| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnglidl0 | Structured version Visualization version GIF version | ||
| Description: Every non-unital ring contains a zero ideal. (Contributed by AV, 19-Feb-2025.) |
| Ref | Expression |
|---|---|
| rnglidl0.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| rnglidl0.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| rnglidl0 | ⊢ (𝑅 ∈ Rng → { 0 } ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | rnglidl0.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 3 | 1, 2 | rng0cl 20066 | . . 3 ⊢ (𝑅 ∈ Rng → 0 ∈ (Base‘𝑅)) |
| 4 | 3 | snssd 4763 | . 2 ⊢ (𝑅 ∈ Rng → { 0 } ⊆ (Base‘𝑅)) |
| 5 | 2 | fvexi 6840 | . . . 4 ⊢ 0 ∈ V |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝑅 ∈ Rng → 0 ∈ V) |
| 7 | 6 | snn0d 4729 | . 2 ⊢ (𝑅 ∈ Rng → { 0 } ≠ ∅) |
| 8 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 9 | 1, 8, 2 | rngrz 20069 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅) 0 ) = 0 ) |
| 10 | 9 | oveq1d 7368 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) = ( 0 (+g‘𝑅) 0 )) |
| 11 | rnggrp 20061 | . . . . . . . 8 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 12 | 1, 2 | grpidcl 18862 | . . . . . . . 8 ⊢ (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅)) |
| 13 | eqid 2729 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 14 | 1, 13, 2 | grprid 18865 | . . . . . . . 8 ⊢ ((𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 15 | 11, 12, 14 | syl2anc2 585 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 17 | 10, 16 | eqtrd 2764 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) = 0 ) |
| 18 | 5 | elsn2 4619 | . . . . 5 ⊢ (((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) ∈ { 0 } ↔ ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) = 0 ) |
| 19 | 17, 18 | sylibr 234 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) ∈ { 0 }) |
| 20 | oveq2 7361 | . . . . . . . . 9 ⊢ (𝑦 = 0 → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑅) 0 )) | |
| 21 | 20 | oveq1d 7368 | . . . . . . . 8 ⊢ (𝑦 = 0 → ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) = ((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧)) |
| 22 | 21 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑦 = 0 → (((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧) ∈ { 0 })) |
| 23 | 22 | ralbidv 3152 | . . . . . 6 ⊢ (𝑦 = 0 → (∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 } ↔ ∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧) ∈ { 0 })) |
| 24 | 5, 23 | ralsn 4635 | . . . . 5 ⊢ (∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 } ↔ ∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧) ∈ { 0 }) |
| 25 | oveq2 7361 | . . . . . . 7 ⊢ (𝑧 = 0 → ((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧) = ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 )) | |
| 26 | 25 | eleq1d 2813 | . . . . . 6 ⊢ (𝑧 = 0 → (((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) ∈ { 0 })) |
| 27 | 5, 26 | ralsn 4635 | . . . . 5 ⊢ (∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) ∈ { 0 }) |
| 28 | 24, 27 | bitri 275 | . . . 4 ⊢ (∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) ∈ { 0 }) |
| 29 | 19, 28 | sylibr 234 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 }) |
| 30 | 29 | ralrimiva 3121 | . 2 ⊢ (𝑅 ∈ Rng → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 }) |
| 31 | rnglidl0.u | . . 3 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 32 | 31, 1, 13, 8 | islidl 21140 | . 2 ⊢ ({ 0 } ∈ 𝑈 ↔ ({ 0 } ⊆ (Base‘𝑅) ∧ { 0 } ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 })) |
| 33 | 4, 7, 30, 32 | syl3anbrc 1344 | 1 ⊢ (𝑅 ∈ Rng → { 0 } ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3438 ⊆ wss 3905 ∅c0 4286 {csn 4579 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 .rcmulr 17180 0gc0g 17361 Grpcgrp 18830 Rngcrng 20055 LIdealclidl 21131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-sca 17195 df-vsca 17196 df-ip 17197 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-abl 19680 df-mgp 20044 df-rng 20056 df-lss 20853 df-sra 21095 df-rgmod 21096 df-lidl 21133 |
| This theorem is referenced by: lidl0 21155 |
| Copyright terms: Public domain | W3C validator |