Proof of Theorem ovnovollem1
Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → {〈𝐴, (𝐹‘𝑗)〉} = {〈𝐴, (𝐹‘𝑗)〉}) |
2 | | ovnovollem1.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
3 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐴 ∈ 𝑉) |
4 | | ovnovollem1.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ ((ℝ × ℝ)
↑m ℕ)) |
5 | | elmapi 8595 |
. . . . . . . . . 10
⊢ (𝐹 ∈ ((ℝ ×
ℝ) ↑m ℕ) → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
6 | 4, 5 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
7 | 6 | ffvelrnda 6943 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ∈ (ℝ ×
ℝ)) |
8 | | fsng 6991 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝑗) ∈ (ℝ × ℝ)) →
({〈𝐴, (𝐹‘𝑗)〉}:{𝐴}⟶{(𝐹‘𝑗)} ↔ {〈𝐴, (𝐹‘𝑗)〉} = {〈𝐴, (𝐹‘𝑗)〉})) |
9 | 3, 7, 8 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ({〈𝐴, (𝐹‘𝑗)〉}:{𝐴}⟶{(𝐹‘𝑗)} ↔ {〈𝐴, (𝐹‘𝑗)〉} = {〈𝐴, (𝐹‘𝑗)〉})) |
10 | 1, 9 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → {〈𝐴, (𝐹‘𝑗)〉}:{𝐴}⟶{(𝐹‘𝑗)}) |
11 | 7 | snssd 4739 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → {(𝐹‘𝑗)} ⊆ (ℝ ×
ℝ)) |
12 | 10, 11 | fssd 6602 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → {〈𝐴, (𝐹‘𝑗)〉}:{𝐴}⟶(ℝ ×
ℝ)) |
13 | | reex 10893 |
. . . . . . . 8
⊢ ℝ
∈ V |
14 | 13, 13 | xpex 7581 |
. . . . . . 7
⊢ (ℝ
× ℝ) ∈ V |
15 | 14 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (ℝ ×
ℝ) ∈ V) |
16 | | snex 5349 |
. . . . . . 7
⊢ {𝐴} ∈ V |
17 | 16 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → {𝐴} ∈ V) |
18 | 15, 17 | elmapd 8587 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ({〈𝐴, (𝐹‘𝑗)〉} ∈ ((ℝ × ℝ)
↑m {𝐴})
↔ {〈𝐴, (𝐹‘𝑗)〉}:{𝐴}⟶(ℝ ×
ℝ))) |
19 | 12, 18 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → {〈𝐴, (𝐹‘𝑗)〉} ∈ ((ℝ × ℝ)
↑m {𝐴})) |
20 | | ovnovollem1.i |
. . . 4
⊢ 𝐼 = (𝑗 ∈ ℕ ↦ {〈𝐴, (𝐹‘𝑗)〉}) |
21 | 19, 20 | fmptd 6970 |
. . 3
⊢ (𝜑 → 𝐼:ℕ⟶((ℝ × ℝ)
↑m {𝐴})) |
22 | | ovexd 7290 |
. . . 4
⊢ (𝜑 → ((ℝ × ℝ)
↑m {𝐴})
∈ V) |
23 | | nnex 11909 |
. . . . 5
⊢ ℕ
∈ V |
24 | 23 | a1i 11 |
. . . 4
⊢ (𝜑 → ℕ ∈
V) |
25 | 22, 24 | elmapd 8587 |
. . 3
⊢ (𝜑 → (𝐼 ∈ (((ℝ × ℝ)
↑m {𝐴})
↑m ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ)
↑m {𝐴}))) |
26 | 21, 25 | mpbird 256 |
. 2
⊢ (𝜑 → 𝐼 ∈ (((ℝ × ℝ)
↑m {𝐴})
↑m ℕ)) |
27 | | ovnovollem1.s |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ ∪ ran
([,) ∘ 𝐹)) |
28 | | icof 42648 |
. . . . . . . . . . 11
⊢
[,):(ℝ* × ℝ*)⟶𝒫
ℝ* |
29 | 28 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → [,):(ℝ*
× ℝ*)⟶𝒫
ℝ*) |
30 | | rexpssxrxp 10951 |
. . . . . . . . . . 11
⊢ (ℝ
× ℝ) ⊆ (ℝ* ×
ℝ*) |
31 | 30 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ × ℝ)
⊆ (ℝ* × ℝ*)) |
32 | 29, 31, 6 | fcoss 42639 |
. . . . . . . . 9
⊢ (𝜑 → ([,) ∘ 𝐹):ℕ⟶𝒫
ℝ*) |
33 | 32 | ffnd 6585 |
. . . . . . . 8
⊢ (𝜑 → ([,) ∘ 𝐹) Fn ℕ) |
34 | | fniunfv 7102 |
. . . . . . . 8
⊢ (([,)
∘ 𝐹) Fn ℕ
→ ∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ∪ ran ([,)
∘ 𝐹)) |
