Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnovollem1 Structured version   Visualization version   GIF version

Theorem ovnovollem1 42945
Description: if 𝐹 is a cover of 𝐵 in , then 𝐼 is the corresponding cover in the space of 1-dimensional reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnovollem1.a (𝜑𝐴𝑉)
ovnovollem1.f (𝜑𝐹 ∈ ((ℝ × ℝ) ↑m ℕ))
ovnovollem1.i 𝐼 = (𝑗 ∈ ℕ ↦ {⟨𝐴, (𝐹𝑗)⟩})
ovnovollem1.s (𝜑𝐵 ran ([,) ∘ 𝐹))
ovnovollem1.b (𝜑𝐵𝑊)
ovnovollem1.z (𝜑𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
Assertion
Ref Expression
ovnovollem1 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑘   𝐵,𝑖   𝑗,𝐹,𝑘   𝑖,𝐼,𝑗,𝑘   𝑘,𝑉   𝑖,𝑍   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑖)   𝐵(𝑗,𝑘)   𝐹(𝑖)   𝑉(𝑖,𝑗)   𝑊(𝑖,𝑗,𝑘)   𝑍(𝑗,𝑘)

Proof of Theorem ovnovollem1
StepHypRef Expression
1 eqidd 2825 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩} = {⟨𝐴, (𝐹𝑗)⟩})
2 ovnovollem1.a . . . . . . . . 9 (𝜑𝐴𝑉)
32adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝐴𝑉)
4 ovnovollem1.f . . . . . . . . . 10 (𝜑𝐹 ∈ ((ℝ × ℝ) ↑m ℕ))
5 elmapi 8431 . . . . . . . . . 10 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝐹:ℕ⟶(ℝ × ℝ))
64, 5syl 17 . . . . . . . . 9 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
76ffvelrnda 6854 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ (ℝ × ℝ))
8 fsng 6902 . . . . . . . 8 ((𝐴𝑉 ∧ (𝐹𝑗) ∈ (ℝ × ℝ)) → ({⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶{(𝐹𝑗)} ↔ {⟨𝐴, (𝐹𝑗)⟩} = {⟨𝐴, (𝐹𝑗)⟩}))
93, 7, 8syl2anc 586 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶{(𝐹𝑗)} ↔ {⟨𝐴, (𝐹𝑗)⟩} = {⟨𝐴, (𝐹𝑗)⟩}))
101, 9mpbird 259 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶{(𝐹𝑗)})
117snssd 4745 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → {(𝐹𝑗)} ⊆ (ℝ × ℝ))
1210, 11fssd 6531 . . . . 5 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶(ℝ × ℝ))
13 reex 10631 . . . . . . . 8 ℝ ∈ V
1413, 13xpex 7479 . . . . . . 7 (ℝ × ℝ) ∈ V
1514a1i 11 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (ℝ × ℝ) ∈ V)
16 snex 5335 . . . . . . 7 {𝐴} ∈ V
1716a1i 11 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → {𝐴} ∈ V)
1815, 17elmapd 8423 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩} ∈ ((ℝ × ℝ) ↑m {𝐴}) ↔ {⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶(ℝ × ℝ)))
1912, 18mpbird 259 . . . 4 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩} ∈ ((ℝ × ℝ) ↑m {𝐴}))
20 ovnovollem1.i . . . 4 𝐼 = (𝑗 ∈ ℕ ↦ {⟨𝐴, (𝐹𝑗)⟩})
2119, 20fmptd 6881 . . 3 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑m {𝐴}))
22 ovexd 7194 . . . 4 (𝜑 → ((ℝ × ℝ) ↑m {𝐴}) ∈ V)
23 nnex 11647 . . . . 5 ℕ ∈ V
2423a1i 11 . . . 4 (𝜑 → ℕ ∈ V)
2522, 24elmapd 8423 . . 3 (𝜑 → (𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑m {𝐴})))
2621, 25mpbird 259 . 2 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ))
27 ovnovollem1.s . . . . . 6 (𝜑𝐵 ran ([,) ∘ 𝐹))
28 icof 41488 . . . . . . . . . . 11 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
2928a1i 11 . . . . . . . . . 10 (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
30 rexpssxrxp 10689 . . . . . . . . . . 11 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
3130a1i 11 . . . . . . . . . 10 (𝜑 → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
3229, 31, 6fcoss 41479 . . . . . . . . 9 (𝜑 → ([,) ∘ 𝐹):ℕ⟶𝒫 ℝ*)
3332ffnd 6518 . . . . . . . 8 (𝜑 → ([,) ∘ 𝐹) Fn ℕ)
34 fniunfv 7009 . . . . . . . 8 (([,) ∘ 𝐹) Fn ℕ → 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ran ([,) ∘ 𝐹))
3533, 34syl 17 . . . . . . 7 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ran ([,) ∘ 𝐹))
3635eqcomd 2830 . . . . . 6 (𝜑 ran ([,) ∘ 𝐹) = 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗))
3727, 36sseqtrd 4010 . . . . 5 (𝜑𝐵 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗))
38 ovnovollem1.b . . . . . 6 (𝜑𝐵𝑊)
39 fvex 6686 . . . . . . . 8 (([,) ∘ 𝐹)‘𝑗) ∈ V
4023, 39iunex 7672 . . . . . . 7 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V
4140a1i 11 . . . . . 6 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V)
4216a1i 11 . . . . . 6 (𝜑 → {𝐴} ∈ V)
432snn0d 41355 . . . . . 6 (𝜑 → {𝐴} ≠ ∅)
