ 𝐹)β€˜π‘—))
3727, 36sseqtrd 4014 . . . . 5 (πœ‘ β†’ 𝐡 βŠ† βˆͺ 𝑗 ∈ β„• (([,) ∘ 𝐹)β€˜π‘—))
38 ovnovollem1.b . . . . . 6 (πœ‘ β†’ 𝐡 ∈ π‘Š)
39 fvex 6894 . . . . . . . 8 (([,) ∘ 𝐹)β€˜π‘—) ∈ V
4023, 39iunex 7948 . . . . . . 7 βˆͺ 𝑗 ∈ β„• (([,) ∘ 𝐹)β€˜π‘—) ∈ V
4140a1i 11 . . . . . 6 (πœ‘ β†’ βˆͺ 𝑗 ∈ β„• (([,) ∘ 𝐹)β€˜π‘—) ∈ V)
4216a1i 11 . . . . . 6 (πœ‘ β†’ {𝐴} ∈ V)
432snn0d 4771 . . . . . 6 (πœ‘ β†’ {𝐴} β‰  βˆ…)
4438, 41, 42, 43mapss2 44389 . . . . 5 (πœ‘ β†’ (𝐡 βŠ† βˆͺ 𝑗 ∈ β„• (([,) ∘ 𝐹)β€˜π‘—) ↔ (𝐡 ↑m {𝐴}) βŠ† (βˆͺ 𝑗 ∈ β„• (([,) ∘ 𝐹)β€˜π‘—) ↑m {𝐴})))
4537, 44mpbid 231 . . . 4 (πœ‘ β†’ (𝐡 ↑m {𝐴}) βŠ† (βˆͺ 𝑗 ∈ β„• (([,) ∘ 𝐹)β€˜π‘—) ↑m {𝐴}))
46 nfv 1909 . . . . . . 7 β„²π‘—πœ‘
47 fvexd 6896 . . . . . . 7 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ ([,)β€˜(πΉβ€˜π‘—)) ∈ V)
4846, 24, 47, 2iunmapsn 44401 . . . . . 6 (πœ‘ β†’ βˆͺ 𝑗 ∈ β„• (([,)β€˜(πΉβ€˜π‘—)) ↑m {𝐴}) = (βˆͺ 𝑗 ∈ β„• ([,)β€˜(πΉβ€˜π‘—)) ↑m {𝐴}))
4948eqcomd 2730 . . . . 5 (πœ‘ β†’ (βˆͺ 𝑗 ∈ β„• ([,)β€˜(πΉβ€˜π‘—)) ↑m {𝐴}) = βˆͺ 𝑗 ∈ β„• (([,)β€˜(πΉβ€˜π‘—)) ↑m {𝐴}))
50 elmapfun 8856 . . . . . . . . . 10 (𝐹 ∈ ((ℝ Γ— ℝ) ↑m β„•) β†’ Fun 𝐹)
514, 50syl 17 . . . . . . . . 9 (πœ‘ β†’ Fun 𝐹)
5251adantr 480 . . . . . . . 8 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ Fun 𝐹)
53 simpr 484 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ 𝑗 ∈ β„•)
546fdmd 6718 . . . . . . . . . . 11 (πœ‘ β†’ dom 𝐹 = β„•)
5554eqcomd 2730 . . . . . . . . . 10 (πœ‘ β†’ β„• = dom 𝐹)
5655adantr 480 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ β„• = dom 𝐹)
5753, 56eleqtrd 2827 . . . . . . . 8 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ 𝑗 ∈ dom 𝐹)
58 fvco 6979 . . . . . . . 8 ((Fun 𝐹 ∧ 𝑗 ∈ dom 𝐹) β†’ (([,) ∘ 𝐹)β€˜π‘—) = ([,)β€˜(πΉβ€˜π‘—)))
5952, 57, 58syl2anc 583 . . . . . . 7 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (([,) ∘ 𝐹)β€˜π‘—) = ([,)β€˜(πΉβ€˜π‘—)))
6059iuneq2dv 5011 . . . . . 6 (πœ‘ β†’ βˆͺ 𝑗 ∈ β„• (([,) ∘ 𝐹)β€˜π‘—) = βˆͺ 𝑗 ∈ β„• ([,)β€˜(πΉβ€˜π‘—)))
6160oveq1d 7416 . . . . 5 (πœ‘ β†’ (βˆͺ 𝑗 ∈ β„• (([,) ∘ 𝐹)β€˜π‘—) ↑m {𝐴}) = (βˆͺ 𝑗 ∈ β„• ([,)β€˜(πΉβ€˜π‘—)) ↑m {𝐴}))
6210ffund 6711 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ Fun {⟨𝐴, (πΉβ€˜π‘—)⟩})
63 id 22 . . . . . . . . . . . . . . 15 (𝑗 ∈ β„• β†’ 𝑗 ∈ β„•)
64 snex 5421 . . . . . . . . . . . . . . . 16 {⟨𝐴, (πΉβ€˜π‘—)⟩} ∈ V
6564a1i 11 . . . . . . . . . . . . . . 15 (𝑗 ∈ β„• β†’ {⟨𝐴, (πΉβ€˜π‘—)⟩} ∈ V)
