MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimclslem Structured version   Visualization version   GIF version

Theorem flimclslem 23043
Description: Lemma for flimcls 23044. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimcls.2 𝐹 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
Assertion
Ref Expression
flimclslem ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝑆𝐹𝐴 ∈ (𝐽 fLim 𝐹)))

Proof of Theorem flimclslem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimcls.2 . . 3 𝐹 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
2 topontop 21970 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
323ad2ant1 1131 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top)
4 eqid 2738 . . . . . . . . 9 𝐽 = 𝐽
54neisspw 22166 . . . . . . . 8 (𝐽 ∈ Top → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝐽)
63, 5syl 17 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝐽)
7 toponuni 21971 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
873ad2ant1 1131 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑋 = 𝐽)
98pweqd 4549 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝒫 𝑋 = 𝒫 𝐽)
106, 9sseqtrrd 3958 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝑋)
11 toponmax 21983 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
12 elpw2g 5263 . . . . . . . . . 10 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1311, 12syl 17 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1413biimpar 477 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
15143adant3 1130 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ 𝒫 𝑋)
1615snssd 4739 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝑆} ⊆ 𝒫 𝑋)
1710, 16unssd 4116 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝒫 𝑋)
18 ssun2 4103 . . . . . 6 {𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆})
19113ad2ant1 1131 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑋𝐽)
20 simp2 1135 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆𝑋)
2119, 20ssexd 5243 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ V)
2221snn0d 4708 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝑆} ≠ ∅)
23 ssn0 4331 . . . . . 6 (({𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ∧ {𝑆} ≠ ∅) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅)
2418, 22, 23sylancr 586 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅)
2520, 8sseqtrd 3957 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 𝐽)
26 simp3 1136 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
274neindisj 22176 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ (𝐴 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴}))) → (𝑥𝑆) ≠ ∅)
2827expr 456 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑥 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑥𝑆) ≠ ∅))
293, 25, 26, 28syl21anc 834 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑥 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑥𝑆) ≠ ∅))
3029imp 406 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑥𝑆) ≠ ∅)
31 elsni 4575 . . . . . . . . . . 11 (𝑦 ∈ {𝑆} → 𝑦 = 𝑆)
3231ineq2d 4143 . . . . . . . . . 10 (𝑦 ∈ {𝑆} → (𝑥𝑦) = (𝑥𝑆))
3332neeq1d 3002 . . . . . . . . 9 (𝑦 ∈ {𝑆} → ((𝑥𝑦) ≠ ∅ ↔ (𝑥𝑆) ≠ ∅))
3430, 33syl5ibrcom 246 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑦 ∈ {𝑆} → (𝑥𝑦) ≠ ∅))
3534ralrimiv 3106 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) → ∀𝑦 ∈ {𝑆} (𝑥𝑦) ≠ ∅)
3635ralrimiva 3107 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥 ∈ ((nei‘𝐽)‘{𝐴})∀𝑦 ∈ {𝑆} (𝑥𝑦) ≠ ∅)
37 simp1 1134 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ (TopOn‘𝑋))
384clsss3 22118 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
393, 25, 38syl2anc 583 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
4039, 26sseldd 3918 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴 𝐽)
4140, 8eleqtrrd 2842 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴𝑋)
4241snssd 4739 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝐴} ⊆ 𝑋)
43 snnzg 4707 . . . . . . . . . 10 (𝐴 ∈ ((cls‘𝐽)‘𝑆) → {𝐴} ≠ ∅)
44433ad2ant3 1133 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝐴} ≠ ∅)
45 neifil 22939 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
4637, 42, 44, 45syl3anc 1369 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
47 filfbas 22907 . . . . . . . 8 (((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋))
4846, 47syl 17 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋))
49 ne0i 4265 . . . . . . . . . . 11 (𝐴 ∈ ((cls‘𝐽)‘𝑆) → ((cls‘𝐽)‘𝑆) ≠ ∅)
50493ad2ant3 1133 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘𝑆) ≠ ∅)
51 cls0 22139 . . . . . . . . . . 11 (𝐽 ∈ Top → ((cls‘𝐽)‘∅) = ∅)
523, 51syl 17 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘∅) = ∅)
5350, 52neeqtrrd 3017 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘𝑆) ≠ ((cls‘𝐽)‘∅))
54 fveq2 6756 . . . . . . . . . 10 (𝑆 = ∅ → ((cls‘𝐽)‘𝑆) = ((cls‘𝐽)‘∅))
5554necon3i 2975 . . . . . . . . 9 (((cls‘𝐽)‘𝑆) ≠ ((cls‘𝐽)‘∅) → 𝑆 ≠ ∅)
5653, 55syl 17 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ≠ ∅)
57 snfbas 22925 . . . . . . . 8 ((𝑆𝑋𝑆 ≠ ∅ ∧ 𝑋𝐽) → {𝑆} ∈ (fBas‘𝑋))
5820, 56, 19, 57syl3anc 1369 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝑆} ∈ (fBas‘𝑋))
59 fbunfip 22928 . . . . . . 7 ((((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋) ∧ {𝑆} ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ↔ ∀𝑥 ∈ ((nei‘𝐽)‘{𝐴})∀𝑦 ∈ {𝑆} (𝑥𝑦) ≠ ∅))
6048, 58, 59syl2anc 583 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ↔ ∀𝑥 ∈ ((nei‘𝐽)‘{𝐴})∀𝑦 ∈ {𝑆} (𝑥𝑦) ≠ ∅))
6136, 60mpbird 256 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
62 fsubbas 22926 . . . . . 6 (𝑋𝐽 → ((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))
6319, 62syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))
6417, 24, 61, 63mpbir3and 1340 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋))
65 fgcl 22937 . . . 4 ((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋))
6664, 65syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋))
671, 66eqeltrid 2843 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐹 ∈ (Fil‘𝑋))
68 fvex 6769 . . . . . 6 ((nei‘𝐽)‘{𝐴}) ∈ V
69 snex 5349 . . . . . 6 {𝑆} ∈ V
7068, 69unex 7574 . . . . 5 (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ∈ V
71 ssfii 9108 . . . . 5 ((((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ∈ V → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
7270, 71ax-mp 5 . . . 4 (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))
73 ssfg 22931 . . . . . 6 ((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))
7464, 73syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))
7574, 1sseqtrrdi 3968 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ⊆ 𝐹)
7672, 75sstrid 3928 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝐹)
77 snssg 4715 . . . . 5 (𝑆 ∈ V → (𝑆 ∈ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ↔ {𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
7821, 77syl 17 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑆 ∈ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ↔ {𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
7918, 78mpbiri 257 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))
8076, 79sseldd 3918 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆𝐹)
8176unssad 4117 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)
82 elflim 23030 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
8337, 67, 82syl2anc 583 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
8441, 81, 83mpbir2and 709 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴 ∈ (𝐽 fLim 𝐹))
8567, 80, 843jca 1126 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝑆𝐹𝐴 ∈ (𝐽 fLim 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  cun 3881  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   cuni 4836  cfv 6418  (class class class)co 7255  ficfi 9099  fBascfbas 20498  filGencfg 20499  Topctop 21950  TopOnctopon 21967  clsccl 22077  neicnei 22156  Filcfil 22904   fLim cflim 22993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1o 8267  df-er 8456  df-en 8692  df-fin 8695  df-fi 9100  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-fil 22905  df-flim 22998
This theorem is referenced by:  flimcls  23044
  Copyright terms: Public domain W3C validator