4438, 41, 42, 43mapss2 41474 . . . . 5 (𝜑 → (𝐵 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↔ (𝐵m {𝐴}) ⊆ ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴})))
4537, 44mpbid 234 . . . 4 (𝜑 → (𝐵m {𝐴}) ⊆ ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}))
46 nfv 1914 . . . . . . 7 𝑗𝜑
47 fvexd 6688 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ([,)‘(𝐹𝑗)) ∈ V)
4846, 24, 47, 2iunmapsn 41486 . . . . . 6 (𝜑 𝑗 ∈ ℕ (([,)‘(𝐹𝑗)) ↑m {𝐴}) = ( 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)) ↑m {𝐴}))
4948eqcomd 2830 . . . . 5 (𝜑 → ( 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)) ↑m {𝐴}) = 𝑗 ∈ ℕ (([,)‘(𝐹𝑗)) ↑m {𝐴}))
50 elmapfun 8433 . . . . . . . . . 10 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) → Fun 𝐹)
514, 50syl 17 . . . . . . . . 9 (𝜑 → Fun 𝐹)
5251adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → Fun 𝐹)
53 simpr 487 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
546fdmd 6526 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = ℕ)
5554eqcomd 2830 . . . . . . . . . 10 (𝜑 → ℕ = dom 𝐹)
5655adantr 483 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ℕ = dom 𝐹)
5753, 56eleqtrd 2918 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ dom 𝐹)
58 fvco 6762 . . . . . . . 8 ((Fun 𝐹𝑗 ∈ dom 𝐹) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹𝑗)))
5952, 57, 58syl2anc 586 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹𝑗)))
6059iuneq2dv 4946 . . . . . 6 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)))
6160oveq1d 7174 . . . . 5 (𝜑 → ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}) = ( 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)) ↑m {𝐴}))
6210ffund 6521 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → Fun {⟨𝐴, (𝐹𝑗)⟩})
63 id 22 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
64 snex 5335 . . . . . . . . . . . . . . . 16 {⟨𝐴, (𝐹𝑗)⟩} ∈ V
6564a1i 11 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → {⟨𝐴, (𝐹𝑗)⟩} ∈ V)
6620fvmpt2 6782 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ ∧ {⟨𝐴, (𝐹𝑗)⟩} ∈ V) → (𝐼𝑗) = {⟨𝐴, (𝐹𝑗)⟩})
6763, 65, 66syl2anc 586 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝐼𝑗) = {⟨𝐴, (𝐹𝑗)⟩})
6867adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) = {⟨𝐴, (𝐹𝑗)⟩})
6968funeqd 6380 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (Fun (𝐼𝑗) ↔ Fun {⟨𝐴, (𝐹𝑗)⟩}))
7062, 69mpbird 259 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → Fun (𝐼𝑗))
7170adantr 483 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → Fun (𝐼𝑗))
72 simpr 487 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → 𝑘 ∈ {𝐴})
7368dmeqd 5777 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → dom (𝐼𝑗) = dom {⟨𝐴, (𝐹𝑗)⟩})
7410fdmd 6526 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → dom {⟨𝐴, (𝐹𝑗)⟩} = {𝐴})
7573, 74eqtrd 2859 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → dom (𝐼𝑗) = {𝐴})
7675eleq2d 2901 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝑘 ∈ dom (𝐼𝑗) ↔ 𝑘 ∈ {𝐴}))
7776adantr 483 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (𝑘 ∈ dom (𝐼𝑗) ↔ 𝑘 ∈ {𝐴}))
7872, 77mpbird 259 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → 𝑘 ∈ dom (𝐼𝑗))
79 fvco 6762 . . . . . . . . . 10 ((Fun (𝐼𝑗) ∧ 𝑘 ∈ dom (𝐼𝑗)) → (([,) ∘ (𝐼𝑗))‘𝑘) = ([,)‘((𝐼𝑗)‘𝑘)))
8071, 78, 79syl2anc 586 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝑘) = ([,)‘((𝐼𝑗)‘𝑘)))
8167fveq1d 6675 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((𝐼𝑗)‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘))
8281ad2antlr 725 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ((𝐼𝑗)‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘))
83 elsni 4587 . . . . . . . . . . . . 13 (𝑘 ∈ {𝐴} → 𝑘 = 𝐴)
8483fveq2d 6677 . . . . . . . . . . . 12 (𝑘 ∈ {𝐴} → ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴))
8584adantl 484 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴))
86 fvexd 6688 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑗) ∈ V)
87 fvsng 6945 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝐹𝑗) ∈ V) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
882, 86, 87syl2anc 586 . . . . . . . . . . . 12 (𝜑 → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
8988ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