6620fvmpt2 6999 . . . . . . . . . . . . . . 15 ((𝑗 ∈ β„• ∧ {⟨𝐴, (πΉβ€˜π‘—)⟩} ∈ V) β†’ (πΌβ€˜π‘—) = {⟨𝐴, (πΉβ€˜π‘—)⟩})
6763, 65, 66syl2anc 583 . . . . . . . . . . . . . 14 (𝑗 ∈ β„• β†’ (πΌβ€˜π‘—) = {⟨𝐴, (πΉβ€˜π‘—)⟩})
6867adantl 481 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (πΌβ€˜π‘—) = {⟨𝐴, (πΉβ€˜π‘—)⟩})
6968funeqd 6560 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (Fun (πΌβ€˜π‘—) ↔ Fun {⟨𝐴, (πΉβ€˜π‘—)⟩}))
7062, 69mpbird 257 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ Fun (πΌβ€˜π‘—))
7170adantr 480 . . . . . . . . . 10 (((πœ‘ ∧ 𝑗 ∈ β„•) ∧ π‘˜ ∈ {𝐴}) β†’ Fun (πΌβ€˜π‘—))
72 simpr 484 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑗 ∈ β„•) ∧ π‘˜ ∈ {𝐴}) β†’ π‘˜ ∈ {𝐴})
7368dmeqd 5895 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ dom (πΌβ€˜π‘—) = dom {⟨𝐴, (πΉβ€˜π‘—)⟩})
7410fdmd 6718 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ dom {⟨𝐴, (πΉβ€˜π‘—)⟩} = {𝐴})
7573, 74eqtrd 2764 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ dom (πΌβ€˜π‘—) = {𝐴})
7675eleq2d 2811 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (π‘˜ ∈ dom (πΌβ€˜π‘—) ↔ π‘˜ ∈ {𝐴}))
7776adantr 480 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑗 ∈ β„•) ∧ π‘˜ ∈ {𝐴}) β†’ (π‘˜ ∈ dom (πΌβ€˜π‘—) ↔ π‘˜ ∈ {𝐴}))
7872, 77mpbird 257 . . . . . . . . . 10 (((πœ‘ ∧ 𝑗 ∈ β„•) ∧ π‘˜ ∈ {𝐴}) β†’ π‘˜ ∈ dom (πΌβ€˜π‘—))
79 fvco 6979 . . . . . . . . . 10 ((Fun (πΌβ€˜π‘—) ∧ π‘˜ ∈ dom (πΌβ€˜π‘—)) β†’ (([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜) = ([,)β€˜((πΌβ€˜π‘—)β€˜π‘˜)))
8071, 78, 79syl2anc 583 . . . . . . . . 9 (((πœ‘ ∧ 𝑗 ∈ β„•) ∧ π‘˜ ∈ {𝐴}) β†’ (([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜) = ([,)β€˜((πΌβ€˜π‘—)β€˜π‘˜)))
8167fveq1d 6883 . . . . . . . . . . . 12 (𝑗 ∈ β„• β†’ ((πΌβ€˜π‘—)β€˜π‘˜) = ({⟨𝐴, (πΉβ€˜π‘—)⟩}β€˜π‘˜))
8281ad2antlr 724 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑗 ∈ β„•) ∧ π‘˜ ∈ {𝐴}) β†’ ((πΌβ€˜π‘—)β€˜π‘˜) = ({⟨𝐴, (πΉβ€˜π‘—)⟩}β€˜π‘˜))
83 elsni 4637 . . . . . . . . . . . . 13 (π‘˜ ∈ {𝐴} β†’ π‘˜ = 𝐴)
8483fveq2d 6885 . . . . . . . . . . . 12 (π‘˜ ∈ {𝐴} β†’ ({⟨𝐴, (πΉβ€˜π‘—)⟩}β€˜π‘˜) = ({⟨𝐴, (πΉβ€˜π‘—)⟩}β€˜π΄))
8584adantl 481 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑗 ∈ β„•) ∧ π‘˜ ∈ {𝐴}) β†’ ({⟨𝐴, (πΉβ€˜π‘—)⟩}β€˜π‘˜) = ({⟨𝐴, (πΉβ€˜π‘—)⟩}β€˜π΄))
86 fvexd 6896 . . . . . . . . . . . . 13 (πœ‘ β†’ (πΉβ€˜π‘—) ∈ V)
87 fvsng 7170 . . . . . . . . . . . . 13 ((𝐴 ∈ 𝑉 ∧ (πΉβ€˜π‘—) ∈ V) β†’ ({⟨𝐴, (πΉβ€˜π‘—)⟩}β€˜π΄) = (πΉβ€˜π‘—))
882, 86, 87syl2anc 583 . . . . . . . . . . . 12 (πœ‘ β†’ ({⟨𝐴, (πΉβ€˜π‘—)⟩}β€˜π΄) = (πΉβ€˜π‘—))