35 | 33, 34 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ∪ ran ([,)
∘ 𝐹)) |
36 | 35 | eqcomd 2744 |
. . . . . 6
⊢ (𝜑 → ∪ ran ([,) ∘ 𝐹) = ∪
𝑗 ∈ ℕ (([,)
∘ 𝐹)‘𝑗)) |
37 | 27, 36 | sseqtrd 3957 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ ∪
𝑗 ∈ ℕ (([,)
∘ 𝐹)‘𝑗)) |
38 | | ovnovollem1.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
39 | | fvex 6769 |
. . . . . . . 8
⊢ (([,)
∘ 𝐹)‘𝑗) ∈ V |
40 | 23, 39 | iunex 7784 |
. . . . . . 7
⊢ ∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V |
41 | 40 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V) |
42 | 16 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝐴} ∈ V) |
43 | 2 | snn0d 4708 |
. . . . . 6
⊢ (𝜑 → {𝐴} ≠ ∅) |
44 | 38, 41, 42, 43 | mapss2 42634 |
. . . . 5
⊢ (𝜑 → (𝐵 ⊆ ∪
𝑗 ∈ ℕ (([,)
∘ 𝐹)‘𝑗) ↔ (𝐵 ↑m {𝐴}) ⊆ (∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}))) |
45 | 37, 44 | mpbid 231 |
. . . 4
⊢ (𝜑 → (𝐵 ↑m {𝐴}) ⊆ (∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴})) |
46 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑗𝜑 |
47 | | fvexd 6771 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ([,)‘(𝐹‘𝑗)) ∈ V) |
48 | 46, 24, 47, 2 | iunmapsn 42646 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ (([,)‘(𝐹‘𝑗)) ↑m {𝐴}) = (∪
𝑗 ∈ ℕ
([,)‘(𝐹‘𝑗)) ↑m {𝐴})) |
49 | 48 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → (∪ 𝑗 ∈ ℕ ([,)‘(𝐹‘𝑗)) ↑m {𝐴}) = ∪
𝑗 ∈ ℕ
(([,)‘(𝐹‘𝑗)) ↑m {𝐴})) |
50 | | elmapfun 8612 |
. . . . . . . . . 10
⊢ (𝐹 ∈ ((ℝ ×
ℝ) ↑m ℕ) → Fun 𝐹) |
51 | 4, 50 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝐹) |
52 | 51 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Fun 𝐹) |
53 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
54 | 6 | fdmd 6595 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐹 = ℕ) |
55 | 54 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (𝜑 → ℕ = dom 𝐹) |
56 | 55 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ℕ = dom 𝐹) |
57 | 53, 56 | eleqtrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ dom 𝐹) |
58 | | fvco 6848 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑗 ∈ dom 𝐹) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹‘𝑗))) |
59 | 52, 57, 58 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹‘𝑗))) |
60 | 59 | iuneq2dv 4945 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ∪ 𝑗 ∈ ℕ
([,)‘(𝐹‘𝑗))) |
61 | 60 | oveq1d 7270 |
. . . . 5
⊢ (𝜑 → (∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}) = (∪
𝑗 ∈ ℕ
([,)‘(𝐹‘𝑗)) ↑m {𝐴})) |
62 | 10 | ffund 6588 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Fun {〈𝐴, (𝐹‘𝑗)〉}) |
63 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ) |
64 | | snex 5349 |
. . . . . . . . . . . . . . . 16
⊢
{〈𝐴, (𝐹‘𝑗)〉} ∈ V |
65 | 64 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ →
{〈𝐴, (𝐹‘𝑗)〉} ∈ V) |
66 | 20 | fvmpt2 6868 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ ℕ ∧
{〈𝐴, (𝐹‘𝑗)〉} ∈ V) → (𝐼‘𝑗) = {〈𝐴, (𝐹‘𝑗)〉}) |
67 | 63, 65, 66 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → (𝐼‘𝑗) = {〈𝐴, (𝐹‘𝑗)〉}) |
