Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . 4
β’
(Baseβπ
) =
(Baseβπ
) |
2 | | rnglidl0.z |
. . . 4
β’ 0 =
(0gβπ
) |
3 | 1, 2 | rng0cl 46652 |
. . 3
β’ (π
β Rng β 0 β
(Baseβπ
)) |
4 | 3 | snssd 4812 |
. 2
β’ (π
β Rng β { 0 } β
(Baseβπ
)) |
5 | 2 | fvexi 6905 |
. . . 4
β’ 0 β
V |
6 | 5 | a1i 11 |
. . 3
β’ (π
β Rng β 0 β
V) |
7 | 6 | snn0d 4779 |
. 2
β’ (π
β Rng β { 0 } β
β
) |
8 | | eqid 2732 |
. . . . . . . 8
β’
(.rβπ
) = (.rβπ
) |
9 | 1, 8, 2 | rngrz 46655 |
. . . . . . 7
β’ ((π
β Rng β§ π₯ β (Baseβπ
)) β (π₯(.rβπ
) 0 ) = 0 ) |
10 | 9 | oveq1d 7423 |
. . . . . 6
β’ ((π
β Rng β§ π₯ β (Baseβπ
)) β ((π₯(.rβπ
) 0
)(+gβπ
)
0 ) = (
0
(+gβπ
)
0
)) |
11 | | rnggrp 46644 |
. . . . . . . 8
β’ (π
β Rng β π
β Grp) |
12 | 1, 2 | grpidcl 18849 |
. . . . . . . 8
β’ (π
β Grp β 0 β
(Baseβπ
)) |
13 | | eqid 2732 |
. . . . . . . . 9
β’
(+gβπ
) = (+gβπ
) |
14 | 1, 13, 2 | grprid 18852 |
. . . . . . . 8
β’ ((π
β Grp β§ 0 β
(Baseβπ
)) β (
0
(+gβπ
)
0 ) =
0
) |
15 | 11, 12, 14 | syl2anc2 585 |
. . . . . . 7
β’ (π
β Rng β ( 0
(+gβπ
)
0 ) =
0
) |
16 | 15 | adantr 481 |
. . . . . 6
β’ ((π
β Rng β§ π₯ β (Baseβπ
)) β ( 0 (+gβπ
) 0 ) = 0 ) |
17 | 10, 16 | eqtrd 2772 |
. . . . 5
β’ ((π
β Rng β§ π₯ β (Baseβπ
)) β ((π₯(.rβπ
) 0
)(+gβπ
)
0 ) =
0
) |
18 | 5 | elsn2 4667 |
. . . . 5
β’ (((π₯(.rβπ
) 0
)(+gβπ
)
0 )
β { 0 } β ((π₯(.rβπ
) 0
)(+gβπ
)
0 ) =
0
) |
19 | 17, 18 | sylibr 233 |
. . . 4
β’ ((π
β Rng β§ π₯ β (Baseβπ
)) β ((π₯(.rβπ
) 0
)(+gβπ
)
0 )
β { 0 }) |
20 | | oveq2 7416 |
. . . . . . . . 9
β’ (π¦ = 0 β (π₯(.rβπ
)π¦) = (π₯(.rβπ
) 0 )) |
21 | 20 | oveq1d 7423 |
. . . . . . . 8
β’ (π¦ = 0 β ((π₯(.rβπ
)π¦)(+gβπ
)π§) = ((π₯(.rβπ
) 0
)(+gβπ
)π§)) |
22 | 21 | eleq1d 2818 |
. . . . . . 7
β’ (π¦ = 0 β (((π₯(.rβπ
)π¦)(+gβπ
)π§) β { 0 } β ((π₯(.rβπ
) 0
)(+gβπ
)π§) β { 0 })) |
23 | 22 | ralbidv 3177 |
. . . . . 6
β’ (π¦ = 0 β (βπ§ β { 0 } ((π₯(.rβπ
)π¦)(+gβπ
)π§) β { 0 } β βπ§ β { 0 } ((π₯(.rβπ
) 0
)(+gβπ
)π§) β { 0 })) |
24 | 5, 23 | ralsn 4685 |
. . . . 5
β’
(βπ¦ β {
0
}βπ§ β { 0 } ((π₯(.rβπ
)π¦)(+gβπ
)π§) β { 0 } β βπ§ β { 0 } ((π₯(.rβπ
) 0
)(+gβπ
)π§) β { 0 }) |
25 | | oveq2 7416 |
. . . . . . 7
β’ (π§ = 0 β ((π₯(.rβπ
) 0
)(+gβπ
)π§) = ((π₯(.rβπ
) 0
)(+gβπ
)
0
)) |
26 | 25 | eleq1d 2818 |
. . . . . 6
β’ (π§ = 0 β (((π₯(.rβπ
) 0
)(+gβπ
)π§) β { 0 } β ((π₯(.rβπ
) 0
)(+gβπ
)
0 )
β { 0 })) |
27 | 5, 26 | ralsn 4685 |
. . . . 5
β’
(βπ§ β {
0 }
((π₯(.rβπ
) 0
)(+gβπ
)π§) β { 0 } β ((π₯(.rβπ
) 0
)(+gβπ
)
0 )
β { 0 }) |
28 | 24, 27 | bitri 274 |
. . . 4
β’
(βπ¦ β {
0
}βπ§ β { 0 } ((π₯(.rβπ
)π¦)(+gβπ
)π§) β { 0 } β ((π₯(.rβπ
) 0
)(+gβπ
)
0 )
β { 0 }) |
29 | 19, 28 | sylibr 233 |
. . 3
β’ ((π
β Rng β§ π₯ β (Baseβπ
)) β βπ¦ β { 0 }βπ§ β { 0 } ((π₯(.rβπ
)π¦)(+gβπ
)π§) β { 0 }) |
30 | 29 | ralrimiva 3146 |
. 2
β’ (π
β Rng β βπ₯ β (Baseβπ
)βπ¦ β { 0 }βπ§ β { 0 } ((π₯(.rβπ
)π¦)(+gβπ
)π§) β { 0 }) |
31 | | rnglidl0.u |
. . 3
β’ π = (LIdealβπ
) |
32 | 31, 1, 13, 8 | islidl 20833 |
. 2
β’ ({ 0 } β
π β ({ 0 } β
(Baseβπ
) β§ {
0 } β
β
β§ βπ₯
β (Baseβπ
)βπ¦ β { 0 }βπ§ β { 0 } ((π₯(.rβπ
)π¦)(+gβπ
)π§) β { 0 })) |
33 | 4, 7, 30, 32 | syl3anbrc 1343 |
1
β’ (π
β Rng β { 0 } β
π) |