8988ad2antrr 723 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑗 ∈ β„•) ∧ π‘˜ ∈ {𝐴}) β†’ ({⟨𝐴, (πΉβ€˜π‘—)⟩}β€˜π΄) = (πΉβ€˜π‘—))
9082, 85, 893eqtrd 2768 . . . . . . . . . 10 (((πœ‘ ∧ 𝑗 ∈ β„•) ∧ π‘˜ ∈ {𝐴}) β†’ ((πΌβ€˜π‘—)β€˜π‘˜) = (πΉβ€˜π‘—))
9190fveq2d 6885 . . . . . . . . 9 (((πœ‘ ∧ 𝑗 ∈ β„•) ∧ π‘˜ ∈ {𝐴}) β†’ ([,)β€˜((πΌβ€˜π‘—)β€˜π‘˜)) = ([,)β€˜(πΉβ€˜π‘—)))
92 eqidd 2725 . . . . . . . . 9 (((πœ‘ ∧ 𝑗 ∈ β„•) ∧ π‘˜ ∈ {𝐴}) β†’ ([,)β€˜(πΉβ€˜π‘—)) = ([,)β€˜(πΉβ€˜π‘—)))
9380, 91, 923eqtrd 2768 . . . . . . . 8 (((πœ‘ ∧ 𝑗 ∈ β„•) ∧ π‘˜ ∈ {𝐴}) β†’ (([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜) = ([,)β€˜(πΉβ€˜π‘—)))
9493ixpeq2dva 8902 . . . . . . 7 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ Xπ‘˜ ∈ {𝐴} (([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜) = Xπ‘˜ ∈ {𝐴} ([,)β€˜(πΉβ€˜π‘—)))
95 fvex 6894 . . . . . . . . 9 ([,)β€˜(πΉβ€˜π‘—)) ∈ V
9616, 95ixpconst 8897 . . . . . . . 8 Xπ‘˜ ∈ {𝐴} ([,)β€˜(πΉβ€˜π‘—)) = (([,)β€˜(πΉβ€˜π‘—)) ↑m {𝐴})
9796a1i 11 . . . . . . 7 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ Xπ‘˜ ∈ {𝐴} ([,)β€˜(πΉβ€˜π‘—)) = (([,)β€˜(πΉβ€˜π‘—)) ↑m {𝐴}))
9894, 97eqtrd 2764 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ Xπ‘˜ ∈ {𝐴} (([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜) = (([,)β€˜(πΉβ€˜π‘—)) ↑m {𝐴}))
9998iuneq2dv 5011 . . . . 5 (πœ‘ β†’ βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ {𝐴} (([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜) = βˆͺ 𝑗 ∈ β„• (([,)β€˜(πΉβ€˜π‘—)) ↑m {𝐴}))
10049, 61, 993eqtr4d 2774 . . . 4 (πœ‘ β†’ (βˆͺ 𝑗 ∈ β„• (([,) ∘ 𝐹)β€˜π‘—) ↑m {𝐴}) = βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ {𝐴} (([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜))
10145, 100sseqtrd 4014 . . 3 (πœ‘ β†’ (𝐡 ↑m {𝐴}) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ {𝐴} (([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜))
102 ovnovollem1.z . . . 4 (πœ‘ β†’ 𝑍 = (Ξ£^β€˜((vol ∘ [,)) ∘ 𝐹)))
103 nfcv 2895 . . . . . . 7 Ⅎ𝑗𝐹
104 ressxr 11255 . . . . . . . . . 10 ℝ βŠ† ℝ*
105 xpss2 5686 . . . . . . . . . 10 (ℝ βŠ† ℝ* β†’ (ℝ Γ— ℝ) βŠ† (ℝ Γ— ℝ*))
106104, 105ax-mp 5 . . . . . . . . 9 (ℝ Γ— ℝ) βŠ† (ℝ Γ— ℝ*)
107106a1i 11 . . . . . . . 8 (πœ‘ β†’ (ℝ Γ— ℝ) βŠ† (ℝ Γ— ℝ*))
1086, 107fssd 6725 . . . . . . 7 (πœ‘ β†’ 𝐹:β„•βŸΆ(ℝ Γ— ℝ*))
109103, 108volicofmpt 45198 . . . . . 6 (πœ‘ β†’ ((vol ∘ [,)) ∘ 𝐹) = (𝑗 ∈ β„• ↦ (volβ€˜((1st β€˜(πΉβ€˜π‘—))[,)(2nd β€˜(πΉβ€˜π‘—))))))
