MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neipcfilu Structured version   Visualization version   GIF version

Theorem neipcfilu 24183
Description: In an uniform space, a neighboring filter is a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018.)
Hypotheses
Ref Expression
neipcfilu.x 𝑋 = (Base‘𝑊)
neipcfilu.j 𝐽 = (TopOpen‘𝑊)
neipcfilu.u 𝑈 = (UnifSt‘𝑊)
Assertion
Ref Expression
neipcfilu ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (CauFilu𝑈))

Proof of Theorem neipcfilu
Dummy variables 𝑣 𝑎 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . . 5 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → 𝑊 ∈ TopSp)
2 neipcfilu.x . . . . . 6 𝑋 = (Base‘𝑊)
3 neipcfilu.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
42, 3istps 22821 . . . . 5 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
51, 4sylib 218 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → 𝐽 ∈ (TopOn‘𝑋))
6 simp3 1138 . . . . 5 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → 𝑃𝑋)
76snssd 4773 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → {𝑃} ⊆ 𝑋)
86snn0d 4739 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → {𝑃} ≠ ∅)
9 neifil 23767 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝑃} ⊆ 𝑋 ∧ {𝑃} ≠ ∅) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑋))
105, 7, 8, 9syl3anc 1373 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑋))
11 filfbas 23735 . . 3 (((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (fBas‘𝑋))
1210, 11syl 17 . 2 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (fBas‘𝑋))
13 eqid 2729 . . . . . . . . . 10 (𝑤 “ {𝑃}) = (𝑤 “ {𝑃})
14 imaeq1 6026 . . . . . . . . . . 11 (𝑣 = 𝑤 → (𝑣 “ {𝑃}) = (𝑤 “ {𝑃}))
1514rspceeqv 3611 . . . . . . . . . 10 ((𝑤𝑈 ∧ (𝑤 “ {𝑃}) = (𝑤 “ {𝑃})) → ∃𝑣𝑈 (𝑤 “ {𝑃}) = (𝑣 “ {𝑃}))
1613, 15mpan2 691 . . . . . . . . 9 (𝑤𝑈 → ∃𝑣𝑈 (𝑤 “ {𝑃}) = (𝑣 “ {𝑃}))
17 vex 3451 . . . . . . . . . . 11 𝑤 ∈ V
1817imaex 7890 . . . . . . . . . 10 (𝑤 “ {𝑃}) ∈ V
19 eqid 2729 . . . . . . . . . . 11 (𝑣𝑈 ↦ (𝑣 “ {𝑃})) = (𝑣𝑈 ↦ (𝑣 “ {𝑃}))
2019elrnmpt 5922 . . . . . . . . . 10 ((𝑤 “ {𝑃}) ∈ V → ((𝑤 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣𝑈 (𝑤 “ {𝑃}) = (𝑣 “ {𝑃})))
2118, 20ax-mp 5 . . . . . . . . 9 ((𝑤 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣𝑈 (𝑤 “ {𝑃}) = (𝑣 “ {𝑃}))
2216, 21sylibr 234 . . . . . . . 8 (𝑤𝑈 → (𝑤 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
2322ad2antlr 727 . . . . . . 7 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → (𝑤 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
24 neipcfilu.u . . . . . . . . . . . . 13 𝑈 = (UnifSt‘𝑊)
252, 24, 3isusp 24149 . . . . . . . . . . . 12 (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 = (unifTop‘𝑈)))
2625simplbi 497 . . . . . . . . . . 11 (𝑊 ∈ UnifSp → 𝑈 ∈ (UnifOn‘𝑋))
27263ad2ant1 1133 . . . . . . . . . 10 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → 𝑈 ∈ (UnifOn‘𝑋))
28 eqid 2729 . . . . . . . . . . 11 (unifTop‘𝑈) = (unifTop‘𝑈)
2928utopsnneip 24136 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘(unifTop‘𝑈))‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
3027, 6, 29syl2anc 584 . . . . . . . . 9 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((nei‘(unifTop‘𝑈))‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
