MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neipcfilu Structured version   Visualization version   GIF version

Theorem neipcfilu 24159
Description: In an uniform space, a neighboring filter is a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018.)
Hypotheses
Ref Expression
neipcfilu.x 𝑋 = (Base‘𝑊)
neipcfilu.j 𝐽 = (TopOpen‘𝑊)
neipcfilu.u 𝑈 = (UnifSt‘𝑊)
Assertion
Ref Expression
neipcfilu ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (CauFilu𝑈))

Proof of Theorem neipcfilu
Dummy variables 𝑣 𝑎 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . . 5 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → 𝑊 ∈ TopSp)
2 neipcfilu.x . . . . . 6 𝑋 = (Base‘𝑊)
3 neipcfilu.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
42, 3istps 22797 . . . . 5 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
51, 4sylib 218 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → 𝐽 ∈ (TopOn‘𝑋))
6 simp3 1138 . . . . 5 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → 𝑃𝑋)
76snssd 4769 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → {𝑃} ⊆ 𝑋)
86snn0d 4735 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → {𝑃} ≠ ∅)
9 neifil 23743 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝑃} ⊆ 𝑋 ∧ {𝑃} ≠ ∅) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑋))
105, 7, 8, 9syl3anc 1373 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑋))
11 filfbas 23711 . . 3 (((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (fBas‘𝑋))
1210, 11syl 17 . 2 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (fBas‘𝑋))
13 eqid 2729 . . . . . . . . . 10 (𝑤 “ {𝑃}) = (𝑤 “ {𝑃})
14 imaeq1 6015 . . . . . . . . . . 11 (𝑣 = 𝑤 → (𝑣 “ {𝑃}) = (𝑤 “ {𝑃}))
1514rspceeqv 3608 . . . . . . . . . 10 ((𝑤𝑈 ∧ (𝑤 “ {𝑃}) = (𝑤 “ {𝑃})) → ∃𝑣𝑈 (𝑤 “ {𝑃}) = (𝑣 “ {𝑃}))
1613, 15mpan2 691 . . . . . . . . 9 (𝑤𝑈 → ∃𝑣𝑈 (𝑤 “ {𝑃}) = (𝑣 “ {𝑃}))
17 vex 3448 . . . . . . . . . . 11 𝑤 ∈ V
1817imaex 7870 . . . . . . . . . 10 (𝑤 “ {𝑃}) ∈ V
19 eqid 2729 . . . . . . . . . . 11 (𝑣𝑈 ↦ (𝑣 “ {𝑃})) = (𝑣𝑈 ↦ (𝑣 “ {𝑃}))
2019elrnmpt 5911 . . . . . . . . . 10 ((𝑤 “ {𝑃}) ∈ V → ((𝑤 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣𝑈 (𝑤 “ {𝑃}) = (𝑣 “ {𝑃})))
2118, 20ax-mp 5 . . . . . . . . 9 ((𝑤 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣𝑈 (𝑤 “ {𝑃}) = (𝑣 “ {𝑃}))
2216, 21sylibr 234 . . . . . . . 8 (𝑤𝑈 → (𝑤 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
2322ad2antlr 727 . . . . . . 7 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → (𝑤 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
24 neipcfilu.u . . . . . . . . . . . . 13 𝑈 = (UnifSt‘𝑊)
252, 24, 3isusp 24125 . . . . . . . . . . . 12 (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 = (unifTop‘𝑈)))
2625simplbi 497 . . . . . . . . . . 11 (𝑊 ∈ UnifSp → 𝑈 ∈ (UnifOn‘𝑋))
27263ad2ant1 1133 . . . . . . . . . 10 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → 𝑈 ∈ (UnifOn‘𝑋))
28 eqid 2729 . . . . . . . . . . 11 (unifTop‘𝑈) = (unifTop‘𝑈)
2928utopsnneip 24112 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘(unifTop‘𝑈))‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
3027, 6, 29syl2anc 584 . . . . . . . . 9 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((nei‘(unifTop‘𝑈))‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
