MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimclslem Structured version   Visualization version   GIF version

Theorem flimclslem 23920
Description: Lemma for flimcls 23921. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimcls.2 𝐹 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
Assertion
Ref Expression
flimclslem ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝑆𝐹𝐴 ∈ (𝐽 fLim 𝐹)))

Proof of Theorem flimclslem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimcls.2 . . 3 𝐹 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
2 topontop 22849 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
323ad2ant1 1133 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top)
4 eqid 2735 . . . . . . . . 9 𝐽 = 𝐽
54neisspw 23043 . . . . . . . 8 (𝐽 ∈ Top → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝐽)
63, 5syl 17 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝐽)
7 toponuni 22850 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
873ad2ant1 1133 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑋 = 𝐽)
98pweqd 4592 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝒫 𝑋 = 𝒫 𝐽)
106, 9sseqtrrd 3996 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝑋)
11 toponmax 22862 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
12 elpw2g 5303 . . . . . . . . . 10 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1311, 12syl 17 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1413biimpar 477 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
15143adant3 1132 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ 𝒫 𝑋)
1615snssd 4785 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝑆} ⊆ 𝒫 𝑋)
1710, 16unssd 4167 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝒫 𝑋)
18 ssun2 4154 . . . . . 6 {𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆})
19113ad2ant1 1133 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑋𝐽)
20 simp2 1137 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆𝑋)
2119, 20ssexd 5294 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ V)
2221snn0d 4751 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝑆} ≠ ∅)
23 ssn0 4379 . . . . . 6 (({𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ∧ {𝑆} ≠ ∅) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅)
2418, 22, 23sylancr 587 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅)
2520, 8sseqtrd 3995 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 𝐽)
26 simp3 1138 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
274neindisj 23053 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ (𝐴 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴}))) → (𝑥𝑆) ≠ ∅)
2827expr 456 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑥 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑥𝑆) ≠ ∅))
293, 25, 26, 28syl21anc 837 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑥 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑥𝑆) ≠ ∅))
3029imp 406 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑥𝑆) ≠ ∅)
31 elsni 4618 . . . . . . . . . . 11 (𝑦 ∈ {𝑆} → 𝑦 = 𝑆)
3231ineq2d 4195 . . . . . . . . . 10 (𝑦 ∈ {𝑆} → (𝑥𝑦) = (𝑥𝑆))
3332neeq1d 2991 . . . . . . . . 9 (𝑦 ∈ {𝑆} → ((𝑥𝑦) ≠ ∅ ↔ (𝑥𝑆) ≠ ∅))
3430, 33syl5ibrcom 247 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑦 ∈ {𝑆} → (𝑥𝑦) ≠ ∅))
3534ralrimiv 3131 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) → ∀𝑦 ∈ {𝑆} (𝑥𝑦) ≠ ∅)
3635ralrimiva 3132 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥 ∈ ((nei‘𝐽)‘{𝐴})∀𝑦 ∈ {𝑆} (𝑥𝑦) ≠ ∅)
37 simp1 1136 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ (TopOn‘𝑋))
384clsss3 22995 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
393, 25, 38syl2anc 584 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
4039, 26sseldd 3959 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴 𝐽)
4140, 8eleqtrrd 2837 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴𝑋)
4241snssd 4785 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝐴} ⊆ 𝑋)
43 snnzg 4750 . . . . . . . . . 10 (𝐴 ∈ ((cls‘𝐽)‘𝑆) → {𝐴} ≠ ∅)
44433ad2ant3 1135 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝐴} ≠ ∅)
45 neifil 23816 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
4637, 42, 44, 45syl3anc 1373 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
47 filfbas 23784 . . . . . . . 8 (((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋))
4846, 47syl 17 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋))
49 ne0i 4316 . . . . . . . . . . 11 (𝐴 ∈ ((cls‘𝐽)‘𝑆) → ((cls‘𝐽)‘𝑆) ≠ ∅)
50493ad2ant3 1135 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘𝑆) ≠ ∅)
51 cls0 23016 . . . . . . . . . . 11 (𝐽 ∈ Top → ((cls‘𝐽)‘∅) = ∅)
523, 51syl 17 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘∅) = ∅)
5350, 52neeqtrrd 3006 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘𝑆) ≠ ((cls‘𝐽)‘∅))
54 fveq2 6875 . . . . . . . . . 10 (𝑆 = ∅ → ((cls‘𝐽)‘𝑆) = ((cls‘𝐽)‘∅))
5554necon3i 2964 . . . . . . . . 9 (((cls‘𝐽)‘𝑆) ≠ ((cls‘𝐽)‘∅) → 𝑆 ≠ ∅)
5653, 55syl 17 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ≠ ∅)
57 snfbas 23802 . . . . . . . 8 ((𝑆𝑋𝑆 ≠ ∅ ∧ 𝑋𝐽) → {𝑆} ∈ (fBas‘𝑋))
5820, 56, 19, 57syl3anc 1373 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝑆} ∈ (fBas‘𝑋))
59 fbunfip 23805 . . . . . . 7 ((((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋) ∧ {𝑆} ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ↔ ∀𝑥 ∈ ((nei‘𝐽)‘{𝐴})∀𝑦 ∈ {𝑆} (𝑥𝑦) ≠ ∅))
6048, 58, 59syl2anc 584 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ↔ ∀𝑥 ∈ ((nei‘𝐽)‘{𝐴})∀𝑦 ∈ {𝑆} (𝑥𝑦) ≠ ∅))
6136, 60mpbird 257 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
62 fsubbas 23803 . . . . . 6 (𝑋𝐽 → ((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))
6319, 62syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))
6417, 24, 61, 63mpbir3and 1343 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋))
65 fgcl 23814 . . . 4 ((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋))
6664, 65syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋))
671, 66eqeltrid 2838 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐹 ∈ (Fil‘𝑋))
68 fvex 6888 . . . . . 6 ((nei‘𝐽)‘{𝐴}) ∈ V
69 snex 5406 . . . . . 6 {𝑆} ∈ V
7068, 69unex 7736 . . . . 5 (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ∈ V
71 ssfii 9429 . . . . 5 ((((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ∈ V → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
7270, 71ax-mp 5 . . . 4 (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))
73 ssfg 23808 . . . . . 6 ((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))
7464, 73syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))
7574, 1sseqtrrdi 4000 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ⊆ 𝐹)
7672, 75sstrid 3970 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝐹)
77 snssg 4759 . . . . 5 (𝑆 ∈ V → (𝑆 ∈ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ↔ {𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
7821, 77syl 17 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑆 ∈ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ↔ {𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
7918, 78mpbiri 258 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))
8076, 79sseldd 3959 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆𝐹)
8176unssad 4168 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)
82 elflim 23907 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
8337, 67, 82syl2anc 584 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
8441, 81, 83mpbir2and 713 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴 ∈ (𝐽 fLim 𝐹))
8567, 80, 843jca 1128 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝑆𝐹𝐴 ∈ (𝐽 fLim 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  cun 3924  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   cuni 4883  cfv 6530  (class class class)co 7403  ficfi 9420  fBascfbas 21301  filGencfg 21302  Topctop 22829  TopOnctopon 22846  clsccl 22954  neicnei 23033  Filcfil 23781   fLim cflim 23870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1o 8478  df-2o 8479  df-en 8958  df-fin 8961  df-fi 9421  df-fbas 21310  df-fg 21311  df-top 22830  df-topon 22847  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-fil 23782  df-flim 23875
This theorem is referenced by:  flimcls  23921
  Copyright terms: Public domain W3C validator