11067coeq2d 5852 . . . . . . . . . . . . . . 15 (𝑗 ∈ β„• β†’ ([,) ∘ (πΌβ€˜π‘—)) = ([,) ∘ {⟨𝐴, (πΉβ€˜π‘—)⟩}))
111110fveq1d 6883 . . . . . . . . . . . . . 14 (𝑗 ∈ β„• β†’ (([,) ∘ (πΌβ€˜π‘—))β€˜π΄) = (([,) ∘ {⟨𝐴, (πΉβ€˜π‘—)⟩})β€˜π΄))
112111adantl 481 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (([,) ∘ (πΌβ€˜π‘—))β€˜π΄) = (([,) ∘ {⟨𝐴, (πΉβ€˜π‘—)⟩})β€˜π΄))
113 snidg 4654 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ 𝑉 β†’ 𝐴 ∈ {𝐴})
1142, 113syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝐴 ∈ {𝐴})
115 dmsnopg 6202 . . . . . . . . . . . . . . . . 17 ((πΉβ€˜π‘—) ∈ V β†’ dom {⟨𝐴, (πΉβ€˜π‘—)⟩} = {𝐴})
11686, 115syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ dom {⟨𝐴, (πΉβ€˜π‘—)⟩} = {𝐴})
117114, 116eleqtrrd 2828 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐴 ∈ dom {⟨𝐴, (πΉβ€˜π‘—)⟩})
118117adantr 480 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ 𝐴 ∈ dom {⟨𝐴, (πΉβ€˜π‘—)⟩})
119 fvco 6979 . . . . . . . . . . . . . 14 ((Fun {⟨𝐴, (πΉβ€˜π‘—)⟩} ∧ 𝐴 ∈ dom {⟨𝐴, (πΉβ€˜π‘—)⟩}) β†’ (([,) ∘ {⟨𝐴, (πΉβ€˜π‘—)⟩})β€˜π΄) = ([,)β€˜({⟨𝐴, (πΉβ€˜π‘—)⟩}β€˜π΄)))
12062, 118, 119syl2anc 583 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (([,) ∘ {⟨𝐴, (πΉβ€˜π‘—)⟩})β€˜π΄) = ([,)β€˜({⟨𝐴, (πΉβ€˜π‘—)⟩}β€˜π΄)))
121 fvexd 6896 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (πΉβ€˜π‘—) ∈ V)
1223, 121, 87syl2anc 583 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ ({⟨𝐴, (πΉβ€˜π‘—)⟩}β€˜π΄) = (πΉβ€˜π‘—))
123 1st2nd2 8007 . . . . . . . . . . . . . . . . 17 ((πΉβ€˜π‘—) ∈ (ℝ Γ— ℝ) β†’ (πΉβ€˜π‘—) = ⟨(1st β€˜(πΉβ€˜π‘—)), (2nd β€˜(πΉβ€˜π‘—))⟩)
1247, 123syl 17 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (πΉβ€˜π‘—) = ⟨(1st β€˜(πΉβ€˜π‘—)), (2nd β€˜(πΉβ€˜π‘—))⟩)
125122, 124eqtrd 2764 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ ({⟨𝐴, (πΉβ€˜π‘—)⟩}β€˜π΄) = ⟨(1st β€˜(πΉβ€˜π‘—)), (2nd β€˜(πΉβ€˜π‘—))⟩)
126125fveq2d 6885 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ ([,)β€˜({⟨𝐴, (πΉβ€˜π‘—)⟩}β€˜π΄)) = ([,)β€˜βŸ¨(1st β€˜(πΉβ€˜π‘—)), (2nd β€˜(πΉβ€˜π‘—))⟩))
127 df-ov 7404 . . . . . . . . . . . . . . . 16 ((1st β€˜(πΉβ€˜π‘—))[,)(2nd β€˜(πΉβ€˜π‘—))) = ([,)β€˜βŸ¨(1st β€˜(πΉβ€˜π‘—)), (2nd β€˜(πΉβ€˜π‘—))⟩)
128127eqcomi 2733 . . . . . . . . . . . . . . 15 ([,)β€˜βŸ¨(1st β€˜(πΉβ€˜π‘—)), (2nd β€˜(πΉβ€˜π‘—))⟩) = ((1st β€˜(πΉβ€˜π‘—))[,)(2nd β€˜(πΉβ€˜π‘—)))
129128a1i 11 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ ([,)β€˜βŸ¨(1st β€˜(πΉβ€˜π‘—)), (2nd β€˜(πΉβ€˜π‘—))⟩) = ((1st β€˜(πΉβ€˜π‘—))[,)(2nd β€˜(πΉβ€˜π‘—))))
