MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnglidl0 Structured version   Visualization version   GIF version

Theorem rnglidl0 21257
Description: Every non-unital ring contains a zero ideal. (Contributed by AV, 19-Feb-2025.)
Hypotheses
Ref Expression
rnglidl0.u 𝑈 = (LIdeal‘𝑅)
rnglidl0.z 0 = (0g𝑅)
Assertion
Ref Expression
rnglidl0 (𝑅 ∈ Rng → { 0 } ∈ 𝑈)

Proof of Theorem rnglidl0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 rnglidl0.z . . . 4 0 = (0g𝑅)
31, 2rng0cl 20181 . . 3 (𝑅 ∈ Rng → 0 ∈ (Base‘𝑅))
43snssd 4814 . 2 (𝑅 ∈ Rng → { 0 } ⊆ (Base‘𝑅))
52fvexi 6921 . . . 4 0 ∈ V
65a1i 11 . . 3 (𝑅 ∈ Rng → 0 ∈ V)
76snn0d 4780 . 2 (𝑅 ∈ Rng → { 0 } ≠ ∅)
8 eqid 2735 . . . . . . . 8 (.r𝑅) = (.r𝑅)
91, 8, 2rngrz 20184 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅) 0 ) = 0 )
109oveq1d 7446 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) = ( 0 (+g𝑅) 0 ))
11 rnggrp 20176 . . . . . . . 8 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
121, 2grpidcl 18996 . . . . . . . 8 (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅))
13 eqid 2735 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
141, 13, 2grprid 18999 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)) → ( 0 (+g𝑅) 0 ) = 0 )
1511, 12, 14syl2anc2 585 . . . . . . 7 (𝑅 ∈ Rng → ( 0 (+g𝑅) 0 ) = 0 )
1615adantr 480 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g𝑅) 0 ) = 0 )
1710, 16eqtrd 2775 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) = 0 )
185elsn2 4670 . . . . 5 (((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) ∈ { 0 } ↔ ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) = 0 )
1917, 18sylibr 234 . . . 4 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) ∈ { 0 })
20 oveq2 7439 . . . . . . . . 9 (𝑦 = 0 → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑅) 0 ))
2120oveq1d 7446 . . . . . . . 8 (𝑦 = 0 → ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) = ((𝑥(.r𝑅) 0 )(+g𝑅)𝑧))
2221eleq1d 2824 . . . . . . 7 (𝑦 = 0 → (((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r𝑅) 0 )(+g𝑅)𝑧) ∈ { 0 }))
2322ralbidv 3176 . . . . . 6 (𝑦 = 0 → (∀𝑧 ∈ { 0 } ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 } ↔ ∀𝑧 ∈ { 0 } ((𝑥(.r𝑅) 0 )(+g𝑅)𝑧) ∈ { 0 }))
245, 23ralsn 4686 . . . . 5 (∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 } ↔ ∀𝑧 ∈ { 0 } ((𝑥(.r𝑅) 0 )(+g𝑅)𝑧) ∈ { 0 })
25 oveq2 7439 . . . . . . 7 (𝑧 = 0 → ((𝑥(.r𝑅) 0 )(+g𝑅)𝑧) = ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ))
2625eleq1d 2824 . . . . . 6 (𝑧 = 0 → (((𝑥(.r𝑅) 0 )(+g𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) ∈ { 0 }))
275, 26ralsn 4686 . . . . 5 (∀𝑧 ∈ { 0 } ((𝑥(.r𝑅) 0 )(+g𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) ∈ { 0 })
2824, 27bitri 275 . . . 4 (∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) ∈ { 0 })
2919, 28sylibr 234 . . 3 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 })
3029ralrimiva 3144 . 2 (𝑅 ∈ Rng → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 })
31 rnglidl0.u . . 3 𝑈 = (LIdeal‘𝑅)
3231, 1, 13, 8islidl 21243 . 2 ({ 0 } ∈ 𝑈 ↔ ({ 0 } ⊆ (Base‘𝑅) ∧ { 0 } ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 }))
334, 7, 30, 32syl3anbrc 1342 1 (𝑅 ∈ Rng → { 0 } ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  Vcvv 3478  wss 3963  c0 4339  {csn 4631  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  0gc0g 17486  Grpcgrp 18964  Rngcrng 20170  LIdealclidl 21234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-sca 17314  df-vsca 17315  df-ip 17316  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-abl 19816  df-mgp 20153  df-rng 20171  df-lss 20948  df-sra 21190  df-rgmod 21191  df-lidl 21236
This theorem is referenced by:  lidl0  21258
  Copyright terms: Public domain W3C validator