Step | Hyp | Ref
| Expression |
1 | | flimcls.2 |
. . 3
⊢ 𝐹 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) |
2 | | topontop 22062 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
3 | 2 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top) |
4 | | eqid 2738 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 |
5 | 4 | neisspw 22258 |
. . . . . . . 8
⊢ (𝐽 ∈ Top →
((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 ∪ 𝐽) |
6 | 3, 5 | syl 17 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 ∪ 𝐽) |
7 | | toponuni 22063 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
8 | 7 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑋 = ∪ 𝐽) |
9 | 8 | pweqd 4552 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝒫 𝑋 = 𝒫 ∪
𝐽) |
10 | 6, 9 | sseqtrrd 3962 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝑋) |
11 | | toponmax 22075 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
12 | | elpw2g 5268 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝐽 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
13 | 11, 12 | syl 17 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
14 | 13 | biimpar 478 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) |
15 | 14 | 3adant3 1131 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ 𝒫 𝑋) |
16 | 15 | snssd 4742 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝑆} ⊆ 𝒫 𝑋) |
17 | 10, 16 | unssd 4120 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝒫 𝑋) |
18 | | ssun2 4107 |
. . . . . 6
⊢ {𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) |
19 | 11 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑋 ∈ 𝐽) |
20 | | simp2 1136 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) |
21 | 19, 20 | ssexd 5248 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ V) |
22 | 21 | snn0d 4711 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝑆} ≠ ∅) |
23 | | ssn0 4334 |
. . . . . 6
⊢ (({𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ∧ {𝑆} ≠ ∅) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅) |
24 | 18, 22, 23 | sylancr 587 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅) |
25 | 20, 8 | sseqtrd 3961 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ⊆ ∪ 𝐽) |
26 | | simp3 1137 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴 ∈ ((cls‘𝐽)‘𝑆)) |
27 | 4 | neindisj 22268 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
∧ (𝐴 ∈
((cls‘𝐽)‘𝑆) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴}))) → (𝑥 ∩ 𝑆) ≠ ∅) |
28 | 27 | expr 457 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
∧ 𝐴 ∈
((cls‘𝐽)‘𝑆)) → (𝑥 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑥 ∩ 𝑆) ≠ ∅)) |
29 | 3, 25, 26, 28 | syl21anc 835 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑥 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑥 ∩ 𝑆) ≠ ∅)) |
30 | 29 | imp 407 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑥 ∩ 𝑆) ≠ ∅) |
31 | | elsni 4578 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {𝑆} → 𝑦 = 𝑆) |
32 | 31 | ineq2d 4146 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑆} → (𝑥 ∩ 𝑦) = (𝑥 ∩ 𝑆)) |
33 | 32 | neeq1d 3003 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑆} → ((𝑥 ∩ 𝑦) ≠ ∅ ↔ (𝑥 ∩ 𝑆) ≠ ∅)) |
34 | 30, 33 | syl5ibrcom 246 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑦 ∈ {𝑆} → (𝑥 ∩ 𝑦) ≠ ∅)) |
35 | 34 | ralrimiv 3102 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) → ∀𝑦 ∈ {𝑆} (𝑥 ∩ 𝑦) ≠ ∅) |
36 | 35 | ralrimiva 3103 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥 ∈ ((nei‘𝐽)‘{𝐴})∀𝑦 ∈ {𝑆} (𝑥 ∩ 𝑦) ≠ ∅) |
37 | | simp1 1135 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ (TopOn‘𝑋)) |
38 | 4 | clsss3 22210 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝑆) ⊆ ∪ 𝐽) |
39 | 3, 25, 38 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘𝑆) ⊆ ∪ 𝐽) |
40 | 39, 26 | sseldd 3922 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴 ∈ ∪ 𝐽) |
41 | 40, 8 | eleqtrrd 2842 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴 ∈ 𝑋) |
42 | 41 | snssd 4742 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝐴} ⊆ 𝑋) |
43 | | snnzg 4710 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ((cls‘𝐽)‘𝑆) → {𝐴} ≠ ∅) |