68 | 67 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐼‘𝑗) = {〈𝐴, (𝐹‘𝑗)〉}) |
69 | 68 | funeqd 6440 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (Fun (𝐼‘𝑗) ↔ Fun {〈𝐴, (𝐹‘𝑗)〉})) |
70 | 62, 69 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Fun (𝐼‘𝑗)) |
71 | 70 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → Fun (𝐼‘𝑗)) |
72 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → 𝑘 ∈ {𝐴}) |
73 | 68 | dmeqd 5803 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → dom (𝐼‘𝑗) = dom {〈𝐴, (𝐹‘𝑗)〉}) |
74 | 10 | fdmd 6595 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → dom {〈𝐴, (𝐹‘𝑗)〉} = {𝐴}) |
75 | 73, 74 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → dom (𝐼‘𝑗) = {𝐴}) |
76 | 75 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ dom (𝐼‘𝑗) ↔ 𝑘 ∈ {𝐴})) |
77 | 76 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (𝑘 ∈ dom (𝐼‘𝑗) ↔ 𝑘 ∈ {𝐴})) |
78 | 72, 77 | mpbird 256 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → 𝑘 ∈ dom (𝐼‘𝑗)) |
79 | | fvco 6848 |
. . . . . . . . . 10
⊢ ((Fun
(𝐼‘𝑗) ∧ 𝑘 ∈ dom (𝐼‘𝑗)) → (([,) ∘ (𝐼‘𝑗))‘𝑘) = ([,)‘((𝐼‘𝑗)‘𝑘))) |
80 | 71, 78, 79 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼‘𝑗))‘𝑘) = ([,)‘((𝐼‘𝑗)‘𝑘))) |
81 | 67 | fveq1d 6758 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → ((𝐼‘𝑗)‘𝑘) = ({〈𝐴, (𝐹‘𝑗)〉}‘𝑘)) |
82 | 81 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ((𝐼‘𝑗)‘𝑘) = ({〈𝐴, (𝐹‘𝑗)〉}‘𝑘)) |
83 | | elsni 4575 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ {𝐴} → 𝑘 = 𝐴) |
84 | 83 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ {𝐴} → ({〈𝐴, (𝐹‘𝑗)〉}‘𝑘) = ({〈𝐴, (𝐹‘𝑗)〉}‘𝐴)) |
85 | 84 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ({〈𝐴, (𝐹‘𝑗)〉}‘𝑘) = ({〈𝐴, (𝐹‘𝑗)〉}‘𝐴)) |
86 | | fvexd 6771 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘𝑗) ∈ V) |
87 | | fvsng 7034 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝑗) ∈ V) → ({〈𝐴, (𝐹‘𝑗)〉}‘𝐴) = (𝐹‘𝑗)) |
88 | 2, 86, 87 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → ({〈𝐴, (𝐹‘𝑗)〉}‘𝐴) = (𝐹‘𝑗)) |
89 | 88 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ({〈𝐴, (𝐹‘𝑗)〉}‘𝐴) = (𝐹‘𝑗)) |
90 | 82, 85, 89 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ((𝐼‘𝑗)‘𝑘) = (𝐹‘𝑗)) |
91 | 90 | fveq2d 6760 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ([,)‘((𝐼‘𝑗)‘𝑘)) = ([,)‘(𝐹‘𝑗))) |
92 | | eqidd 2739 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ([,)‘(𝐹‘𝑗)) = ([,)‘(𝐹‘𝑗))) |
93 | 80, 91, 92 | 3eqtrd 2782 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼‘𝑗))‘𝑘) = ([,)‘(𝐹‘𝑗))) |
94 | 93 | ixpeq2dva 8658 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
{𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘) = X𝑘 ∈ {𝐴} ([,)‘(𝐹‘𝑗))) |
95 | | fvex 6769 |
. . . . . . . . 9
⊢
([,)‘(𝐹‘𝑗)) ∈ V |
96 | 16, 95 | ixpconst 8653 |
. . . . . . . 8
⊢ X𝑘 ∈
{𝐴} ([,)‘(𝐹‘𝑗)) = (([,)‘(𝐹‘𝑗)) ↑m {𝐴}) |
97 | 96 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
