Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnovollem1 Structured version   Visualization version   GIF version

Theorem ovnovollem1 46661
Description: if 𝐹 is a cover of 𝐵 in , then 𝐼 is the corresponding cover in the space of 1-dimensional reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnovollem1.a (𝜑𝐴𝑉)
ovnovollem1.f (𝜑𝐹 ∈ ((ℝ × ℝ) ↑m ℕ))
ovnovollem1.i 𝐼 = (𝑗 ∈ ℕ ↦ {⟨𝐴, (𝐹𝑗)⟩})
ovnovollem1.s (𝜑𝐵 ran ([,) ∘ 𝐹))
ovnovollem1.b (𝜑𝐵𝑊)
ovnovollem1.z (𝜑𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
Assertion
Ref Expression
ovnovollem1 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑘   𝐵,𝑖   𝑗,𝐹,𝑘   𝑖,𝐼,𝑗,𝑘   𝑘,𝑉   𝑖,𝑍   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑖)   𝐵(𝑗,𝑘)   𝐹(𝑖)   𝑉(𝑖,𝑗)   𝑊(𝑖,𝑗,𝑘)   𝑍(𝑗,𝑘)

Proof of Theorem ovnovollem1
StepHypRef Expression
1 eqidd 2731 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩} = {⟨𝐴, (𝐹𝑗)⟩})
2 ovnovollem1.a . . . . . . . . 9 (𝜑𝐴𝑉)
32adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝐴𝑉)
4 ovnovollem1.f . . . . . . . . . 10 (𝜑𝐹 ∈ ((ℝ × ℝ) ↑m ℕ))
5 elmapi 8825 . . . . . . . . . 10 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝐹:ℕ⟶(ℝ × ℝ))
64, 5syl 17 . . . . . . . . 9 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
76ffvelcdmda 7059 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ (ℝ × ℝ))
8 fsng 7112 . . . . . . . 8 ((𝐴𝑉 ∧ (𝐹𝑗) ∈ (ℝ × ℝ)) → ({⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶{(𝐹𝑗)} ↔ {⟨𝐴, (𝐹𝑗)⟩} = {⟨𝐴, (𝐹𝑗)⟩}))
93, 7, 8syl2anc 584 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶{(𝐹𝑗)} ↔ {⟨𝐴, (𝐹𝑗)⟩} = {⟨𝐴, (𝐹𝑗)⟩}))
101, 9mpbird 257 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶{(𝐹𝑗)})
117snssd 4776 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → {(𝐹𝑗)} ⊆ (ℝ × ℝ))
1210, 11fssd 6708 . . . . 5 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶(ℝ × ℝ))
13 reex 11166 . . . . . . . 8 ℝ ∈ V
1413, 13xpex 7732 . . . . . . 7 (ℝ × ℝ) ∈ V
1514a1i 11 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (ℝ × ℝ) ∈ V)
16 snex 5394 . . . . . . 7 {𝐴} ∈ V
1716a1i 11 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → {𝐴} ∈ V)
1815, 17elmapd 8816 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩} ∈ ((ℝ × ℝ) ↑m {𝐴}) ↔ {⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶(ℝ × ℝ)))
1912, 18mpbird 257 . . . 4 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩} ∈ ((ℝ × ℝ) ↑m {𝐴}))
20 ovnovollem1.i . . . 4 𝐼 = (𝑗 ∈ ℕ ↦ {⟨𝐴, (𝐹𝑗)⟩})
2119, 20fmptd 7089 . . 3 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑m {𝐴}))
22 ovexd 7425 . . . 4 (𝜑 → ((ℝ × ℝ) ↑m {𝐴}) ∈ V)
23 nnex 12199 . . . . 5 ℕ ∈ V
2423a1i 11 . . . 4 (𝜑 → ℕ ∈ V)
2522, 24elmapd 8816 . . 3 (𝜑 → (𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑m {𝐴})))
2621, 25mpbird 257 . 2 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ))
27 ovnovollem1.s . . . . . 6 (𝜑𝐵 ran ([,) ∘ 𝐹))
28 icof 45220 . . . . . . . . . . 11 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
2928a1i 11 . . . . . . . . . 10 (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
30 rexpssxrxp 11226 . . . . . . . . . . 11 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
3130a1i 11 . . . . . . . . . 10 (𝜑 → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
3229, 31, 6fcoss 45211 . . . . . . . . 9 (𝜑 → ([,) ∘ 𝐹):ℕ⟶𝒫 ℝ*)
3332ffnd 6692 . . . . . . . 8 (𝜑 → ([,) ∘ 𝐹) Fn ℕ)
34 fniunfv 7224 . . . . . . . 8 (([,) ∘ 𝐹) Fn ℕ → 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ran ([,) ∘ 𝐹))
3533, 34syl 17 . . . . . . 7 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ran ([,) ∘ 𝐹))
3635eqcomd 2736 . . . . . 6 (𝜑 ran ([,) ∘ 𝐹) = 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗))
3727, 36sseqtrd 3986 . . . . 5 (𝜑𝐵 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗))
38 ovnovollem1.b . . . . . 6 (𝜑𝐵𝑊)
39 fvex 6874 . . . . . . . 8 (([,) ∘ 𝐹)‘𝑗) ∈ V
4023, 39iunex 7950 . . . . . . 7 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V
4140a1i 11 . . . . . 6 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V)
4216a1i 11 . . . . . 6 (𝜑 → {𝐴} ∈ V)
432snn0d 4742 . . . . . 6 (𝜑 → {𝐴} ≠ ∅)
4438, 41, 42, 43mapss2 45206 . . . . 5 (𝜑 → (𝐵 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↔ (𝐵m {𝐴}) ⊆ ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴})))
4537, 44mpbid 232 . . . 4 (𝜑 → (𝐵m {𝐴}) ⊆ ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}))
46 nfv 1914 . . . . . . 7 𝑗𝜑
47 fvexd 6876 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ([,)‘(𝐹𝑗)) ∈ V)
4846, 24, 47, 2iunmapsn 45218 . . . . . 6 (𝜑 𝑗 ∈ ℕ (([,)‘(𝐹𝑗)) ↑m {𝐴}) = ( 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)) ↑m {𝐴}))
4948eqcomd 2736 . . . . 5 (𝜑 → ( 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)) ↑m {𝐴}) = 𝑗 ∈ ℕ (([,)‘(𝐹𝑗)) ↑m {𝐴}))
50 elmapfun 8842 . . . . . . . . . 10 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) → Fun 𝐹)
514, 50syl 17 . . . . . . . . 9 (𝜑 → Fun 𝐹)
5251adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → Fun 𝐹)
53 simpr 484 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
546fdmd 6701 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = ℕ)
5554eqcomd 2736 . . . . . . . . . 10 (𝜑 → ℕ = dom 𝐹)
5655adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ℕ = dom 𝐹)
5753, 56eleqtrd 2831 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ dom 𝐹)
58 fvco 6962 . . . . . . . 8 ((Fun 𝐹𝑗 ∈ dom 𝐹) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹𝑗)))
5952, 57, 58syl2anc 584 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹𝑗)))
6059iuneq2dv 4983 . . . . . 6 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)))
6160oveq1d 7405 . . . . 5 (𝜑 → ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}) = ( 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)) ↑m {𝐴}))
6210ffund 6695 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → Fun {⟨𝐴, (𝐹𝑗)⟩})
63 id 22 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
64 snex 5394 . . . . . . . . . . . . . . . 16 {⟨𝐴, (𝐹𝑗)⟩} ∈ V
6564a1i 11 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → {⟨𝐴, (𝐹𝑗)⟩} ∈ V)
6620fvmpt2 6982 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ ∧ {⟨𝐴, (𝐹𝑗)⟩} ∈ V) → (𝐼𝑗) = {⟨𝐴, (𝐹𝑗)⟩})
6763, 65, 66syl2anc 584 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝐼𝑗) = {⟨𝐴, (𝐹𝑗)⟩})
6867adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) = {⟨𝐴, (𝐹𝑗)⟩})
6968funeqd 6541 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (Fun (𝐼𝑗) ↔ Fun {⟨𝐴, (𝐹𝑗)⟩}))
7062, 69mpbird 257 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → Fun (𝐼𝑗))
7170adantr 480 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → Fun (𝐼𝑗))
72 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → 𝑘 ∈ {𝐴})
7368dmeqd 5872 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → dom (𝐼𝑗) = dom {⟨𝐴, (𝐹𝑗)⟩})
7410fdmd 6701 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → dom {⟨𝐴, (𝐹𝑗)⟩} = {𝐴})
7573, 74eqtrd 2765 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → dom (𝐼𝑗) = {𝐴})
7675eleq2d 2815 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝑘 ∈ dom (𝐼𝑗) ↔ 𝑘 ∈ {𝐴}))
7776adantr 480 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (𝑘 ∈ dom (𝐼𝑗) ↔ 𝑘 ∈ {𝐴}))
7872, 77mpbird 257 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → 𝑘 ∈ dom (𝐼𝑗))
79 fvco 6962 . . . . . . . . . 10 ((Fun (𝐼𝑗) ∧ 𝑘 ∈ dom (𝐼𝑗)) → (([,) ∘ (𝐼𝑗))‘𝑘) = ([,)‘((𝐼𝑗)‘𝑘)))
8071, 78, 79syl2anc 584 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝑘) = ([,)‘((𝐼𝑗)‘𝑘)))
8167fveq1d 6863 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((𝐼𝑗)‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘))
8281ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ((𝐼𝑗)‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘))
83 elsni 4609 . . . . . . . . . . . . 13 (𝑘 ∈ {𝐴} → 𝑘 = 𝐴)
8483fveq2d 6865 . . . . . . . . . . . 12 (𝑘 ∈ {𝐴} → ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴))
8584adantl 481 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴))
86 fvexd 6876 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑗) ∈ V)
87 fvsng 7157 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝐹𝑗) ∈ V) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
882, 86, 87syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
8988ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
9082, 85, 893eqtrd 2769 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ((𝐼𝑗)‘𝑘) = (𝐹𝑗))
9190fveq2d 6865 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ([,)‘((𝐼𝑗)‘𝑘)) = ([,)‘(𝐹𝑗)))
92 eqidd 2731 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ([,)‘(𝐹𝑗)) = ([,)‘(𝐹𝑗)))
9380, 91, 923eqtrd 2769 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝑘) = ([,)‘(𝐹𝑗)))
9493ixpeq2dva 8888 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = X𝑘 ∈ {𝐴} ([,)‘(𝐹𝑗)))
95 fvex 6874 . . . . . . . . 9 ([,)‘(𝐹𝑗)) ∈ V
9616, 95ixpconst 8883 . . . . . . . 8 X𝑘 ∈ {𝐴} ([,)‘(𝐹𝑗)) = (([,)‘(𝐹𝑗)) ↑m {𝐴})
9796a1i 11 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} ([,)‘(𝐹𝑗)) = (([,)‘(𝐹𝑗)) ↑m {𝐴}))
9894, 97eqtrd 2765 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = (([,)‘(𝐹𝑗)) ↑m {𝐴}))
9998iuneq2dv 4983 . . . . 5 (𝜑 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = 𝑗 ∈ ℕ (([,)‘(𝐹𝑗)) ↑m {𝐴}))
10049, 61, 993eqtr4d 2775 . . . 4 (𝜑 → ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}) = 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
10145, 100sseqtrd 3986 . . 3 (𝜑 → (𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
102 ovnovollem1.z . . . 4 (𝜑𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
103 nfcv 2892 . . . . . . 7 𝑗𝐹
104 ressxr 11225 . . . . . . . . . 10 ℝ ⊆ ℝ*
105 xpss2 5661 . . . . . . . . . 10 (ℝ ⊆ ℝ* → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
106104, 105ax-mp 5 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ × ℝ*)
107106a1i 11 . . . . . . . 8 (𝜑 → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
1086, 107fssd 6708 . . . . . . 7 (𝜑𝐹:ℕ⟶(ℝ × ℝ*))
109103, 108volicofmpt 46002 . . . . . 6 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑗 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))))
11067coeq2d 5829 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → ([,) ∘ (𝐼𝑗)) = ([,) ∘ {⟨𝐴, (𝐹𝑗)⟩}))
111110fveq1d 6863 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (([,) ∘ (𝐼𝑗))‘𝐴) = (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴))
112111adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ (𝐼𝑗))‘𝐴) = (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴))
113 snidg 4627 . . . . . . . . . . . . . . . . 17 (𝐴𝑉𝐴 ∈ {𝐴})
1142, 113syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ {𝐴})
115 dmsnopg 6189 . . . . . . . . . . . . . . . . 17 ((𝐹𝑗) ∈ V → dom {⟨𝐴, (𝐹𝑗)⟩} = {𝐴})
11686, 115syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → dom {⟨𝐴, (𝐹𝑗)⟩} = {𝐴})
117114, 116eleqtrrd 2832 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ dom {⟨𝐴, (𝐹𝑗)⟩})
118117adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → 𝐴 ∈ dom {⟨𝐴, (𝐹𝑗)⟩})
119 fvco 6962 . . . . . . . . . . . . . 14 ((Fun {⟨𝐴, (𝐹𝑗)⟩} ∧ 𝐴 ∈ dom {⟨𝐴, (𝐹𝑗)⟩}) → (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴) = ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)))
12062, 118, 119syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴) = ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)))
121 fvexd 6876 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ V)
1223, 121, 87syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
123 1st2nd2 8010 . . . . . . . . . . . . . . . . 17 ((𝐹𝑗) ∈ (ℝ × ℝ) → (𝐹𝑗) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
1247, 123syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
125122, 124eqtrd 2765 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
126125fveq2d 6865 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)) = ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩))
127 df-ov 7393 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))) = ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
128127eqcomi 2739 . . . . . . . . . . . . . . 15 ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))
129128a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
130126, 129eqtrd 2765 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
131112, 120, 1303eqtrd 2769 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ (𝐼𝑗))‘𝐴) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
132131fveq2d 6865 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) = (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))))
133 xp1st 8003 . . . . . . . . . . . . 13 ((𝐹𝑗) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑗)) ∈ ℝ)
1347, 133syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (1st ‘(𝐹𝑗)) ∈ ℝ)
135 xp2nd 8004 . . . . . . . . . . . . 13 ((𝐹𝑗) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑗)) ∈ ℝ)
1367, 135syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2nd ‘(𝐹𝑗)) ∈ ℝ)
137 volicore 46586 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑗)) ∈ ℝ ∧ (2nd ‘(𝐹𝑗)) ∈ ℝ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) ∈ ℝ)
138134, 136, 137syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) ∈ ℝ)
139132, 138eqeltrd 2829 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℝ)
140139recnd 11209 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℂ)
141 2fveq3 6866 . . . . . . . . . 10 (𝑘 = 𝐴 → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
142141prodsn 15935 . . . . . . . . 9 ((𝐴𝑉 ∧ (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℂ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
1433, 140, 142syl2anc 584 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
144143, 132eqtr2d 2766 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
145144mpteq2dva 5203 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
146109, 145eqtrd 2765 . . . . 5 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
147146fveq2d 6865 . . . 4 (𝜑 → (Σ^‘((vol ∘ [,)) ∘ 𝐹)) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
148102, 147eqtrd 2765 . . 3 (𝜑𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
149101, 148jca 511 . 2 (𝜑 → ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))))
150 fveq1 6860 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
151150coeq2d 5829 . . . . . . . 8 (𝑖 = 𝐼 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐼𝑗)))
152151fveq1d 6863 . . . . . . 7 (𝑖 = 𝐼 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
153152ixpeq2dv 8889 . . . . . 6 (𝑖 = 𝐼X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
154153iuneq2d 4989 . . . . 5 (𝑖 = 𝐼 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
155154sseq2d 3982 . . . 4 (𝑖 = 𝐼 → ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ↔ (𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘)))
156 simpl 482 . . . . . . . . . . . 12 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → 𝑖 = 𝐼)
157156fveq1d 6863 . . . . . . . . . . 11 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → (𝑖𝑗) = (𝐼𝑗))
158157coeq2d 5829 . . . . . . . . . 10 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐼𝑗)))
159158fveq1d 6863 . . . . . . . . 9 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
160159fveq2d 6865 . . . . . . . 8 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
161160prodeq2dv 15895 . . . . . . 7 (𝑖 = 𝐼 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
162161mpteq2dv 5204 . . . . . 6 (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
163162fveq2d 6865 . . . . 5 (𝑖 = 𝐼 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
164163eqeq2d 2741 . . . 4 (𝑖 = 𝐼 → (𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))))
165155, 164anbi12d 632 . . 3 (𝑖 = 𝐼 → (((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))))
166165rspcev 3591 . 2 ((𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
16726, 149, 166syl2anc 584 1 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  wss 3917  𝒫 cpw 4566  {csn 4592  cop 4598   cuni 4874   ciun 4958  cmpt 5191   × cxp 5639  dom cdm 5641  ran crn 5642  ccom 5645  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  m cmap 8802  Xcixp 8873  cc 11073  cr 11074  *cxr 11214  cn 12193  [,)cico 13315  cprod 15876  volcvol 25371  Σ^csumge0 46367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-prod 15877  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cmp 23281  df-ovol 25372  df-vol 25373
This theorem is referenced by:  ovnovollem3  46663
  Copyright terms: Public domain W3C validator