130126, 129eqtrd 2764 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ ([,)β€˜({⟨𝐴, (πΉβ€˜π‘—)⟩}β€˜π΄)) = ((1st β€˜(πΉβ€˜π‘—))[,)(2nd β€˜(πΉβ€˜π‘—))))
131112, 120, 1303eqtrd 2768 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (([,) ∘ (πΌβ€˜π‘—))β€˜π΄) = ((1st β€˜(πΉβ€˜π‘—))[,)(2nd β€˜(πΉβ€˜π‘—))))
132131fveq2d 6885 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π΄)) = (volβ€˜((1st β€˜(πΉβ€˜π‘—))[,)(2nd β€˜(πΉβ€˜π‘—)))))
133 xp1st 8000 . . . . . . . . . . . . 13 ((πΉβ€˜π‘—) ∈ (ℝ Γ— ℝ) β†’ (1st β€˜(πΉβ€˜π‘—)) ∈ ℝ)
1347, 133syl 17 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (1st β€˜(πΉβ€˜π‘—)) ∈ ℝ)
135 xp2nd 8001 . . . . . . . . . . . . 13 ((πΉβ€˜π‘—) ∈ (ℝ Γ— ℝ) β†’ (2nd β€˜(πΉβ€˜π‘—)) ∈ ℝ)
1367, 135syl 17 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (2nd β€˜(πΉβ€˜π‘—)) ∈ ℝ)
137 volicore 45782 . . . . . . . . . . . 12 (((1st β€˜(πΉβ€˜π‘—)) ∈ ℝ ∧ (2nd β€˜(πΉβ€˜π‘—)) ∈ ℝ) β†’ (volβ€˜((1st β€˜(πΉβ€˜π‘—))[,)(2nd β€˜(πΉβ€˜π‘—)))) ∈ ℝ)
138134, 136, 137syl2anc 583 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (volβ€˜((1st β€˜(πΉβ€˜π‘—))[,)(2nd β€˜(πΉβ€˜π‘—)))) ∈ ℝ)
139132, 138eqeltrd 2825 . . . . . . . . . 10 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π΄)) ∈ ℝ)
140139recnd 11239 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π΄)) ∈ β„‚)
141 2fveq3 6886 . . . . . . . . . 10 (π‘˜ = 𝐴 β†’ (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜)) = (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π΄)))
142141prodsn 15903 . . . . . . . . 9 ((𝐴 ∈ 𝑉 ∧ (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π΄)) ∈ β„‚) β†’ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜)) = (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π΄)))
1433, 140, 142syl2anc 583 . . . . . . . 8 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜)) = (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π΄)))
144143, 132eqtr2d 2765 . . . . . . 7 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (volβ€˜((1st β€˜(πΉβ€˜π‘—))[,)(2nd β€˜(πΉβ€˜π‘—)))) = βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜)))
145144mpteq2dva 5238 . . . . . 6 (πœ‘ β†’ (𝑗 ∈ β„• ↦ (volβ€˜((1st β€˜(πΉβ€˜π‘—))[,)(2nd β€˜(πΉβ€˜π‘—))))) = (𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜))))
146109, 145eqtrd 2764 . . . . 5 (πœ‘ β†’ ((vol ∘ [,)) ∘ 𝐹) = (𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜))))
