Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difmapsn Structured version   Visualization version   GIF version

Theorem difmapsn 44370
Description: Difference of two sets exponentiatiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
difmapsn.a (𝜑𝐴𝑉)
difmapsn.b (𝜑𝐵𝑊)
difmapsn.v (𝜑𝐶𝑍)
Assertion
Ref Expression
difmapsn (𝜑 → ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) = ((𝐴𝐵) ↑m {𝐶}))

Proof of Theorem difmapsn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eldifi 4126 . . . . . . . . . 10 (𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) → 𝑓 ∈ (𝐴m {𝐶}))
21adantl 481 . . . . . . . . 9 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → 𝑓 ∈ (𝐴m {𝐶}))
3 elmapi 8849 . . . . . . . . . . . 12 (𝑓 ∈ (𝐴m {𝐶}) → 𝑓:{𝐶}⟶𝐴)
43adantl 481 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → 𝑓:{𝐶}⟶𝐴)
5 difmapsn.v . . . . . . . . . . . . 13 (𝜑𝐶𝑍)
6 fsn2g 7138 . . . . . . . . . . . . 13 (𝐶𝑍 → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
75, 6syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
87adantr 480 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
94, 8mpbid 231 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩}))
109simpld 494 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → (𝑓𝐶) ∈ 𝐴)
112, 10syldan 590 . . . . . . . 8 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → (𝑓𝐶) ∈ 𝐴)
12 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → (𝑓𝐶) ∈ 𝐵)
139simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})
142, 13syldan 590 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})
1514adantr 480 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})
1612, 15jca 511 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩}))
17 fsn2g 7138 . . . . . . . . . . . . 13 (𝐶𝑍 → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
185, 17syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
1918ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
2016, 19mpbird 257 . . . . . . . . . 10 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝑓:{𝐶}⟶𝐵)
21 difmapsn.b . . . . . . . . . . . 12 (𝜑𝐵𝑊)
2221ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝐵𝑊)
23 snex 5431 . . . . . . . . . . . 12 {𝐶} ∈ V
2423a1i 11 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → {𝐶} ∈ V)
2522, 24elmapd 8840 . . . . . . . . . 10 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → (𝑓 ∈ (𝐵m {𝐶}) ↔ 𝑓:{𝐶}⟶𝐵))
2620, 25mpbird 257 . . . . . . . . 9 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝑓 ∈ (𝐵m {𝐶}))
27 eldifn 4127 . . . . . . . . . 10 (𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) → ¬ 𝑓 ∈ (𝐵m {𝐶}))
2827ad2antlr 724 . . . . . . . . 9 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → ¬ 𝑓 ∈ (𝐵m {𝐶}))
2926, 28pm2.65da 814 . . . . . . . 8 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → ¬ (𝑓𝐶) ∈ 𝐵)
3011, 29eldifd 3959 . . . . . . 7 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → (𝑓𝐶) ∈ (𝐴𝐵))
3130, 14jca 511 . . . . . 6 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩}))
32 fsn2g 7138 . . . . . . . 8 (𝐶𝑍 → (𝑓:{𝐶}⟶(𝐴𝐵) ↔ ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
335, 32syl 17 . . . . . . 7 (𝜑 → (𝑓:{𝐶}⟶(𝐴𝐵) ↔ ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
3433adantr 480 . . . . . 6 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → (𝑓:{𝐶}⟶(𝐴𝐵) ↔ ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
3531, 34mpbird 257 . . . . 5 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → 𝑓:{𝐶}⟶(𝐴𝐵))
36 difmapsn.a . . . . . . . 8 (𝜑𝐴𝑉)
37 difssd 4132 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
3836, 37ssexd 5324 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ V)
3923a1i 11 . . . . . . 7 (𝜑 → {𝐶} ∈ V)
4038, 39elmapd 8840 . . . . . 6 (𝜑 → (𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}) ↔ 𝑓:{𝐶}⟶(𝐴𝐵)))
4140adantr 480 . . . . 5 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → (𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}) ↔ 𝑓:{𝐶}⟶(𝐴𝐵)))
4235, 41mpbird 257 . . . 4 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → 𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}))
4342ralrimiva 3145 . . 3 (𝜑 → ∀𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}))
44 dfss3 3970 . . 3 (((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) ⊆ ((𝐴𝐵) ↑m {𝐶}) ↔ ∀𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}))
4543, 44sylibr 233 . 2 (𝜑 → ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) ⊆ ((𝐴𝐵) ↑m {𝐶}))
465snn0d 4779 . . 3 (𝜑 → {𝐶} ≠ ∅)
4736, 21, 39, 46difmap 44365 . 2 (𝜑 → ((𝐴𝐵) ↑m {𝐶}) ⊆ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})))
4845, 47eqssd 3999 1 (𝜑 → ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) = ((𝐴𝐵) ↑m {𝐶}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wral 3060  Vcvv 3473  cdif 3945  wss 3948  {csn 4628  cop 4634  wf 6539  cfv 6543  (class class class)co 7412  m cmap 8826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-map 8828
This theorem is referenced by:  vonvolmbllem  45835  vonvolmbl  45836
  Copyright terms: Public domain W3C validator