MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnglidl0 Structured version   Visualization version   GIF version

Theorem rnglidl0 21146
Description: Every non-unital ring contains a zero ideal. (Contributed by AV, 19-Feb-2025.)
Hypotheses
Ref Expression
rnglidl0.u 𝑈 = (LIdeal‘𝑅)
rnglidl0.z 0 = (0g𝑅)
Assertion
Ref Expression
rnglidl0 (𝑅 ∈ Rng → { 0 } ∈ 𝑈)

Proof of Theorem rnglidl0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 rnglidl0.z . . . 4 0 = (0g𝑅)
31, 2rng0cl 20079 . . 3 (𝑅 ∈ Rng → 0 ∈ (Base‘𝑅))
43snssd 4776 . 2 (𝑅 ∈ Rng → { 0 } ⊆ (Base‘𝑅))
52fvexi 6875 . . . 4 0 ∈ V
65a1i 11 . . 3 (𝑅 ∈ Rng → 0 ∈ V)
76snn0d 4742 . 2 (𝑅 ∈ Rng → { 0 } ≠ ∅)
8 eqid 2730 . . . . . . . 8 (.r𝑅) = (.r𝑅)
91, 8, 2rngrz 20082 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅) 0 ) = 0 )
109oveq1d 7405 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) = ( 0 (+g𝑅) 0 ))
11 rnggrp 20074 . . . . . . . 8 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
121, 2grpidcl 18904 . . . . . . . 8 (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅))
13 eqid 2730 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
141, 13, 2grprid 18907 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)) → ( 0 (+g𝑅) 0 ) = 0 )
1511, 12, 14syl2anc2 585 . . . . . . 7 (𝑅 ∈ Rng → ( 0 (+g𝑅) 0 ) = 0 )
1615adantr 480 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g𝑅) 0 ) = 0 )
1710, 16eqtrd 2765 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) = 0 )
185elsn2 4632 . . . . 5 (((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) ∈ { 0 } ↔ ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) = 0 )
1917, 18sylibr 234 . . . 4 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) ∈ { 0 })
20 oveq2 7398 . . . . . . . . 9 (𝑦 = 0 → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑅) 0 ))
2120oveq1d 7405 . . . . . . . 8 (𝑦 = 0 → ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) = ((𝑥(.r𝑅) 0 )(+g𝑅)𝑧))
2221eleq1d 2814 . . . . . . 7 (𝑦 = 0 → (((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r𝑅) 0 )(+g𝑅)𝑧) ∈ { 0 }))
2322ralbidv 3157 . . . . . 6 (𝑦 = 0 → (∀𝑧 ∈ { 0 } ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 } ↔ ∀𝑧 ∈ { 0 } ((𝑥(.r𝑅) 0 )(+g𝑅)𝑧) ∈ { 0 }))
245, 23ralsn 4648 . . . . 5 (∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 } ↔ ∀𝑧 ∈ { 0 } ((𝑥(.r𝑅) 0 )(+g𝑅)𝑧) ∈ { 0 })
25 oveq2 7398 . . . . . . 7 (𝑧 = 0 → ((𝑥(.r𝑅) 0 )(+g𝑅)𝑧) = ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ))
2625eleq1d 2814 . . . . . 6 (𝑧 = 0 → (((𝑥(.r𝑅) 0 )(+g𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) ∈ { 0 }))
275, 26ralsn 4648 . . . . 5 (∀𝑧 ∈ { 0 } ((𝑥(.r𝑅) 0 )(+g𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) ∈ { 0 })
2824, 27bitri 275 . . . 4 (∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r𝑅) 0 )(+g𝑅) 0 ) ∈ { 0 })
2919, 28sylibr 234 . . 3 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 })
3029ralrimiva 3126 . 2 (𝑅 ∈ Rng → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 })
31 rnglidl0.u . . 3 𝑈 = (LIdeal‘𝑅)
3231, 1, 13, 8islidl 21132 . 2 ({ 0 } ∈ 𝑈 ↔ ({ 0 } ⊆ (Base‘𝑅) ∧ { 0 } ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r𝑅)𝑦)(+g𝑅)𝑧) ∈ { 0 }))
334, 7, 30, 32syl3anbrc 1344 1 (𝑅 ∈ Rng → { 0 } ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  wss 3917  c0 4299  {csn 4592  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  0gc0g 17409  Grpcgrp 18872  Rngcrng 20068  LIdealclidl 21123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-sca 17243  df-vsca 17244  df-ip 17245  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-abl 19720  df-mgp 20057  df-rng 20069  df-lss 20845  df-sra 21087  df-rgmod 21088  df-lidl 21125
This theorem is referenced by:  lidl0  21147
  Copyright terms: Public domain W3C validator