Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difmapsn Structured version   Visualization version   GIF version

Theorem difmapsn 45203
Description: Difference of two sets exponentiatiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
difmapsn.a (𝜑𝐴𝑉)
difmapsn.b (𝜑𝐵𝑊)
difmapsn.v (𝜑𝐶𝑍)
Assertion
Ref Expression
difmapsn (𝜑 → ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) = ((𝐴𝐵) ↑m {𝐶}))

Proof of Theorem difmapsn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eldifi 4111 . . . . . . . . . 10 (𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) → 𝑓 ∈ (𝐴m {𝐶}))
21adantl 481 . . . . . . . . 9 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → 𝑓 ∈ (𝐴m {𝐶}))
3 elmapi 8868 . . . . . . . . . . . 12 (𝑓 ∈ (𝐴m {𝐶}) → 𝑓:{𝐶}⟶𝐴)
43adantl 481 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → 𝑓:{𝐶}⟶𝐴)
5 difmapsn.v . . . . . . . . . . . . 13 (𝜑𝐶𝑍)
6 fsn2g 7133 . . . . . . . . . . . . 13 (𝐶𝑍 → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
75, 6syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
87adantr 480 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
94, 8mpbid 232 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩}))
109simpld 494 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → (𝑓𝐶) ∈ 𝐴)
112, 10syldan 591 . . . . . . . 8 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → (𝑓𝐶) ∈ 𝐴)
12 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → (𝑓𝐶) ∈ 𝐵)
139simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ (𝐴m {𝐶})) → 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})
142, 13syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})
1514adantr 480 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})
1612, 15jca 511 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩}))
17 fsn2g 7133 . . . . . . . . . . . . 13 (𝐶𝑍 → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
185, 17syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
1918ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
2016, 19mpbird 257 . . . . . . . . . 10 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝑓:{𝐶}⟶𝐵)
21 difmapsn.b . . . . . . . . . . . 12 (𝜑𝐵𝑊)
2221ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝐵𝑊)
23 snex 5411 . . . . . . . . . . . 12 {𝐶} ∈ V
2423a1i 11 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → {𝐶} ∈ V)
2522, 24elmapd 8859 . . . . . . . . . 10 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → (𝑓 ∈ (𝐵m {𝐶}) ↔ 𝑓:{𝐶}⟶𝐵))
2620, 25mpbird 257 . . . . . . . . 9 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝑓 ∈ (𝐵m {𝐶}))
27 eldifn 4112 . . . . . . . . . 10 (𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) → ¬ 𝑓 ∈ (𝐵m {𝐶}))
2827ad2antlr 727 . . . . . . . . 9 (((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → ¬ 𝑓 ∈ (𝐵m {𝐶}))
2926, 28pm2.65da 816 . . . . . . . 8 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → ¬ (𝑓𝐶) ∈ 𝐵)
3011, 29eldifd 3942 . . . . . . 7 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → (𝑓𝐶) ∈ (𝐴𝐵))
3130, 14jca 511 . . . . . 6 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩}))
32 fsn2g 7133 . . . . . . . 8 (𝐶𝑍 → (𝑓:{𝐶}⟶(𝐴𝐵) ↔ ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
335, 32syl 17 . . . . . . 7 (𝜑 → (𝑓:{𝐶}⟶(𝐴𝐵) ↔ ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
3433adantr 480 . . . . . 6 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → (𝑓:{𝐶}⟶(𝐴𝐵) ↔ ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
3531, 34mpbird 257 . . . . 5 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → 𝑓:{𝐶}⟶(𝐴𝐵))
36 difmapsn.a . . . . . . . 8 (𝜑𝐴𝑉)
37 difssd 4117 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
3836, 37ssexd 5299 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ V)
3923a1i 11 . . . . . . 7 (𝜑 → {𝐶} ∈ V)
4038, 39elmapd 8859 . . . . . 6 (𝜑 → (𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}) ↔ 𝑓:{𝐶}⟶(𝐴𝐵)))
4140adantr 480 . . . . 5 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → (𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}) ↔ 𝑓:{𝐶}⟶(𝐴𝐵)))
4235, 41mpbird 257 . . . 4 ((𝜑𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))) → 𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}))
4342ralrimiva 3133 . . 3 (𝜑 → ∀𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}))
44 dfss3 3952 . . 3 (((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) ⊆ ((𝐴𝐵) ↑m {𝐶}) ↔ ∀𝑓 ∈ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶}))𝑓 ∈ ((𝐴𝐵) ↑m {𝐶}))
4543, 44sylibr 234 . 2 (𝜑 → ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) ⊆ ((𝐴𝐵) ↑m {𝐶}))
465snn0d 4756 . . 3 (𝜑 → {𝐶} ≠ ∅)
4736, 21, 39, 46difmap 45198 . 2 (𝜑 → ((𝐴𝐵) ↑m {𝐶}) ⊆ ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})))
4845, 47eqssd 3981 1 (𝜑 → ((𝐴m {𝐶}) ∖ (𝐵m {𝐶})) = ((𝐴𝐵) ↑m {𝐶}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  cdif 3928  wss 3931  {csn 4606  cop 4612  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847
This theorem is referenced by:  vonvolmbllem  46656  vonvolmbl  46657
  Copyright terms: Public domain W3C validator