9082, 85, 893eqtrd 2863 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ((𝐼𝑗)‘𝑘) = (𝐹𝑗))
9190fveq2d 6677 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ([,)‘((𝐼𝑗)‘𝑘)) = ([,)‘(𝐹𝑗)))
92 eqidd 2825 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ([,)‘(𝐹𝑗)) = ([,)‘(𝐹𝑗)))
9380, 91, 923eqtrd 2863 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝑘) = ([,)‘(𝐹𝑗)))
9493ixpeq2dva 8479 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = X𝑘 ∈ {𝐴} ([,)‘(𝐹𝑗)))
95 fvex 6686 . . . . . . . . 9 ([,)‘(𝐹𝑗)) ∈ V
9616, 95ixpconst 8474 . . . . . . . 8 X𝑘 ∈ {𝐴} ([,)‘(𝐹𝑗)) = (([,)‘(𝐹𝑗)) ↑m {𝐴})
9796a1i 11 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} ([,)‘(𝐹𝑗)) = (([,)‘(𝐹𝑗)) ↑m {𝐴}))
9894, 97eqtrd 2859 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = (([,)‘(𝐹𝑗)) ↑m {𝐴}))
9998iuneq2dv 4946 . . . . 5 (𝜑 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = 𝑗 ∈ ℕ (([,)‘(𝐹𝑗)) ↑m {𝐴}))
10049, 61, 993eqtr4d 2869 . . . 4 (𝜑 → ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}) = 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
10145, 100sseqtrd 4010 . . 3 (𝜑 → (𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
102 ovnovollem1.z . . . 4 (𝜑𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
103 nfcv 2980 . . . . . . 7 𝑗𝐹
104 ressxr 10688 . . . . . . . . . 10 ℝ ⊆ ℝ*
105 xpss2 5578 . . . . . . . . . 10 (ℝ ⊆ ℝ* → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
106104, 105ax-mp 5 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ × ℝ*)
107106a1i 11 . . . . . . . 8 (𝜑 → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
1086, 107fssd 6531 . . . . . . 7 (𝜑𝐹:ℕ⟶(ℝ × ℝ*))
109103, 108volicofmpt 42289 . . . . . 6 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑗 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))))
11067coeq2d 5736 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → ([,) ∘ (𝐼𝑗)) = ([,) ∘ {⟨𝐴, (𝐹𝑗)⟩}))
111110fveq1d 6675 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (([,) ∘ (𝐼𝑗))‘𝐴) = (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴))
112111adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ (𝐼𝑗))‘𝐴) = (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴))
113 snidg 4602 . . . . . . . . . . . . . . . . 17 (𝐴𝑉𝐴 ∈ {𝐴})
1142, 113syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ {𝐴})
115 dmsnopg 6073 . . . . . . . . . . . . . . . . 17 ((𝐹𝑗) ∈ V → dom {⟨𝐴, (𝐹𝑗)⟩} = {𝐴})
11686, 115syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → dom {⟨𝐴, (𝐹𝑗)⟩} = {𝐴})
117114, 116eleqtrrd 2919 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ dom {⟨𝐴, (𝐹𝑗)⟩})
118117adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → 𝐴 ∈ dom {⟨𝐴, (𝐹𝑗)⟩})
119 fvco 6762 . . . . . . . . . . . . . 14 ((Fun {⟨𝐴, (𝐹𝑗)⟩} ∧ 𝐴 ∈ dom {⟨𝐴, (𝐹𝑗)⟩}) → (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴) = ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)))
12062, 118, 119syl2anc 586 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴) = ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)))
121 fvexd 6688 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ V)
1223, 121, 87syl2anc 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
123 1st2nd2 7731 . . . . . . . . . . . . . . . . 17 ((𝐹𝑗) ∈ (ℝ × ℝ) → (𝐹𝑗) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
1247, 123syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
125122, 124eqtrd 2859 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
126125fveq2d 6677 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)) = ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩))
127 df-ov 7162 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))) = ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
128127eqcomi 2833 . . . . . . . . . . . . . . 15 ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))
129128a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
130126, 129eqtrd 2859 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
131112, 120, 1303eqtrd 2863 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ (𝐼𝑗))‘𝐴) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
132131fveq2d 6677 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) = (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))))
