Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnovollem1 Structured version   Visualization version   GIF version

Theorem ovnovollem1 44165
Description: if 𝐹 is a cover of 𝐵 in , then 𝐼 is the corresponding cover in the space of 1-dimensional reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnovollem1.a (𝜑𝐴𝑉)
ovnovollem1.f (𝜑𝐹 ∈ ((ℝ × ℝ) ↑m ℕ))
ovnovollem1.i 𝐼 = (𝑗 ∈ ℕ ↦ {⟨𝐴, (𝐹𝑗)⟩})
ovnovollem1.s (𝜑𝐵 ran ([,) ∘ 𝐹))
ovnovollem1.b (𝜑𝐵𝑊)
ovnovollem1.z (𝜑𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
Assertion
Ref Expression
ovnovollem1 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑘   𝐵,𝑖   𝑗,𝐹,𝑘   𝑖,𝐼,𝑗,𝑘   𝑘,𝑉   𝑖,𝑍   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑖)   𝐵(𝑗,𝑘)   𝐹(𝑖)   𝑉(𝑖,𝑗)   𝑊(𝑖,𝑗,𝑘)   𝑍(𝑗,𝑘)

Proof of Theorem ovnovollem1
StepHypRef Expression
1 eqidd 2741 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩} = {⟨𝐴, (𝐹𝑗)⟩})
2 ovnovollem1.a . . . . . . . . 9 (𝜑𝐴𝑉)
32adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝐴𝑉)
4 ovnovollem1.f . . . . . . . . . 10 (𝜑𝐹 ∈ ((ℝ × ℝ) ↑m ℕ))
5 elmapi 8620 . . . . . . . . . 10 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝐹:ℕ⟶(ℝ × ℝ))
64, 5syl 17 . . . . . . . . 9 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
76ffvelrnda 6958 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ (ℝ × ℝ))
8 fsng 7006 . . . . . . . 8 ((𝐴𝑉 ∧ (𝐹𝑗) ∈ (ℝ × ℝ)) → ({⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶{(𝐹𝑗)} ↔ {⟨𝐴, (𝐹𝑗)⟩} = {⟨𝐴, (𝐹𝑗)⟩}))
93, 7, 8syl2anc 584 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶{(𝐹𝑗)} ↔ {⟨𝐴, (𝐹𝑗)⟩} = {⟨𝐴, (𝐹𝑗)⟩}))
101, 9mpbird 256 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶{(𝐹𝑗)})
117snssd 4748 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → {(𝐹𝑗)} ⊆ (ℝ × ℝ))
1210, 11fssd 6616 . . . . 5 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶(ℝ × ℝ))
13 reex 10963 . . . . . . . 8 ℝ ∈ V
1413, 13xpex 7597 . . . . . . 7 (ℝ × ℝ) ∈ V
1514a1i 11 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (ℝ × ℝ) ∈ V)
16 snex 5358 . . . . . . 7 {𝐴} ∈ V
1716a1i 11 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → {𝐴} ∈ V)
1815, 17elmapd 8612 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩} ∈ ((ℝ × ℝ) ↑m {𝐴}) ↔ {⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶(ℝ × ℝ)))
1912, 18mpbird 256 . . . 4 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩} ∈ ((ℝ × ℝ) ↑m {𝐴}))
20 ovnovollem1.i . . . 4 𝐼 = (𝑗 ∈ ℕ ↦ {⟨𝐴, (𝐹𝑗)⟩})
2119, 20fmptd 6985 . . 3 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑m {𝐴}))
22 ovexd 7306 . . . 4 (𝜑 → ((ℝ × ℝ) ↑m {𝐴}) ∈ V)
23 nnex 11979 . . . . 5 ℕ ∈ V
2423a1i 11 . . . 4 (𝜑 → ℕ ∈ V)
2522, 24elmapd 8612 . . 3 (𝜑 → (𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑m {𝐴})))
2621, 25mpbird 256 . 2 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ))
27 ovnovollem1.s . . . . . 6 (𝜑𝐵 ran ([,) ∘ 𝐹))
28 icof 42729 . . . . . . . . . . 11 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
2928a1i 11 . . . . . . . . . 10 (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
30 rexpssxrxp 11021 . . . . . . . . . . 11 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
3130a1i 11 . . . . . . . . . 10 (𝜑 → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
3229, 31, 6fcoss 42720 . . . . . . . . 9 (𝜑 → ([,) ∘ 𝐹):ℕ⟶𝒫 ℝ*)
3332ffnd 6599 . . . . . . . 8 (𝜑 → ([,) ∘ 𝐹) Fn ℕ)
34 fniunfv 7117 . . . . . . . 8 (([,) ∘ 𝐹) Fn ℕ → 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ran ([,) ∘ 𝐹))
3533, 34syl 17 . . . . . . 7 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ran ([,) ∘ 𝐹))
3635eqcomd 2746 . . . . . 6 (𝜑 ran ([,) ∘ 𝐹) = 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗))
3727, 36sseqtrd 3966 . . . . 5 (𝜑𝐵 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗))
38 ovnovollem1.b . . . . . 6 (𝜑𝐵𝑊)
39 fvex 6784 . . . . . . . 8 (([,) ∘ 𝐹)‘𝑗) ∈ V
4023, 39iunex 7804 . . . . . . 7 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V
4140a1i 11 . . . . . 6 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V)
4216a1i 11 . . . . . 6 (𝜑 → {𝐴} ∈ V)
432snn0d 4717 . . . . . 6 (𝜑 → {𝐴} ≠ ∅)