147146fveq2d 6885 . . . 4 (πœ‘ β†’ (Ξ£^β€˜((vol ∘ [,)) ∘ 𝐹)) = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜)))))
148102, 147eqtrd 2764 . . 3 (πœ‘ β†’ 𝑍 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜)))))
149101, 148jca 511 . 2 (πœ‘ β†’ ((𝐡 ↑m {𝐴}) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ {𝐴} (([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜) ∧ 𝑍 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜))))))
150 fveq1 6880 . . . . . . . . 9 (𝑖 = 𝐼 β†’ (π‘–β€˜π‘—) = (πΌβ€˜π‘—))
151150coeq2d 5852 . . . . . . . 8 (𝑖 = 𝐼 β†’ ([,) ∘ (π‘–β€˜π‘—)) = ([,) ∘ (πΌβ€˜π‘—)))
152151fveq1d 6883 . . . . . . 7 (𝑖 = 𝐼 β†’ (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) = (([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜))
153152ixpeq2dv 8903 . . . . . 6 (𝑖 = 𝐼 β†’ Xπ‘˜ ∈ {𝐴} (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) = Xπ‘˜ ∈ {𝐴} (([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜))
154153iuneq2d 5016 . . . . 5 (𝑖 = 𝐼 β†’ βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ {𝐴} (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) = βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ {𝐴} (([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜))
155154sseq2d 4006 . . . 4 (𝑖 = 𝐼 β†’ ((𝐡 ↑m {𝐴}) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ {𝐴} (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ↔ (𝐡 ↑m {𝐴}) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ {𝐴} (([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜)))
156 simpl 482 . . . . . . . . . . . 12 ((𝑖 = 𝐼 ∧ π‘˜ ∈ {𝐴}) β†’ 𝑖 = 𝐼)
157156fveq1d 6883 . . . . . . . . . . 11 ((𝑖 = 𝐼 ∧ π‘˜ ∈ {𝐴}) β†’ (π‘–β€˜π‘—) = (πΌβ€˜π‘—))
158157coeq2d 5852 . . . . . . . . . 10 ((𝑖 = 𝐼 ∧ π‘˜ ∈ {𝐴}) β†’ ([,) ∘ (π‘–β€˜π‘—)) = ([,) ∘ (πΌβ€˜π‘—)))
159158fveq1d 6883 . . . . . . . . 9 ((𝑖 = 𝐼 ∧ π‘˜ ∈ {𝐴}) β†’ (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) = (([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜))
160159fveq2d 6885 . . . . . . . 8 ((𝑖 = 𝐼 ∧ π‘˜ ∈ {𝐴}) β†’ (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)) = (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜)))
161160prodeq2dv 15864 . . . . . . 7 (𝑖 = 𝐼 β†’ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)) = βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜)))
162161mpteq2dv 5240 . . . . . 6 (𝑖 = 𝐼 β†’ (𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜))) = (𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜))))