44 | 43 | 3ad2ant3 1134 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝐴} ≠ ∅) |
45 | | neifil 23031 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) |
46 | 37, 42, 44, 45 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋)) |
47 | | filfbas 22999 |
. . . . . . . 8
⊢
(((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋)) |
48 | 46, 47 | syl 17 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋)) |
49 | | ne0i 4268 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ((cls‘𝐽)‘𝑆) → ((cls‘𝐽)‘𝑆) ≠ ∅) |
50 | 49 | 3ad2ant3 1134 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘𝑆) ≠ ∅) |
51 | | cls0 22231 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Top →
((cls‘𝐽)‘∅) = ∅) |
52 | 3, 51 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘∅) = ∅) |
53 | 50, 52 | neeqtrrd 3018 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘𝑆) ≠ ((cls‘𝐽)‘∅)) |
54 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑆 = ∅ →
((cls‘𝐽)‘𝑆) = ((cls‘𝐽)‘∅)) |
55 | 54 | necon3i 2976 |
. . . . . . . . 9
⊢
(((cls‘𝐽)‘𝑆) ≠ ((cls‘𝐽)‘∅) → 𝑆 ≠ ∅) |
56 | 53, 55 | syl 17 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ≠ ∅) |
57 | | snfbas 23017 |
. . . . . . . 8
⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ∧ 𝑋 ∈ 𝐽) → {𝑆} ∈ (fBas‘𝑋)) |
58 | 20, 56, 19, 57 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝑆} ∈ (fBas‘𝑋)) |
59 | | fbunfip 23020 |
. . . . . . 7
⊢
((((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋) ∧ {𝑆} ∈ (fBas‘𝑋)) → (¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ↔ ∀𝑥 ∈ ((nei‘𝐽)‘{𝐴})∀𝑦 ∈ {𝑆} (𝑥 ∩ 𝑦) ≠ ∅)) |
60 | 48, 58, 59 | syl2anc 584 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ↔ ∀𝑥 ∈ ((nei‘𝐽)‘{𝐴})∀𝑦 ∈ {𝑆} (𝑥 ∩ 𝑦) ≠ ∅)) |
61 | 36, 60 | mpbird 256 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) |
62 | | fsubbas 23018 |
. . . . . 6
⊢ (𝑋 ∈ 𝐽 → ((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))) |
63 | 19, 62 | syl 17 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))) |
64 | 17, 24, 61, 63 | mpbir3and 1341 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋)) |
65 | | fgcl 23029 |
. . . 4
⊢
((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋)) |
66 | 64, 65 | syl 17 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋)) |
67 | 1, 66 | eqeltrid 2843 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐹 ∈ (Fil‘𝑋)) |
68 | | fvex 6787 |
. . . . . 6
⊢
((nei‘𝐽)‘{𝐴}) ∈ V |
69 | | snex 5354 |
. . . . . 6
⊢ {𝑆} ∈ V |
70 | 68, 69 | unex 7596 |
. . . . 5
⊢
(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ∈ V |
71 | | ssfii 9178 |
. . . . 5
⊢
((((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ∈ V → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) |
72 | 70, 71 | ax-mp 5 |
. . . 4
⊢
(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) |
73 | | ssfg 23023 |
. . . . . 6
⊢
((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))) |
74 | 64, 73 | syl 17 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))) |
75 | 74, 1 | sseqtrrdi 3972 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ⊆ 𝐹) |
76 | 72, 75 | sstrid 3932 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝐹) |
77 | | snssg 4718 |
. . . . 5
⊢ (𝑆 ∈ V → (𝑆 ∈ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ↔ {𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) |
78 | 21, 77 | syl 17 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑆 ∈ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ↔ {𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) |
79 | 18, 78 | mpbiri 257 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) |
80 | 76, 79 | sseldd 3922 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ 𝐹) |
81 | 76 | unssad 4121 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) |
82 | | elflim 23122 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
83 | 37, 67, 82 | syl2anc 584 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
84 | 41, 81, 83 | mpbir2and 710 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴 ∈ (𝐽 fLim 𝐹)) |
85 | 67, 80, 84 | 3jca 1127 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝑆 ∈ 𝐹 ∧ 𝐴 ∈ (𝐽 fLim 𝐹))) |