{𝐴} ([,)‘(𝐹‘𝑗)) = (([,)‘(𝐹‘𝑗)) ↑m {𝐴})) |
98 | 94, 97 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
{𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘) = (([,)‘(𝐹‘𝑗)) ↑m {𝐴})) |
99 | 98 | iuneq2dv 4945 |
. . . . 5
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘) = ∪ 𝑗 ∈ ℕ
(([,)‘(𝐹‘𝑗)) ↑m {𝐴})) |
100 | 49, 61, 99 | 3eqtr4d 2788 |
. . . 4
⊢ (𝜑 → (∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}) = ∪
𝑗 ∈ ℕ X𝑘 ∈
{𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
101 | 45, 100 | sseqtrd 3957 |
. . 3
⊢ (𝜑 → (𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
102 | | ovnovollem1.z |
. . . 4
⊢ (𝜑 → 𝑍 =
(Σ^‘((vol ∘ [,)) ∘ 𝐹))) |
103 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑗𝐹 |
104 | | ressxr 10950 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℝ* |
105 | | xpss2 5600 |
. . . . . . . . . 10
⊢ (ℝ
⊆ ℝ* → (ℝ × ℝ) ⊆ (ℝ
× ℝ*)) |
106 | 104, 105 | ax-mp 5 |
. . . . . . . . 9
⊢ (ℝ
× ℝ) ⊆ (ℝ × ℝ*) |
107 | 106 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (ℝ × ℝ)
⊆ (ℝ × ℝ*)) |
108 | 6, 107 | fssd 6602 |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ ×
ℝ*)) |
109 | 103, 108 | volicofmpt 43428 |
. . . . . 6
⊢ (𝜑 → ((vol ∘ [,)) ∘
𝐹) = (𝑗 ∈ ℕ ↦
(vol‘((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))))) |
110 | 67 | coeq2d 5760 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → ([,)
∘ (𝐼‘𝑗)) = ([,) ∘ {〈𝐴, (𝐹‘𝑗)〉})) |
111 | 110 | fveq1d 6758 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → (([,)
∘ (𝐼‘𝑗))‘𝐴) = (([,) ∘ {〈𝐴, (𝐹‘𝑗)〉})‘𝐴)) |
112 | 111 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (([,) ∘ (𝐼‘𝑗))‘𝐴) = (([,) ∘ {〈𝐴, (𝐹‘𝑗)〉})‘𝐴)) |
113 | | snidg 4592 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
114 | 2, 113 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
115 | | dmsnopg 6105 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑗) ∈ V → dom {〈𝐴, (𝐹‘𝑗)〉} = {𝐴}) |
116 | 86, 115 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → dom {〈𝐴, (𝐹‘𝑗)〉} = {𝐴}) |
117 | 114, 116 | eleqtrrd 2842 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ dom {〈𝐴, (𝐹‘𝑗)〉}) |
118 | 117 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐴 ∈ dom {〈𝐴, (𝐹‘𝑗)〉}) |
119 | | fvco 6848 |
. . . . . . . . . . . . . 14
⊢ ((Fun
{〈𝐴, (𝐹‘𝑗)〉} ∧ 𝐴 ∈ dom {〈𝐴, (𝐹‘𝑗)〉}) → (([,) ∘ {〈𝐴, (𝐹‘𝑗)〉})‘𝐴) = ([,)‘({〈𝐴, (𝐹‘𝑗)〉}‘𝐴))) |
120 | 62, 118, 119 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (([,) ∘
{〈𝐴, (𝐹‘𝑗)〉})‘𝐴) = ([,)‘({〈𝐴, (𝐹‘𝑗)〉}‘𝐴))) |
121 | | fvexd 6771 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ∈ V) |
122 | 3, 121, 87 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ({〈𝐴, (𝐹‘𝑗)〉}‘𝐴) = (𝐹‘𝑗)) |
123 | | 1st2nd2 7843 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑗) ∈ (ℝ × ℝ) →
(𝐹‘𝑗) = 〈(1st ‘(𝐹‘𝑗)), (2nd ‘(𝐹‘𝑗))〉) |
124 | 7, 123 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) = 〈(1st ‘(𝐹‘𝑗)), (2nd ‘(𝐹‘𝑗))〉) |
125 | 122, 124 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ({〈𝐴, (𝐹‘𝑗)〉}‘𝐴) = 〈(1st ‘(𝐹‘𝑗)), (2nd ‘(𝐹‘𝑗))〉) |
