![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnglidl0 | Structured version Visualization version GIF version |
Description: Every non-unital ring contains a zero ideal. (Contributed by AV, 19-Feb-2025.) |
Ref | Expression |
---|---|
rnglidl0.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
rnglidl0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
rnglidl0 | ⊢ (𝑅 ∈ Rng → { 0 } ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | rnglidl0.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | rng0cl 20190 | . . 3 ⊢ (𝑅 ∈ Rng → 0 ∈ (Base‘𝑅)) |
4 | 3 | snssd 4834 | . 2 ⊢ (𝑅 ∈ Rng → { 0 } ⊆ (Base‘𝑅)) |
5 | 2 | fvexi 6934 | . . . 4 ⊢ 0 ∈ V |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑅 ∈ Rng → 0 ∈ V) |
7 | 6 | snn0d 4800 | . 2 ⊢ (𝑅 ∈ Rng → { 0 } ≠ ∅) |
8 | eqid 2740 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
9 | 1, 8, 2 | rngrz 20193 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅) 0 ) = 0 ) |
10 | 9 | oveq1d 7463 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) = ( 0 (+g‘𝑅) 0 )) |
11 | rnggrp 20185 | . . . . . . . 8 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
12 | 1, 2 | grpidcl 19005 | . . . . . . . 8 ⊢ (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅)) |
13 | eqid 2740 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
14 | 1, 13, 2 | grprid 19008 | . . . . . . . 8 ⊢ ((𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
15 | 11, 12, 14 | syl2anc2 584 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → ( 0 (+g‘𝑅) 0 ) = 0 ) |
16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
17 | 10, 16 | eqtrd 2780 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) = 0 ) |
18 | 5 | elsn2 4687 | . . . . 5 ⊢ (((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) ∈ { 0 } ↔ ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) = 0 ) |
19 | 17, 18 | sylibr 234 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) ∈ { 0 }) |
20 | oveq2 7456 | . . . . . . . . 9 ⊢ (𝑦 = 0 → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑅) 0 )) | |
21 | 20 | oveq1d 7463 | . . . . . . . 8 ⊢ (𝑦 = 0 → ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) = ((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧)) |
22 | 21 | eleq1d 2829 | . . . . . . 7 ⊢ (𝑦 = 0 → (((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧) ∈ { 0 })) |
23 | 22 | ralbidv 3184 | . . . . . 6 ⊢ (𝑦 = 0 → (∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 } ↔ ∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧) ∈ { 0 })) |
24 | 5, 23 | ralsn 4705 | . . . . 5 ⊢ (∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 } ↔ ∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧) ∈ { 0 }) |
25 | oveq2 7456 | . . . . . . 7 ⊢ (𝑧 = 0 → ((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧) = ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 )) | |
26 | 25 | eleq1d 2829 | . . . . . 6 ⊢ (𝑧 = 0 → (((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) ∈ { 0 })) |
27 | 5, 26 | ralsn 4705 | . . . . 5 ⊢ (∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) ∈ { 0 }) |
28 | 24, 27 | bitri 275 | . . . 4 ⊢ (∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) ∈ { 0 }) |
29 | 19, 28 | sylibr 234 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 }) |
30 | 29 | ralrimiva 3152 | . 2 ⊢ (𝑅 ∈ Rng → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 }) |
31 | rnglidl0.u | . . 3 ⊢ 𝑈 = (LIdeal‘𝑅) | |
32 | 31, 1, 13, 8 | islidl 21248 | . 2 ⊢ ({ 0 } ∈ 𝑈 ↔ ({ 0 } ⊆ (Base‘𝑅) ∧ { 0 } ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 })) |
33 | 4, 7, 30, 32 | syl3anbrc 1343 | 1 ⊢ (𝑅 ∈ Rng → { 0 } ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 {csn 4648 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 0gc0g 17499 Grpcgrp 18973 Rngcrng 20179 LIdealclidl 21239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-sca 17327 df-vsca 17328 df-ip 17329 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-abl 19825 df-mgp 20162 df-rng 20180 df-lss 20953 df-sra 21195 df-rgmod 21196 df-lidl 21241 |
This theorem is referenced by: lidl0 21263 |
Copyright terms: Public domain | W3C validator |