133 xp1st 7724 . . . . . . . . . . . . 13 ((𝐹𝑗) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑗)) ∈ ℝ)
1347, 133syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (1st ‘(𝐹𝑗)) ∈ ℝ)
135 xp2nd 7725 . . . . . . . . . . . . 13 ((𝐹𝑗) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑗)) ∈ ℝ)
1367, 135syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2nd ‘(𝐹𝑗)) ∈ ℝ)
137 volicore 42870 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑗)) ∈ ℝ ∧ (2nd ‘(𝐹𝑗)) ∈ ℝ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) ∈ ℝ)
138134, 136, 137syl2anc 586 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) ∈ ℝ)
139132, 138eqeltrd 2916 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℝ)
140139recnd 10672 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℂ)
141 2fveq3 6678 . . . . . . . . . 10 (𝑘 = 𝐴 → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
142141prodsn 15319 . . . . . . . . 9 ((𝐴𝑉 ∧ (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℂ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
1433, 140, 142syl2anc 586 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
144143, 132eqtr2d 2860 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
145144mpteq2dva 5164 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
146109, 145eqtrd 2859 . . . . 5 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
147146fveq2d 6677 . . . 4 (𝜑 → (Σ^‘((vol ∘ [,)) ∘ 𝐹)) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
148102, 147eqtrd 2859 . . 3 (𝜑𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
149101, 148jca 514 . 2 (𝜑 → ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))))
150 fveq1 6672 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
151150coeq2d 5736 . . . . . . . 8 (𝑖 = 𝐼 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐼𝑗)))
152151fveq1d 6675 . . . . . . 7 (𝑖 = 𝐼 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
153152ixpeq2dv 8480 . . . . . 6 (𝑖 = 𝐼X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
154153iuneq2d 4951 . . . . 5 (𝑖 = 𝐼 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
155154sseq2d 4002 . . . 4 (𝑖 = 𝐼 → ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ↔ (𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘)))
156 simpl 485 . . . . . . . . . . . 12 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → 𝑖 = 𝐼)
157156fveq1d 6675 . . . . . . . . . . 11 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → (𝑖𝑗) = (𝐼𝑗))
158157coeq2d 5736 . . . . . . . . . 10 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐼𝑗)))
159158fveq1d 6675 . . . . . . . . 9 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
160159fveq2d 6677 . . . . . . . 8 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
161160prodeq2dv 15280 . . . . . . 7 (𝑖 = 𝐼 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
162161mpteq2dv 5165 . . . . . 6 (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
163162fveq2d 6677 . . . . 5 (𝑖 = 𝐼 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
164163eqeq2d 2835 . . . 4 (𝑖 = 𝐼 → (𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))))
165155, 164anbi12d 632 . . 3 (𝑖 = 𝐼 → (((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))))
166165rspcev 3626 . 2 ((𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
16726, 149, 166syl2anc 586 1 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wrex 3142  Vcvv 3497  wss 3939  𝒫 cpw 4542  {csn 4570  cop 4576   cuni 4841   ciun 4922  cmpt 5149   × cxp 5556  dom cdm 5558  ran crn 5559  ccom 5562  Fun wfun 6352   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  1st c1st 7690  2nd c2nd 7691  m cmap 8409  Xcixp 8464  cc 10538  cr 10539  *cxr 10677  cn 11641  [,)cico 12743  cprod 15262  volcvol 24067  Σ^csumge0 42651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-rlim 14849  df-sum 15046  df-prod 15263  df-rest 16699  df-topgen 16720  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-top 21505  df-topon 21522  df-bases 21557  df-cmp 21998  df-ovol 24068  df-vol 24069
This theorem is referenced by:  ovnovollem3  42947
  Copyright terms: Public domain W3C validator