3130eleq2d 2814 . . . . . . . 8 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((𝑤 “ {𝑃}) ∈ ((nei‘(unifTop‘𝑈))‘{𝑃}) ↔ (𝑤 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃}))))
3231ad3antrrr 730 . . . . . . 7 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → ((𝑤 “ {𝑃}) ∈ ((nei‘(unifTop‘𝑈))‘{𝑃}) ↔ (𝑤 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃}))))
3323, 32mpbird 257 . . . . . 6 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → (𝑤 “ {𝑃}) ∈ ((nei‘(unifTop‘𝑈))‘{𝑃}))
34 simpl1 1192 . . . . . . . . . 10 (((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ (𝑣𝑈𝑤𝑈 ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣)) → 𝑊 ∈ UnifSp)
35343anassrs 1361 . . . . . . . . 9 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → 𝑊 ∈ UnifSp)
3625simprbi 496 . . . . . . . . 9 (𝑊 ∈ UnifSp → 𝐽 = (unifTop‘𝑈))
3735, 36syl 17 . . . . . . . 8 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → 𝐽 = (unifTop‘𝑈))
3837fveq2d 6862 . . . . . . 7 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → (nei‘𝐽) = (nei‘(unifTop‘𝑈)))
3938fveq1d 6860 . . . . . 6 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → ((nei‘𝐽)‘{𝑃}) = ((nei‘(unifTop‘𝑈))‘{𝑃}))
4033, 39eleqtrrd 2831 . . . . 5 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → (𝑤 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}))
41 simpr 484 . . . . 5 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣)
42 id 22 . . . . . . . 8 (𝑎 = (𝑤 “ {𝑃}) → 𝑎 = (𝑤 “ {𝑃}))
4342sqxpeqd 5670 . . . . . . 7 (𝑎 = (𝑤 “ {𝑃}) → (𝑎 × 𝑎) = ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})))
4443sseq1d 3978 . . . . . 6 (𝑎 = (𝑤 “ {𝑃}) → ((𝑎 × 𝑎) ⊆ 𝑣 ↔ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣))
4544rspcev 3588 . . . . 5 (((𝑤 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → ∃𝑎 ∈ ((nei‘𝐽)‘{𝑃})(𝑎 × 𝑎) ⊆ 𝑣)
4640, 41, 45syl2anc 584 . . . 4 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → ∃𝑎 ∈ ((nei‘𝐽)‘{𝑃})(𝑎 × 𝑎) ⊆ 𝑣)
4727adantr 480 . . . . 5 (((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) → 𝑈 ∈ (UnifOn‘𝑋))
486adantr 480 . . . . 5 (((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) → 𝑃𝑋)
49 simpr 484 . . . . 5 (((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) → 𝑣𝑈)
50 simpll1 1213 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) → 𝑈 ∈ (UnifOn‘𝑋))
51 simplr 768 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) → 𝑢𝑈)
52 ustexsym 24103 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑢))
5350, 51, 52syl2anc 584 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑢))
5450ad2antrr 726 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → 𝑈 ∈ (UnifOn‘𝑋))
55 simplr 768 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → 𝑤𝑈)
56 ustssxp 24092 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈) → 𝑤 ⊆ (𝑋 × 𝑋))
5754, 55, 56syl2anc 584 . . . . . . . . . . 11 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → 𝑤 ⊆ (𝑋 × 𝑋))
58 simpll2 1214 . . . . . . . . . . . 12 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ ((𝑢𝑢) ⊆ 𝑣𝑤𝑈 ∧ (𝑤 = 𝑤𝑤𝑢))) → 𝑃𝑋)
59583anassrs 1361 . . . . . . . . . . 11 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → 𝑃𝑋)
60 ustneism 24111 . . . . . . . . . . 11 ((𝑤 ⊆ (𝑋 × 𝑋) ∧ 𝑃𝑋) → ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ (𝑤𝑤))
6157, 59, 60syl2anc 584 . . . . . . . . . 10 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ (𝑤𝑤))