3130eleq2d 2814 . . . . . . . 8 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((𝑤 “ {𝑃}) ∈ ((nei‘(unifTop‘𝑈))‘{𝑃}) ↔ (𝑤 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃}))))
3231ad3antrrr 730 . . . . . . 7 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → ((𝑤 “ {𝑃}) ∈ ((nei‘(unifTop‘𝑈))‘{𝑃}) ↔ (𝑤 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃}))))
3323, 32mpbird 257 . . . . . 6 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → (𝑤 “ {𝑃}) ∈ ((nei‘(unifTop‘𝑈))‘{𝑃}))
34 simpl1 1192 . . . . . . . . . 10 (((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ (𝑣𝑈𝑤𝑈 ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣)) → 𝑊 ∈ UnifSp)
35343anassrs 1361 . . . . . . . . 9 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → 𝑊 ∈ UnifSp)
3625simprbi 496 . . . . . . . . 9 (𝑊 ∈ UnifSp → 𝐽 = (unifTop‘𝑈))
3735, 36syl 17 . . . . . . . 8 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → 𝐽 = (unifTop‘𝑈))
3837fveq2d 6844 . . . . . . 7 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → (nei‘𝐽) = (nei‘(unifTop‘𝑈)))
3938fveq1d 6842 . . . . . 6 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → ((nei‘𝐽)‘{𝑃}) = ((nei‘(unifTop‘𝑈))‘{𝑃}))
4033, 39eleqtrrd 2831 . . . . 5 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → (𝑤 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}))
41 simpr 484 . . . . 5 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣)
42 id 22 . . . . . . . 8 (𝑎 = (𝑤 “ {𝑃}) → 𝑎 = (𝑤 “ {𝑃}))
4342sqxpeqd 5663 . . . . . . 7 (𝑎 = (𝑤 “ {𝑃}) → (𝑎 × 𝑎) = ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})))
4443sseq1d 3975 . . . . . 6 (𝑎 = (𝑤 “ {𝑃}) → ((𝑎 × 𝑎) ⊆ 𝑣 ↔ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣))
4544rspcev 3585 . . . . 5 (((𝑤 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → ∃𝑎 ∈ ((nei‘𝐽)‘{𝑃})(𝑎 × 𝑎) ⊆ 𝑣)
4640, 41, 45syl2anc 584 . . . 4 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → ∃𝑎 ∈ ((nei‘𝐽)‘{𝑃})(𝑎 × 𝑎) ⊆ 𝑣)
4727adantr 480 . . . . 5 (((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) → 𝑈 ∈ (UnifOn‘𝑋))
486adantr 480 . . . . 5 (((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) → 𝑃𝑋)
49 simpr 484 . . . . 5 (((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) → 𝑣𝑈)
50 simpll1 1213 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) → 𝑈 ∈ (UnifOn‘𝑋))
51 simplr 768 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) → 𝑢𝑈)
52 ustexsym 24079 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑢))
5350, 51, 52syl2anc 584 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑢))
5450ad2antrr 726 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → 𝑈 ∈ (UnifOn‘𝑋))
55 simplr 768 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → 𝑤𝑈)
56 ustssxp 24068 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈) → 𝑤 ⊆ (𝑋 × 𝑋))
5754, 55, 56syl2anc 584 . . . . . . . . . . 11 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → 𝑤 ⊆ (𝑋 × 𝑋))
58 simpll2 1214 . . . . . . . . . . . 12 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ ((𝑢𝑢) ⊆ 𝑣𝑤𝑈 ∧ (𝑤 = 𝑤𝑤𝑢))) → 𝑃𝑋)
59583anassrs 1361 . . . . . . . . . . 11 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → 𝑃𝑋)
60 ustneism 24087 . . . . . . . . . . 11 ((𝑤 ⊆ (𝑋 × 𝑋) ∧ 𝑃𝑋) → ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ (𝑤𝑤))
6157, 59, 60syl2anc 584 . . . . . . . . . 10 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ (𝑤𝑤))
