| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnglidl0 | Structured version Visualization version GIF version | ||
| Description: Every non-unital ring contains a zero ideal. (Contributed by AV, 19-Feb-2025.) |
| Ref | Expression |
|---|---|
| rnglidl0.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| rnglidl0.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| rnglidl0 | ⊢ (𝑅 ∈ Rng → { 0 } ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | rnglidl0.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 3 | 1, 2 | rng0cl 20091 | . . 3 ⊢ (𝑅 ∈ Rng → 0 ∈ (Base‘𝑅)) |
| 4 | 3 | snssd 4762 | . 2 ⊢ (𝑅 ∈ Rng → { 0 } ⊆ (Base‘𝑅)) |
| 5 | 2 | fvexi 6845 | . . . 4 ⊢ 0 ∈ V |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝑅 ∈ Rng → 0 ∈ V) |
| 7 | 6 | snn0d 4729 | . 2 ⊢ (𝑅 ∈ Rng → { 0 } ≠ ∅) |
| 8 | eqid 2733 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 9 | 1, 8, 2 | rngrz 20094 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅) 0 ) = 0 ) |
| 10 | 9 | oveq1d 7370 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) = ( 0 (+g‘𝑅) 0 )) |
| 11 | rnggrp 20086 | . . . . . . . 8 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 12 | 1, 2 | grpidcl 18888 | . . . . . . . 8 ⊢ (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅)) |
| 13 | eqid 2733 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 14 | 1, 13, 2 | grprid 18891 | . . . . . . . 8 ⊢ ((𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 15 | 11, 12, 14 | syl2anc2 585 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 17 | 10, 16 | eqtrd 2768 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) = 0 ) |
| 18 | 5 | elsn2 4619 | . . . . 5 ⊢ (((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) ∈ { 0 } ↔ ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) = 0 ) |
| 19 | 17, 18 | sylibr 234 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) ∈ { 0 }) |
| 20 | oveq2 7363 | . . . . . . . . 9 ⊢ (𝑦 = 0 → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑅) 0 )) | |
| 21 | 20 | oveq1d 7370 | . . . . . . . 8 ⊢ (𝑦 = 0 → ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) = ((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧)) |
| 22 | 21 | eleq1d 2818 | . . . . . . 7 ⊢ (𝑦 = 0 → (((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧) ∈ { 0 })) |
| 23 | 22 | ralbidv 3157 | . . . . . 6 ⊢ (𝑦 = 0 → (∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 } ↔ ∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧) ∈ { 0 })) |
| 24 | 5, 23 | ralsn 4635 | . . . . 5 ⊢ (∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 } ↔ ∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧) ∈ { 0 }) |
| 25 | oveq2 7363 | . . . . . . 7 ⊢ (𝑧 = 0 → ((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧) = ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 )) | |
| 26 | 25 | eleq1d 2818 | . . . . . 6 ⊢ (𝑧 = 0 → (((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) ∈ { 0 })) |
| 27 | 5, 26 | ralsn 4635 | . . . . 5 ⊢ (∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅) 0 )(+g‘𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) ∈ { 0 }) |
| 28 | 24, 27 | bitri 275 | . . . 4 ⊢ (∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 } ↔ ((𝑥(.r‘𝑅) 0 )(+g‘𝑅) 0 ) ∈ { 0 }) |
| 29 | 19, 28 | sylibr 234 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 }) |
| 30 | 29 | ralrimiva 3126 | . 2 ⊢ (𝑅 ∈ Rng → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 }) |
| 31 | rnglidl0.u | . . 3 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 32 | 31, 1, 13, 8 | islidl 21162 | . 2 ⊢ ({ 0 } ∈ 𝑈 ↔ ({ 0 } ⊆ (Base‘𝑅) ∧ { 0 } ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ { 0 }∀𝑧 ∈ { 0 } ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ { 0 })) |
| 33 | 4, 7, 30, 32 | syl3anbrc 1344 | 1 ⊢ (𝑅 ∈ Rng → { 0 } ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∀wral 3049 Vcvv 3438 ⊆ wss 3899 ∅c0 4284 {csn 4577 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 +gcplusg 17171 .rcmulr 17172 0gc0g 17353 Grpcgrp 18856 Rngcrng 20080 LIdealclidl 21153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-sca 17187 df-vsca 17188 df-ip 17189 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 df-abl 19705 df-mgp 20069 df-rng 20081 df-lss 20875 df-sra 21117 df-rgmod 21118 df-lidl 21155 |
| This theorem is referenced by: lidl0 21177 |
| Copyright terms: Public domain | W3C validator |