4438, 41, 42, 43mapss2 42715 . . . . 5 (𝜑 → (𝐵 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↔ (𝐵m {𝐴}) ⊆ ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴})))
4537, 44mpbid 231 . . . 4 (𝜑 → (𝐵m {𝐴}) ⊆ ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}))
46 nfv 1921 . . . . . . 7 𝑗𝜑
47 fvexd 6786 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ([,)‘(𝐹𝑗)) ∈ V)
4846, 24, 47, 2iunmapsn 42727 . . . . . 6 (𝜑 𝑗 ∈ ℕ (([,)‘(𝐹𝑗)) ↑m {𝐴}) = ( 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)) ↑m {𝐴}))
4948eqcomd 2746 . . . . 5 (𝜑 → ( 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)) ↑m {𝐴}) = 𝑗 ∈ ℕ (([,)‘(𝐹𝑗)) ↑m {𝐴}))
50 elmapfun 8637 . . . . . . . . . 10 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) → Fun 𝐹)
514, 50syl 17 . . . . . . . . 9 (𝜑 → Fun 𝐹)
5251adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → Fun 𝐹)
53 simpr 485 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
546fdmd 6609 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = ℕ)
5554eqcomd 2746 . . . . . . . . . 10 (𝜑 → ℕ = dom 𝐹)
5655adantr 481 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ℕ = dom 𝐹)
5753, 56eleqtrd 2843 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ dom 𝐹)
58 fvco 6863 . . . . . . . 8 ((Fun 𝐹𝑗 ∈ dom 𝐹) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹𝑗)))
5952, 57, 58syl2anc 584 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹𝑗)))
6059iuneq2dv 4954 . . . . . 6 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)))
6160oveq1d 7286 . . . . 5 (𝜑 → ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}) = ( 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)) ↑m {𝐴}))
6210ffund 6602 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → Fun {⟨𝐴, (𝐹𝑗)⟩})
63 id 22 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
64 snex 5358 . . . . . . . . . . . . . . . 16 {⟨𝐴, (𝐹𝑗)⟩} ∈ V
6564a1i 11 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → {⟨𝐴, (𝐹𝑗)⟩} ∈ V)
6620fvmpt2 6883 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ ∧ {⟨𝐴, (𝐹𝑗)⟩} ∈ V) → (𝐼𝑗) = {⟨𝐴, (𝐹𝑗)⟩})
6763, 65, 66syl2anc 584 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝐼𝑗) = {⟨𝐴, (𝐹𝑗)⟩})
6867adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) = {⟨𝐴, (𝐹𝑗)⟩})
6968funeqd 6454 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (Fun (𝐼𝑗) ↔ Fun {⟨𝐴, (𝐹𝑗)⟩}))
7062, 69mpbird 256 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → Fun (𝐼𝑗))
7170adantr 481 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → Fun (𝐼𝑗))
72 simpr 485 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → 𝑘 ∈ {𝐴})
7368dmeqd 5813 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → dom (𝐼𝑗) = dom {⟨𝐴, (𝐹𝑗)⟩})
7410fdmd 6609 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → dom {⟨𝐴, (𝐹𝑗)⟩} = {𝐴})
7573, 74eqtrd 2780 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → dom (𝐼𝑗) = {𝐴})
7675eleq2d 2826 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝑘 ∈ dom (𝐼𝑗) ↔ 𝑘 ∈ {𝐴}))
7776adantr 481 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (𝑘 ∈ dom (𝐼𝑗) ↔ 𝑘 ∈ {𝐴}))
7872, 77mpbird 256 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → 𝑘 ∈ dom (𝐼𝑗))
79 fvco 6863 . . . . . . . . . 10 ((Fun (𝐼𝑗) ∧ 𝑘 ∈ dom (𝐼𝑗)) → (([,) ∘ (𝐼𝑗))‘𝑘) = ([,)‘((𝐼𝑗)‘𝑘)))
8071, 78, 79syl2anc 584 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝑘) = ([,)‘((𝐼𝑗)‘𝑘)))
8167fveq1d 6773 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((𝐼𝑗)‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘))
8281ad2antlr 724 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ((𝐼𝑗)‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘))
83 elsni 4584 . . . . . . . . . . . . 13 (𝑘 ∈ {𝐴} → 𝑘 = 𝐴)
8483fveq2d 6775 . . . . . . . . . . . 12 (𝑘 ∈ {𝐴} → ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴))
8584adantl 482 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴))
86 fvexd 6786 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑗) ∈ V)
87 fvsng 7049 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝐹𝑗) ∈ V) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
882, 86, 87syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
8988ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