62 simprl 770 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → 𝑤 = 𝑤)
6362coeq2d 5816 . . . . . . . . . . 11 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → (𝑤𝑤) = (𝑤𝑤))
64 coss1 5809 . . . . . . . . . . . . . 14 (𝑤𝑢 → (𝑤𝑤) ⊆ (𝑢𝑤))
65 coss2 5810 . . . . . . . . . . . . . 14 (𝑤𝑢 → (𝑢𝑤) ⊆ (𝑢𝑢))
6664, 65sstrd 3954 . . . . . . . . . . . . 13 (𝑤𝑢 → (𝑤𝑤) ⊆ (𝑢𝑢))
6766ad2antll 729 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → (𝑤𝑤) ⊆ (𝑢𝑢))
68 simpllr 775 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → (𝑢𝑢) ⊆ 𝑣)
6967, 68sstrd 3954 . . . . . . . . . . 11 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → (𝑤𝑤) ⊆ 𝑣)
7063, 69eqsstrd 3978 . . . . . . . . . 10 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → (𝑤𝑤) ⊆ 𝑣)
7161, 70sstrd 3954 . . . . . . . . 9 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣)
7271ex 412 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) → ((𝑤 = 𝑤𝑤𝑢) → ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣))
7372reximdva 3146 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) → (∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑢) → ∃𝑤𝑈 ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣))
7453, 73mpd 15 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) → ∃𝑤𝑈 ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣)
75 ustexhalf 24074 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈) → ∃𝑢𝑈 (𝑢𝑢) ⊆ 𝑣)
76753adant2 1131 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) → ∃𝑢𝑈 (𝑢𝑢) ⊆ 𝑣)
7774, 76r19.29a 3141 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) → ∃𝑤𝑈 ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣)
7847, 48, 49, 77syl3anc 1373 . . . 4 (((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) → ∃𝑤𝑈 ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣)
7946, 78r19.29a 3141 . . 3 (((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) → ∃𝑎 ∈ ((nei‘𝐽)‘{𝑃})(𝑎 × 𝑎) ⊆ 𝑣)
8079ralrimiva 3125 . 2 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ∀𝑣𝑈𝑎 ∈ ((nei‘𝐽)‘{𝑃})(𝑎 × 𝑎) ⊆ 𝑣)
81 iscfilu 24151 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (((nei‘𝐽)‘{𝑃}) ∈ (CauFilu𝑈) ↔ (((nei‘𝐽)‘{𝑃}) ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎 ∈ ((nei‘𝐽)‘{𝑃})(𝑎 × 𝑎) ⊆ 𝑣)))
8227, 81syl 17 . 2 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → (((nei‘𝐽)‘{𝑃}) ∈ (CauFilu𝑈) ↔ (((nei‘𝐽)‘{𝑃}) ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎 ∈ ((nei‘𝐽)‘{𝑃})(𝑎 × 𝑎) ⊆ 𝑣)))
8312, 80, 82mpbir2and 713 1 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (CauFilu𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  wss 3911  c0 4292  {csn 4585  cmpt 5183   × cxp 5629  ccnv 5630  ran crn 5632  cima 5634  ccom 5635  cfv 6499  Basecbs 17155  TopOpenctopn 17360  fBascfbas 21228  TopOnctopon 22773  TopSpctps 22795  neicnei 22960  Filcfil 23708  UnifOncust 24063  unifTopcutop 24094  UnifStcuss 24117  UnifSpcusp 24118  CauFiluccfilu 24149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1o 8411  df-2o 8412  df-en 8896  df-fin 8899  df-fi 9338  df-fbas 21237  df-top 22757  df-topon 22774  df-topsp 22796  df-nei 22961  df-fil 23709  df-ust 24064  df-utop 24095  df-usp 24121  df-cfilu 24150
This theorem is referenced by:  ucnextcn  24167
  Copyright terms: Public domain W3C validator