62 simprl 770 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → 𝑤 = 𝑤)
6362coeq2d 5826 . . . . . . . . . . 11 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → (𝑤𝑤) = (𝑤𝑤))
64 coss1 5819 . . . . . . . . . . . . . 14 (𝑤𝑢 → (𝑤𝑤) ⊆ (𝑢𝑤))
65 coss2 5820 . . . . . . . . . . . . . 14 (𝑤𝑢 → (𝑢𝑤) ⊆ (𝑢𝑢))
6664, 65sstrd 3957 . . . . . . . . . . . . 13 (𝑤𝑢 → (𝑤𝑤) ⊆ (𝑢𝑢))
6766ad2antll 729 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → (𝑤𝑤) ⊆ (𝑢𝑢))
68 simpllr 775 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → (𝑢𝑢) ⊆ 𝑣)
6967, 68sstrd 3957 . . . . . . . . . . 11 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → (𝑤𝑤) ⊆ 𝑣)
7063, 69eqsstrd 3981 . . . . . . . . . 10 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → (𝑤𝑤) ⊆ 𝑣)
7161, 70sstrd 3957 . . . . . . . . 9 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣)
7271ex 412 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) → ((𝑤 = 𝑤𝑤𝑢) → ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣))
7372reximdva 3146 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) → (∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑢) → ∃𝑤𝑈 ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣))
7453, 73mpd 15 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) → ∃𝑤𝑈 ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣)
75 ustexhalf 24098 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈) → ∃𝑢𝑈 (𝑢𝑢) ⊆ 𝑣)
76753adant2 1131 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) → ∃𝑢𝑈 (𝑢𝑢) ⊆ 𝑣)
7774, 76r19.29a 3141 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) → ∃𝑤𝑈 ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣)
7847, 48, 49, 77syl3anc 1373 . . . 4 (((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) → ∃𝑤𝑈 ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣)
7946, 78r19.29a 3141 . . 3 (((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) → ∃𝑎 ∈ ((nei‘𝐽)‘{𝑃})(𝑎 × 𝑎) ⊆ 𝑣)
8079ralrimiva 3125 . 2 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ∀𝑣𝑈𝑎 ∈ ((nei‘𝐽)‘{𝑃})(𝑎 × 𝑎) ⊆ 𝑣)
81 iscfilu 24175 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (((nei‘𝐽)‘{𝑃}) ∈ (CauFilu𝑈) ↔ (((nei‘𝐽)‘{𝑃}) ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎 ∈ ((nei‘𝐽)‘{𝑃})(𝑎 × 𝑎) ⊆ 𝑣)))
8227, 81syl 17 . 2 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → (((nei‘𝐽)‘{𝑃}) ∈ (CauFilu𝑈) ↔ (((nei‘𝐽)‘{𝑃}) ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎 ∈ ((nei‘𝐽)‘{𝑃})(𝑎 × 𝑎) ⊆ 𝑣)))
8312, 80, 82mpbir2and 713 1 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (CauFilu𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  wss 3914  c0 4296  {csn 4589  cmpt 5188   × cxp 5636  ccnv 5637  ran crn 5639  cima 5641  ccom 5642  cfv 6511  Basecbs 17179  TopOpenctopn 17384  fBascfbas 21252  TopOnctopon 22797  TopSpctps 22819  neicnei 22984  Filcfil 23732  UnifOncust 24087  unifTopcutop 24118  UnifStcuss 24141  UnifSpcusp 24142  CauFiluccfilu 24173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-2o 8435  df-en 8919  df-fin 8922  df-fi 9362  df-fbas 21261  df-top 22781  df-topon 22798  df-topsp 22820  df-nei 22985  df-fil 23733  df-ust 24088  df-utop 24119  df-usp 24145  df-cfilu 24174
This theorem is referenced by:  ucnextcn  24191
  Copyright terms: Public domain W3C validator