9082, 85, 893eqtrd 2784 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ((𝐼𝑗)‘𝑘) = (𝐹𝑗))
9190fveq2d 6775 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ([,)‘((𝐼𝑗)‘𝑘)) = ([,)‘(𝐹𝑗)))
92 eqidd 2741 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ([,)‘(𝐹𝑗)) = ([,)‘(𝐹𝑗)))
9380, 91, 923eqtrd 2784 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝑘) = ([,)‘(𝐹𝑗)))
9493ixpeq2dva 8683 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = X𝑘 ∈ {𝐴} ([,)‘(𝐹𝑗)))
95 fvex 6784 . . . . . . . . 9 ([,)‘(𝐹𝑗)) ∈ V
9616, 95ixpconst 8678 . . . . . . . 8 X𝑘 ∈ {𝐴} ([,)‘(𝐹𝑗)) = (([,)‘(𝐹𝑗)) ↑m {𝐴})
9796a1i 11 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} ([,)‘(𝐹𝑗)) = (([,)‘(𝐹𝑗)) ↑m {𝐴}))
9894, 97eqtrd 2780 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = (([,)‘(𝐹𝑗)) ↑m {𝐴}))
9998iuneq2dv 4954 . . . . 5 (𝜑 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = 𝑗 ∈ ℕ (([,)‘(𝐹𝑗)) ↑m {𝐴}))
10049, 61, 993eqtr4d 2790 . . . 4 (𝜑 → ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}) = 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
10145, 100sseqtrd 3966 . . 3 (𝜑 → (𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
102 ovnovollem1.z . . . 4 (𝜑𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
103 nfcv 2909 . . . . . . 7 𝑗𝐹
104 ressxr 11020 . . . . . . . . . 10 ℝ ⊆ ℝ*
105 xpss2 5610 . . . . . . . . . 10 (ℝ ⊆ ℝ* → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
106104, 105ax-mp 5 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ × ℝ*)
107106a1i 11 . . . . . . . 8 (𝜑 → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
1086, 107fssd 6616 . . . . . . 7 (𝜑𝐹:ℕ⟶(ℝ × ℝ*))
109103, 108volicofmpt 43509 . . . . . 6 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑗 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))))
11067coeq2d 5770 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → ([,) ∘ (𝐼𝑗)) = ([,) ∘ {⟨𝐴, (𝐹𝑗)⟩}))
111110fveq1d 6773 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (([,) ∘ (𝐼𝑗))‘𝐴) = (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴))
112111adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ (𝐼𝑗))‘𝐴) = (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴))
113 snidg 4601 . . . . . . . . . . . . . . . . 17 (𝐴𝑉𝐴 ∈ {𝐴})
1142, 113syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ {𝐴})
115 dmsnopg 6115 . . . . . . . . . . . . . . . . 17 ((𝐹𝑗) ∈ V → dom {⟨𝐴, (𝐹𝑗)⟩} = {𝐴})
11686, 115syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → dom {⟨𝐴, (𝐹𝑗)⟩} = {𝐴})
117114, 116eleqtrrd 2844 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ dom {⟨𝐴, (𝐹𝑗)⟩})
118117adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → 𝐴 ∈ dom {⟨𝐴, (𝐹𝑗)⟩})
119 fvco 6863 . . . . . . . . . . . . . 14 ((Fun {⟨𝐴, (𝐹𝑗)⟩} ∧ 𝐴 ∈ dom {⟨𝐴, (𝐹𝑗)⟩}) → (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴) = ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)))
12062, 118, 119syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴) = ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)))
121 fvexd 6786 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ V)
1223, 121, 87syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
123 1st2nd2 7863 . . . . . . . . . . . . . . . . 17 ((𝐹𝑗) ∈ (ℝ × ℝ) → (𝐹𝑗) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
1247, 123syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
125122, 124eqtrd 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
126125fveq2d 6775 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)) = ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩))
127 df-ov 7274 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))) = ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
128127eqcomi 2749 . . . . . . . . . . . . . . 15 ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))
129128a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
130126, 129eqtrd 2780 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
131112, 120, 1303eqtrd 2784 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ (𝐼𝑗))‘𝐴) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
132131fveq2d 6775 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) = (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))))
