Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difmapsn Structured version   Visualization version   GIF version

Theorem difmapsn 43911
Description: Difference of two sets exponentiatiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
difmapsn.a (𝜑𝐴𝑉)
difmapsn.b (𝜑𝐵𝑊)
difmapsn.v (𝜑𝐶𝑍)
Assertion
Ref Expression
difmapsn (𝜑 → ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) = ((𝐴𝐵) ↑m {𝐶}))

Proof of Theorem difmapsn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eldifi 4127 . . . . . . . . . 10 (𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) → 𝑓 ∈ (𝐴m {𝐶}))
21adantl 483 . . . . . . . . 9 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → 𝑓 ∈ (𝐴m {𝐶}))
3 elmapi 8843 . . . . . . . . . . . 12 (𝑓 ∈ (𝐴m {𝐶}) → 𝑓:{𝐶}⟶𝐴)
43adantl 483 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → 𝑓:{𝐶}⟶𝐴)
5 difmapsn.v . . . . . . . . . . . . 13 (𝜑𝐶𝑍)
6 fsn2g 7136 . . . . . . . . . . . . 13 (𝐶𝑍 → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
75, 6syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
87adantr 482 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
94, 8mpbid 231 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩}))
109simpld 496 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → (𝑓𝐶) ∈ 𝐴)
112, 10syldan 592 . . . . . . . 8 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → (𝑓𝐶) ∈ 𝐴)
12 simpr 486 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → (𝑓𝐶) ∈ 𝐵)
139simprd 497 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})
142, 13syldan 592 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})
1514adantr 482 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})
1612, 15jca 513 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩}))
17 fsn2g 7136 . . . . . . . . . . . . 13 (𝐶𝑍 → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
185, 17syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
1918ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
2016, 19mpbird 257 . . . . . . . . . 10 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝑓:{𝐶}⟶𝐵)
21 difmapsn.b . . . . . . . . . . . 12 (𝜑𝐵𝑊)
2221ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝐵𝑊)
23 snex 5432 . . . . . . . . . . . 12 {𝐶} ∈ V
2423a1i 11 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → {𝐶} ∈ V)
2522, 24elmapd 8834 . . . . . . . . . 10 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → (𝑓 ∈ (𝐵m {𝐶}) ↔ 𝑓:{𝐶}⟶𝐵))
2620, 25mpbird 257 . . . . . . . . 9 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝑓 ∈ (𝐵m {𝐶}))
27 eldifn 4128 . . . . . . . . . 10 (𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) → ¬ 𝑓 ∈ (𝐵m {𝐶}))
2827ad2antlr 726 . . . . . . . . 9 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → ¬ 𝑓 ∈ (𝐵m {𝐶}))
2926, 28pm2.65da 816 . . . . . . . 8 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → ¬ (𝑓𝐶) ∈ 𝐵)
3011, 29eldifd 3960 . . . . . . 7 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → (𝑓𝐶) ∈ (𝐴𝐵))
3130, 14jca 513 . . . . . 6 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩}))
32 fsn2g 7136 . . . . . . . 8 (𝐶𝑍 → (𝑓:{𝐶}⟶(𝐴𝐵) ↔ ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
335, 32syl 17 . . . . . . 7 (𝜑 → (𝑓:{𝐶}⟶(𝐴𝐵) ↔ ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
3433adantr 482 . . . . . 6 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → (𝑓:{𝐶}⟶(𝐴𝐵) ↔ ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
3531, 34mpbird 257 . . . . 5 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → 𝑓:{𝐶}⟶(𝐴𝐵))
36 difmapsn.a . . . . . . . 8 (𝜑𝐴𝑉)
37 difssd 4133 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
3836, 37ssexd 5325 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ V)
3923a1i 11 . . . . . . 7 (𝜑 → {𝐶} ∈ V)
4038, 39elmapd 8834 . . . . . 6 (𝜑 → (𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}) ↔ 𝑓:{𝐶}⟶(𝐴𝐵)))
4140adantr 482 . . . . 5 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → (𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}) ↔ 𝑓:{𝐶}⟶(𝐴𝐵)))
4235, 41mpbird 257 . . . 4 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → 𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}))
4342ralrimiva 3147 . . 3 (𝜑 → ∀𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}))
44 dfss3 3971 . . 3 (((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) ⊆ ((𝐴𝐵) ↑m {𝐶}) ↔ ∀𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}))
4543, 44sylibr 233 . 2 (𝜑 → ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) ⊆ ((𝐴𝐵) ↑m {𝐶}))
465snn0d 4780 . . 3 (𝜑 → {𝐶} ≠ ∅)
4736, 21, 39, 46difmap 43906 . 2 (𝜑 → ((𝐴𝐵) ↑m {𝐶}) ⊆ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})))
4845, 47eqssd 4000 1 (𝜑 → ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) = ((𝐴𝐵) ↑m {𝐶}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  cdif 3946  wss 3949  {csn 4629  cop 4635  wf 6540  cfv 6544  (class class class)co 7409  m cmap 8820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-map 8822
This theorem is referenced by:  vonvolmbllem  45376  vonvolmbl  45377
  Copyright terms: Public domain W3C validator