126 | 125 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
([,)‘({〈𝐴,
(𝐹‘𝑗)〉}‘𝐴)) = ([,)‘〈(1st
‘(𝐹‘𝑗)), (2nd
‘(𝐹‘𝑗))〉)) |
127 | | df-ov 7258 |
. . . . . . . . . . . . . . . 16
⊢
((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗))) = ([,)‘〈(1st
‘(𝐹‘𝑗)), (2nd
‘(𝐹‘𝑗))〉) |
128 | 127 | eqcomi 2747 |
. . . . . . . . . . . . . . 15
⊢
([,)‘〈(1st ‘(𝐹‘𝑗)), (2nd ‘(𝐹‘𝑗))〉) = ((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗))) |
129 | 128 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
([,)‘〈(1st ‘(𝐹‘𝑗)), (2nd ‘(𝐹‘𝑗))〉) = ((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))) |
130 | 126, 129 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
([,)‘({〈𝐴,
(𝐹‘𝑗)〉}‘𝐴)) = ((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))) |
131 | 112, 120,
130 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (([,) ∘ (𝐼‘𝑗))‘𝐴) = ((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))) |
132 | 131 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘(([,)
∘ (𝐼‘𝑗))‘𝐴)) = (vol‘((1st
‘(𝐹‘𝑗))[,)(2nd
‘(𝐹‘𝑗))))) |
133 | | xp1st 7836 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑗) ∈ (ℝ × ℝ) →
(1st ‘(𝐹‘𝑗)) ∈ ℝ) |
134 | 7, 133 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (1st
‘(𝐹‘𝑗)) ∈
ℝ) |
135 | | xp2nd 7837 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑗) ∈ (ℝ × ℝ) →
(2nd ‘(𝐹‘𝑗)) ∈ ℝ) |
136 | 7, 135 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2nd
‘(𝐹‘𝑗)) ∈
ℝ) |
137 | | volicore 44009 |
. . . . . . . . . . . 12
⊢
(((1st ‘(𝐹‘𝑗)) ∈ ℝ ∧ (2nd
‘(𝐹‘𝑗)) ∈ ℝ) →
(vol‘((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))) ∈ ℝ) |
138 | 134, 136,
137 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
(vol‘((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))) ∈ ℝ) |
139 | 132, 138 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘(([,)
∘ (𝐼‘𝑗))‘𝐴)) ∈ ℝ) |
140 | 139 | recnd 10934 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘(([,)
∘ (𝐼‘𝑗))‘𝐴)) ∈ ℂ) |
141 | | 2fveq3 6761 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐴 → (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼‘𝑗))‘𝐴))) |
142 | 141 | prodsn 15600 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (vol‘(([,) ∘ (𝐼‘𝑗))‘𝐴)) ∈ ℂ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼‘𝑗))‘𝐴))) |
143 | 3, 140, 142 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼‘𝑗))‘𝐴))) |
144 | 143, 132 | eqtr2d 2779 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
(vol‘((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))) |
145 | 144 | mpteq2dva 5170 |
. . . . . 6
⊢ (𝜑 → (𝑗 ∈ ℕ ↦
(vol‘((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗))))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))) |
146 | 109, 145 | eqtrd 2778 |
. . . . 5
⊢ (𝜑 → ((vol ∘ [,)) ∘
𝐹) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))) |
147 | 146 | fveq2d 6760 |
. . . 4
⊢ (𝜑 →
