MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnglidl0 Structured version   Visualization version   GIF version

Theorem rnglidl0 21195
Description: Every non-unital ring contains a zero ideal. (Contributed by AV, 19-Feb-2025.)
Hypotheses
Ref Expression
rnglidl0.u 𝑈 = (LIdeal‘𝑅)
rnglidl0.z 0 = (0g𝑅)
Assertion
Ref Expression
rnglidl0 (𝑅 ∈ Rng → { 0 } ∈ 𝑈)

Proof of Theorem rnglidl0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 rnglidl0.z . . . 4 0 = (0g𝑅)
31, 2rng0cl 20128 . . 3 (𝑅 ∈ Rng → 0 ∈ (Base‘𝑅))
43snssd 4790 . 2 (𝑅 ∈ Rng → { 0 } ⊆ (Base‘𝑅))
52fvexi 6895 . . . 4 0 ∈ V
65a1i 11 . . 3 (𝑅 ∈ Rng → 0 ∈ V)
76snn0d 4756 . 2 (𝑅 ∈ Rng → { 0 } ≠ ∅)
8 eqid 2736 . . . . . . . 8 (.r𝑅) = (.r𝑅)
91, 8, 2rngrz 20131 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅) 0 ) = 0 )
109oveq1d 7425 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) = ( 0 (+g𝑅) 0 ))
11 rnggrp 20123 . . . . . . . 8 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
121, 2grpidcl 18953 . . . . . . . 8 (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅))
13 eqid 2736 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
141, 13, 2grprid 18956 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)) → ( 0 (+g𝑅) 0 ) = 0 )
1511, 12, 14syl2anc2 585 . . . . . . 7 (𝑅 ∈ Rng → ( 0 (+g𝑅) 0 ) = 0 )
1615adantr 480 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g𝑅) 0 ) = 0 )
1710, 16eqtrd 2771 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) = 0 )
185elsn2 4646 . . . . 5 (((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) ∈ { 0 } ↔ ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) = 0 )
1917, 18sylibr 234 . . . 4 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) ∈ { 0 })
20 oveq2 7418 . . . . . . . . 9 (𝑦 = 0 → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑅) 0 ))
2120oveq1d 7425 . . . . . . . 8 (𝑦 = 0 → ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) = ((𝑥(.r𝑅) 0 )(+g𝑅)𝑧))
2221eleq1d 2820 . . . . . . 7 (𝑦 = 0 → (((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r𝑅) 0 )(+g𝑅)𝑧) ∈ { 0 }))
2322ralbidv 3164 . . . . . 6 (𝑦 = 0 → (∀𝑧 ∈ { 0 } ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 } ↔ ∀𝑧 ∈ { 0 } ((𝑥(.r𝑅) 0 )(+g𝑅)𝑧) ∈ { 0 }))
245, 23ralsn 4662 . . . . 5 (∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 } ↔ ∀𝑧 ∈ { 0 } ((𝑥(.r𝑅) 0 )(+g𝑅)𝑧) ∈ { 0 })
25 oveq2 7418 . . . . . . 7 (𝑧 = 0 → ((𝑥(.r𝑅) 0 )(+g𝑅)𝑧) = ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ))
2625eleq1d 2820 . . . . . 6 (𝑧 = 0 → (((𝑥(.r𝑅) 0 )(+g𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) ∈ { 0 }))
275, 26ralsn 4662 . . . . 5 (∀𝑧 ∈ { 0 } ((𝑥(.r𝑅) 0 )(+g𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) ∈ { 0 })
2824, 27bitri 275 . . . 4 (∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) ∈ { 0 })
2919, 28sylibr 234 . . 3 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 })
3029ralrimiva 3133 . 2 (𝑅 ∈ Rng → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 })
31 rnglidl0.u . . 3 𝑈 = (LIdeal‘𝑅)
3231, 1, 13, 8islidl 21181 . 2 ({ 0 } ∈ 𝑈 ↔ ({ 0 } ⊆ (Base‘𝑅) ∧ { 0 } ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 }))
334, 7, 30, 32syl3anbrc 1344 1 (𝑅 ∈ Rng → { 0 } ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  Vcvv 3464  wss 3931  c0 4313  {csn 4606  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  0gc0g 17458  Grpcgrp 18921  Rngcrng 20117  LIdealclidl 21172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-sca 17292  df-vsca 17293  df-ip 17294  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-abl 19769  df-mgp 20106  df-rng 20118  df-lss 20894  df-sra 21136  df-rgmod 21137  df-lidl 21174
This theorem is referenced by:  lidl0  21196
  Copyright terms: Public domain W3C validator