| Step | Hyp | Ref
| Expression |
| 1 | | eldifi 4111 |
. . . . . . . . . 10
⊢ (𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶})) → 𝑓 ∈ (𝐴 ↑m {𝐶})) |
| 2 | 1 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → 𝑓 ∈ (𝐴 ↑m {𝐶})) |
| 3 | | elmapi 8868 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (𝐴 ↑m {𝐶}) → 𝑓:{𝐶}⟶𝐴) |
| 4 | 3 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ↑m {𝐶})) → 𝑓:{𝐶}⟶𝐴) |
| 5 | | difmapsn.v |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ 𝑍) |
| 6 | | fsn2g 7133 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ 𝑍 → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓‘𝐶) ∈ 𝐴 ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}))) |
| 7 | 5, 6 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓‘𝐶) ∈ 𝐴 ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}))) |
| 8 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ↑m {𝐶})) → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓‘𝐶) ∈ 𝐴 ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}))) |
| 9 | 4, 8 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ↑m {𝐶})) → ((𝑓‘𝐶) ∈ 𝐴 ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉})) |
| 10 | 9 | simpld 494 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ↑m {𝐶})) → (𝑓‘𝐶) ∈ 𝐴) |
| 11 | 2, 10 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → (𝑓‘𝐶) ∈ 𝐴) |
| 12 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → (𝑓‘𝐶) ∈ 𝐵) |
| 13 | 9 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ↑m {𝐶})) → 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}) |
| 14 | 2, 13 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}) |
| 15 | 14 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}) |
| 16 | 12, 15 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → ((𝑓‘𝐶) ∈ 𝐵 ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉})) |
| 17 | | fsn2g 7133 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ 𝑍 → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓‘𝐶) ∈ 𝐵 ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}))) |
| 18 | 5, 17 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓‘𝐶) ∈ 𝐵 ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}))) |
| 19 | 18 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓‘𝐶) ∈ 𝐵 ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}))) |
| 20 | 16, 19 | mpbird 257 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → 𝑓:{𝐶}⟶𝐵) |
| 21 | | difmapsn.b |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 22 | 21 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → 𝐵 ∈ 𝑊) |
| 23 | | snex 5411 |
. . . . . . . . . . . 12
⊢ {𝐶} ∈ V |
| 24 | 23 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → {𝐶} ∈ V) |
| 25 | 22, 24 | elmapd 8859 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → (𝑓 ∈ (𝐵 ↑m {𝐶}) ↔ 𝑓:{𝐶}⟶𝐵)) |
| 26 | 20, 25 | mpbird 257 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → 𝑓 ∈ (𝐵 ↑m {𝐶})) |
| 27 | | eldifn 4112 |
. . . . . . . . . 10
⊢ (𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶})) → ¬ 𝑓 ∈ (𝐵 ↑m {𝐶})) |
| 28 | 27 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → ¬ 𝑓 ∈ (𝐵 ↑m {𝐶})) |
| 29 | 26, 28 | pm2.65da 816 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → ¬ (𝑓‘𝐶) ∈ 𝐵) |
| 30 | 11, 29 | eldifd 3942 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → (𝑓‘𝐶) ∈ (𝐴 ∖ 𝐵)) |
| 31 | 30, 14 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → ((𝑓‘𝐶) ∈ (𝐴 ∖ 𝐵) ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉})) |
| 32 | | fsn2g 7133 |
. . . . . . . 8
⊢ (𝐶 ∈ 𝑍 → (𝑓:{𝐶}⟶(𝐴 ∖ 𝐵) ↔ ((𝑓‘𝐶) ∈ (𝐴 ∖ 𝐵) ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}))) |
| 33 | 5, 32 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑓:{𝐶}⟶(𝐴 ∖ 𝐵) ↔ ((𝑓‘𝐶) ∈ (𝐴 ∖ 𝐵) ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}))) |
| 34 | 33 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → (𝑓:{𝐶}⟶(𝐴 ∖ 𝐵) ↔ ((𝑓‘𝐶) ∈ (𝐴 ∖ 𝐵) ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}))) |
| 35 | 31, 34 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → 𝑓:{𝐶}⟶(𝐴 ∖ 𝐵)) |
| 36 | | difmapsn.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 37 | | difssd 4117 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐴) |
| 38 | 36, 37 | ssexd 5299 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
| 39 | 23 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → {𝐶} ∈ V) |
| 40 | 38, 39 | elmapd 8859 |
. . . . . 6
⊢ (𝜑 → (𝑓 ∈ ((𝐴 ∖ 𝐵) ↑m {𝐶}) ↔ 𝑓:{𝐶}⟶(𝐴 ∖ 𝐵))) |
| 41 | 40 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → (𝑓 ∈ ((𝐴 ∖ 𝐵) ↑m {𝐶}) ↔ 𝑓:{𝐶}⟶(𝐴 ∖ 𝐵))) |
| 42 | 35, 41 | mpbird 257 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → 𝑓 ∈ ((𝐴 ∖ 𝐵) ↑m {𝐶})) |
| 43 | 42 | ralrimiva 3133 |
. . 3
⊢ (𝜑 → ∀𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))𝑓 ∈ ((𝐴 ∖ 𝐵) ↑m {𝐶})) |
| 44 | | dfss3 3952 |
. . 3
⊢ (((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶})) ⊆ ((𝐴 ∖ 𝐵) ↑m {𝐶}) ↔ ∀𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))𝑓 ∈ ((𝐴 ∖ 𝐵) ↑m {𝐶})) |
| 45 | 43, 44 | sylibr 234 |
. 2
⊢ (𝜑 → ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶})) ⊆ ((𝐴 ∖ 𝐵) ↑m {𝐶})) |
| 46 | 5 | snn0d 4756 |
. . 3
⊢ (𝜑 → {𝐶} ≠ ∅) |
| 47 | 36, 21, 39, 46 | difmap 45198 |
. 2
⊢ (𝜑 → ((𝐴 ∖ 𝐵) ↑m {𝐶}) ⊆ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) |
| 48 | 45, 47 | eqssd 3981 |
1
⊢ (𝜑 → ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶})) = ((𝐴 ∖ 𝐵) ↑m {𝐶})) |