(Σ^‘((vol ∘ [,)) ∘ 𝐹)) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))))) |
148 | 102, 147 | eqtrd 2778 |
. . 3
⊢ (𝜑 → 𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))))) |
149 | 101, 148 | jca 511 |
. 2
⊢ (𝜑 → ((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘) ∧ 𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))))) |
150 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 → (𝑖‘𝑗) = (𝐼‘𝑗)) |
151 | 150 | coeq2d 5760 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 → ([,) ∘ (𝑖‘𝑗)) = ([,) ∘ (𝐼‘𝑗))) |
152 | 151 | fveq1d 6758 |
. . . . . . 7
⊢ (𝑖 = 𝐼 → (([,) ∘ (𝑖‘𝑗))‘𝑘) = (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
153 | 152 | ixpeq2dv 8659 |
. . . . . 6
⊢ (𝑖 = 𝐼 → X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) = X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
154 | 153 | iuneq2d 4950 |
. . . . 5
⊢ (𝑖 = 𝐼 → ∪
𝑗 ∈ ℕ X𝑘 ∈
{𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) = ∪ 𝑗 ∈ ℕ X𝑘 ∈
{𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
155 | 154 | sseq2d 3949 |
. . . 4
⊢ (𝑖 = 𝐼 → ((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ↔ (𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘))) |
156 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑖 = 𝐼 ∧ 𝑘 ∈ {𝐴}) → 𝑖 = 𝐼) |
157 | 156 | fveq1d 6758 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝐼 ∧ 𝑘 ∈ {𝐴}) → (𝑖‘𝑗) = (𝐼‘𝑗)) |
158 | 157 | coeq2d 5760 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝐼 ∧ 𝑘 ∈ {𝐴}) → ([,) ∘ (𝑖‘𝑗)) = ([,) ∘ (𝐼‘𝑗))) |
159 | 158 | fveq1d 6758 |
. . . . . . . . 9
⊢ ((𝑖 = 𝐼 ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝑖‘𝑗))‘𝑘) = (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
160 | 159 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑘 ∈ {𝐴}) → (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))) |
161 | 160 | prodeq2dv 15561 |
. . . . . . 7
⊢ (𝑖 = 𝐼 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))) |
162 | 161 | mpteq2dv 5172 |
. . . . . 6
⊢ (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))) |
163 | 162 | fveq2d 6760 |
. . . . 5
⊢ (𝑖 = 𝐼 →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))))) |
164 | 163 | eqeq2d 2749 |
. . . 4
⊢ (𝑖 = 𝐼 → (𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ↔ 𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))))) |
165 | 155, 164 | anbi12d 630 |
. . 3
⊢ (𝑖 = 𝐼 → (((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ ((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘) ∧ 𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))))))) |
166 | 165 | rspcev 3552 |
. 2
⊢ ((𝐼 ∈ (((ℝ ×
ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘) ∧ 𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ)
↑m {𝐴})
↑m ℕ)((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |
167 | 26, 149, 166 | syl2anc 583 |
1
⊢ (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ)
↑m {𝐴})
↑m ℕ)((𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |