Step | Hyp | Ref
| Expression |
1 | | eldifi 4034 |
. . . . . . . . . 10
⊢ (𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶})) → 𝑓 ∈ (𝐴 ↑m {𝐶})) |
2 | 1 | adantl 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → 𝑓 ∈ (𝐴 ↑m {𝐶})) |
3 | | elmapi 8444 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (𝐴 ↑m {𝐶}) → 𝑓:{𝐶}⟶𝐴) |
4 | 3 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ↑m {𝐶})) → 𝑓:{𝐶}⟶𝐴) |
5 | | difmapsn.v |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ 𝑍) |
6 | | fsn2g 6897 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ 𝑍 → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓‘𝐶) ∈ 𝐴 ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}))) |
7 | 5, 6 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓‘𝐶) ∈ 𝐴 ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}))) |
8 | 7 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ↑m {𝐶})) → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓‘𝐶) ∈ 𝐴 ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}))) |
9 | 4, 8 | mpbid 235 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ↑m {𝐶})) → ((𝑓‘𝐶) ∈ 𝐴 ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉})) |
10 | 9 | simpld 498 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ↑m {𝐶})) → (𝑓‘𝐶) ∈ 𝐴) |
11 | 2, 10 | syldan 594 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → (𝑓‘𝐶) ∈ 𝐴) |
12 | | simpr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → (𝑓‘𝐶) ∈ 𝐵) |
13 | 9 | simprd 499 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 ↑m {𝐶})) → 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}) |
14 | 2, 13 | syldan 594 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}) |
15 | 14 | adantr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}) |
16 | 12, 15 | jca 515 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → ((𝑓‘𝐶) ∈ 𝐵 ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉})) |
17 | | fsn2g 6897 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ 𝑍 → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓‘𝐶) ∈ 𝐵 ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}))) |
18 | 5, 17 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓‘𝐶) ∈ 𝐵 ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}))) |
19 | 18 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓‘𝐶) ∈ 𝐵 ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}))) |
20 | 16, 19 | mpbird 260 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → 𝑓:{𝐶}⟶𝐵) |
21 | | difmapsn.b |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
22 | 21 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → 𝐵 ∈ 𝑊) |
23 | | snex 5304 |
. . . . . . . . . . . 12
⊢ {𝐶} ∈ V |
24 | 23 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → {𝐶} ∈ V) |
25 | 22, 24 | elmapd 8436 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → (𝑓 ∈ (𝐵 ↑m {𝐶}) ↔ 𝑓:{𝐶}⟶𝐵)) |
26 | 20, 25 | mpbird 260 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → 𝑓 ∈ (𝐵 ↑m {𝐶})) |
27 | | eldifn 4035 |
. . . . . . . . . 10
⊢ (𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶})) → ¬ 𝑓 ∈ (𝐵 ↑m {𝐶})) |
28 | 27 | ad2antlr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) ∧ (𝑓‘𝐶) ∈ 𝐵) → ¬ 𝑓 ∈ (𝐵 ↑m {𝐶})) |
29 | 26, 28 | pm2.65da 816 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → ¬ (𝑓‘𝐶) ∈ 𝐵) |
30 | 11, 29 | eldifd 3871 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → (𝑓‘𝐶) ∈ (𝐴 ∖ 𝐵)) |
31 | 30, 14 | jca 515 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → ((𝑓‘𝐶) ∈ (𝐴 ∖ 𝐵) ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉})) |
32 | | fsn2g 6897 |
. . . . . . . 8
⊢ (𝐶 ∈ 𝑍 → (𝑓:{𝐶}⟶(𝐴 ∖ 𝐵) ↔ ((𝑓‘𝐶) ∈ (𝐴 ∖ 𝐵) ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}))) |
33 | 5, 32 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑓:{𝐶}⟶(𝐴 ∖ 𝐵) ↔ ((𝑓‘𝐶) ∈ (𝐴 ∖ 𝐵) ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}))) |
34 | 33 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → (𝑓:{𝐶}⟶(𝐴 ∖ 𝐵) ↔ ((𝑓‘𝐶) ∈ (𝐴 ∖ 𝐵) ∧ 𝑓 = {〈𝐶, (𝑓‘𝐶)〉}))) |
35 | 31, 34 | mpbird 260 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → 𝑓:{𝐶}⟶(𝐴 ∖ 𝐵)) |
36 | | difmapsn.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
37 | | difssd 4040 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐴) |
38 | 36, 37 | ssexd 5198 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
39 | 23 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → {𝐶} ∈ V) |
40 | 38, 39 | elmapd 8436 |
. . . . . 6
⊢ (𝜑 → (𝑓 ∈ ((𝐴 ∖ 𝐵) ↑m {𝐶}) ↔ 𝑓:{𝐶}⟶(𝐴 ∖ 𝐵))) |
41 | 40 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → (𝑓 ∈ ((𝐴 ∖ 𝐵) ↑m {𝐶}) ↔ 𝑓:{𝐶}⟶(𝐴 ∖ 𝐵))) |
42 | 35, 41 | mpbird 260 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) → 𝑓 ∈ ((𝐴 ∖ 𝐵) ↑m {𝐶})) |
43 | 42 | ralrimiva 3113 |
. . 3
⊢ (𝜑 → ∀𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))𝑓 ∈ ((𝐴 ∖ 𝐵) ↑m {𝐶})) |
44 | | dfss3 3882 |
. . 3
⊢ (((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶})) ⊆ ((𝐴 ∖ 𝐵) ↑m {𝐶}) ↔ ∀𝑓 ∈ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))𝑓 ∈ ((𝐴 ∖ 𝐵) ↑m {𝐶})) |
45 | 43, 44 | sylibr 237 |
. 2
⊢ (𝜑 → ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶})) ⊆ ((𝐴 ∖ 𝐵) ↑m {𝐶})) |
46 | 5 | snn0d 4671 |
. . 3
⊢ (𝜑 → {𝐶} ≠ ∅) |
47 | 36, 21, 39, 46 | difmap 42241 |
. 2
⊢ (𝜑 → ((𝐴 ∖ 𝐵) ↑m {𝐶}) ⊆ ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶}))) |
48 | 45, 47 | eqssd 3911 |
1
⊢ (𝜑 → ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶})) = ((𝐴 ∖ 𝐵) ↑m {𝐶})) |