133 xp1st 7856 . . . . . . . . . . . . 13 ((𝐹𝑗) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑗)) ∈ ℝ)
1347, 133syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (1st ‘(𝐹𝑗)) ∈ ℝ)
135 xp2nd 7857 . . . . . . . . . . . . 13 ((𝐹𝑗) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑗)) ∈ ℝ)
1367, 135syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2nd ‘(𝐹𝑗)) ∈ ℝ)
137 volicore 44090 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑗)) ∈ ℝ ∧ (2nd ‘(𝐹𝑗)) ∈ ℝ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) ∈ ℝ)
138134, 136, 137syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) ∈ ℝ)
139132, 138eqeltrd 2841 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℝ)
140139recnd 11004 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℂ)
141 2fveq3 6776 . . . . . . . . . 10 (𝑘 = 𝐴 → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
142141prodsn 15670 . . . . . . . . 9 ((𝐴𝑉 ∧ (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℂ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
1433, 140, 142syl2anc 584 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
144143, 132eqtr2d 2781 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
145144mpteq2dva 5179 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
146109, 145eqtrd 2780 . . . . 5 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
147146fveq2d 6775 . . . 4 (𝜑 → (Σ^‘((vol ∘ [,)) ∘ 𝐹)) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
148102, 147eqtrd 2780 . . 3 (𝜑𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
149101, 148jca 512 . 2 (𝜑 → ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))))
150 fveq1 6770 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
151150coeq2d 5770 . . . . . . . 8 (𝑖 = 𝐼 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐼𝑗)))
152151fveq1d 6773 . . . . . . 7 (𝑖 = 𝐼 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
153152ixpeq2dv 8684 . . . . . 6 (𝑖 = 𝐼X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
154153iuneq2d 4959 . . . . 5 (𝑖 = 𝐼 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
155154sseq2d 3958 . . . 4 (𝑖 = 𝐼 → ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ↔ (𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘)))
156 simpl 483 . . . . . . . . . . . 12 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → 𝑖 = 𝐼)
157156fveq1d 6773 . . . . . . . . . . 11 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → (𝑖𝑗) = (𝐼𝑗))
158157coeq2d 5770 . . . . . . . . . 10 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐼𝑗)))
159158fveq1d 6773 . . . . . . . . 9 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
160159fveq2d 6775 . . . . . . . 8 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
161160prodeq2dv 15631 . . . . . . 7 (𝑖 = 𝐼 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
162161mpteq2dv 5181 . . . . . 6 (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
163162fveq2d 6775 . . . . 5 (𝑖 = 𝐼 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
164163eqeq2d 2751 . . . 4 (𝑖 = 𝐼 → (𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))))
165155, 164anbi12d 631 . . 3 (𝑖 = 𝐼 → (((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))))
166165rspcev 3561 . 2 ((𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
16726, 149, 166syl2anc 584 1 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wrex 3067  Vcvv 3431  wss 3892  𝒫 cpw 4539  {csn 4567  cop 4573   cuni 4845   ciun 4930  cmpt 5162   × cxp 5588  dom cdm 5590  ran crn 5591  ccom 5594  Fun wfun 6426   Fn wfn 6427  wf 6428  cfv 6432  (class class class)co 7271  1st c1st 7822  2nd c2nd 7823  m cmap 8598  Xcixp 8668  cc 10870  cr 10871  *cxr 11009  cn 11973  [,)cico 13080  cprod 15613  volcvol 24625  Σ^csumge0 43871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-rlim 15196  df-sum 15396  df-prod 15614  df-rest 17131  df-topgen 17152  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-top 22041  df-topon 22058  df-bases 22094  df-cmp 22536  df-ovol 24626  df-vol 24627
This theorem is referenced by:  ovnovollem3  44167
  Copyright terms: Public domain W3C validator