163162fveq2d 6885 . . . . 5 (𝑖 = 𝐼 β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)))) = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜)))))
164163eqeq2d 2735 . . . 4 (𝑖 = 𝐼 β†’ (𝑍 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)))) ↔ 𝑍 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜))))))
165155, 164anbi12d 630 . . 3 (𝑖 = 𝐼 β†’ (((𝐡 ↑m {𝐴}) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ {𝐴} (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑍 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜))))) ↔ ((𝐡 ↑m {𝐴}) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ {𝐴} (([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜) ∧ 𝑍 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜)))))))
166165rspcev 3604 . 2 ((𝐼 ∈ (((ℝ Γ— ℝ) ↑m {𝐴}) ↑m β„•) ∧ ((𝐡 ↑m {𝐴}) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ {𝐴} (([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜) ∧ 𝑍 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜)))))) β†’ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m {𝐴}) ↑m β„•)((𝐡 ↑m {𝐴}) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ {𝐴} (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑍 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜))))))
16726, 149, 166syl2anc 583 1 (πœ‘ β†’ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m {𝐴}) ↑m β„•)((𝐡 ↑m {𝐴}) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ {𝐴} (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑍 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜))))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3062  Vcvv 3466   βŠ† wss 3940  π’« cpw 4594  {csn 4620  βŸ¨cop 4626  βˆͺ cuni 4899  βˆͺ ciun 4987   ↦ cmpt 5221   Γ— cxp 5664  dom cdm 5666  ran crn 5667   ∘ ccom 5670  Fun wfun 6527   Fn wfn 6528  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401  1st c1st 7966  2nd c2nd 7967   ↑m cmap 8816  Xcixp 8887  β„‚cc 11104  β„cr 11105  β„*cxr 11244  β„•cn 12209  [,)cico 13323  βˆcprod 15846  volcvol 25314  Ξ£^csumge0 45563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-rlim 15430  df-sum 15630  df-prod 15847  df-rest 17367  df-topgen 17388  df-psmet 21220  df-xmet 21221  df-met 21222  df-bl 21223  df-mopn 21224  df-top 22718  df-topon 22735  df-bases 22771  df-cmp 23213  df-ovol 25315  df-vol 25316
This theorem is referenced by:  ovnovollem3  45859
  Copyright terms: Public domain W3C validator