MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neipcfilu Structured version   Visualization version   GIF version

Theorem neipcfilu 24320
Description: In an uniform space, a neighboring filter is a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018.)
Hypotheses
Ref Expression
neipcfilu.x 𝑋 = (Base‘𝑊)
neipcfilu.j 𝐽 = (TopOpen‘𝑊)
neipcfilu.u 𝑈 = (UnifSt‘𝑊)
Assertion
Ref Expression
neipcfilu ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (CauFilu𝑈))

Proof of Theorem neipcfilu
Dummy variables 𝑣 𝑎 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1136 . . . . 5 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → 𝑊 ∈ TopSp)
2 neipcfilu.x . . . . . 6 𝑋 = (Base‘𝑊)
3 neipcfilu.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
42, 3istps 22955 . . . . 5 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
51, 4sylib 218 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → 𝐽 ∈ (TopOn‘𝑋))
6 simp3 1137 . . . . 5 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → 𝑃𝑋)
76snssd 4813 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → {𝑃} ⊆ 𝑋)
86snn0d 4779 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → {𝑃} ≠ ∅)
9 neifil 23903 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝑃} ⊆ 𝑋 ∧ {𝑃} ≠ ∅) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑋))
105, 7, 8, 9syl3anc 1370 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑋))
11 filfbas 23871 . . 3 (((nei‘𝐽)‘{𝑃}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (fBas‘𝑋))
1210, 11syl 17 . 2 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (fBas‘𝑋))
13 eqid 2734 . . . . . . . . . 10 (𝑤 “ {𝑃}) = (𝑤 “ {𝑃})
14 imaeq1 6074 . . . . . . . . . . 11 (𝑣 = 𝑤 → (𝑣 “ {𝑃}) = (𝑤 “ {𝑃}))
1514rspceeqv 3644 . . . . . . . . . 10 ((𝑤𝑈 ∧ (𝑤 “ {𝑃}) = (𝑤 “ {𝑃})) → ∃𝑣𝑈 (𝑤 “ {𝑃}) = (𝑣 “ {𝑃}))
1613, 15mpan2 691 . . . . . . . . 9 (𝑤𝑈 → ∃𝑣𝑈 (𝑤 “ {𝑃}) = (𝑣 “ {𝑃}))
17 vex 3481 . . . . . . . . . . 11 𝑤 ∈ V
1817imaex 7936 . . . . . . . . . 10 (𝑤 “ {𝑃}) ∈ V
19 eqid 2734 . . . . . . . . . . 11 (𝑣𝑈 ↦ (𝑣 “ {𝑃})) = (𝑣𝑈 ↦ (𝑣 “ {𝑃}))
2019elrnmpt 5971 . . . . . . . . . 10 ((𝑤 “ {𝑃}) ∈ V → ((𝑤 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣𝑈 (𝑤 “ {𝑃}) = (𝑣 “ {𝑃})))
2118, 20ax-mp 5 . . . . . . . . 9 ((𝑤 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})) ↔ ∃𝑣𝑈 (𝑤 “ {𝑃}) = (𝑣 “ {𝑃}))
2216, 21sylibr 234 . . . . . . . 8 (𝑤𝑈 → (𝑤 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
2322ad2antlr 727 . . . . . . 7 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → (𝑤 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
24 neipcfilu.u . . . . . . . . . . . . 13 𝑈 = (UnifSt‘𝑊)
252, 24, 3isusp 24285 . . . . . . . . . . . 12 (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 = (unifTop‘𝑈)))
2625simplbi 497 . . . . . . . . . . 11 (𝑊 ∈ UnifSp → 𝑈 ∈ (UnifOn‘𝑋))
27263ad2ant1 1132 . . . . . . . . . 10 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → 𝑈 ∈ (UnifOn‘𝑋))
28 eqid 2734 . . . . . . . . . . 11 (unifTop‘𝑈) = (unifTop‘𝑈)
2928utopsnneip 24272 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘(unifTop‘𝑈))‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
3027, 6, 29syl2anc 584 . . . . . . . . 9 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((nei‘(unifTop‘𝑈))‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
3130eleq2d 2824 . . . . . . . 8 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((𝑤 “ {𝑃}) ∈ ((nei‘(unifTop‘𝑈))‘{𝑃}) ↔ (𝑤 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃}))))
3231ad3antrrr 730 . . . . . . 7 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → ((𝑤 “ {𝑃}) ∈ ((nei‘(unifTop‘𝑈))‘{𝑃}) ↔ (𝑤 “ {𝑃}) ∈ ran (𝑣𝑈 ↦ (𝑣 “ {𝑃}))))
3323, 32mpbird 257 . . . . . 6 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → (𝑤 “ {𝑃}) ∈ ((nei‘(unifTop‘𝑈))‘{𝑃}))
34 simpl1 1190 . . . . . . . . . 10 (((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ (𝑣𝑈𝑤𝑈 ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣)) → 𝑊 ∈ UnifSp)
35343anassrs 1359 . . . . . . . . 9 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → 𝑊 ∈ UnifSp)
3625simprbi 496 . . . . . . . . 9 (𝑊 ∈ UnifSp → 𝐽 = (unifTop‘𝑈))
3735, 36syl 17 . . . . . . . 8 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → 𝐽 = (unifTop‘𝑈))
3837fveq2d 6910 . . . . . . 7 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → (nei‘𝐽) = (nei‘(unifTop‘𝑈)))
3938fveq1d 6908 . . . . . 6 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → ((nei‘𝐽)‘{𝑃}) = ((nei‘(unifTop‘𝑈))‘{𝑃}))
4033, 39eleqtrrd 2841 . . . . 5 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → (𝑤 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}))
41 simpr 484 . . . . 5 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣)
42 id 22 . . . . . . . 8 (𝑎 = (𝑤 “ {𝑃}) → 𝑎 = (𝑤 “ {𝑃}))
4342sqxpeqd 5720 . . . . . . 7 (𝑎 = (𝑤 “ {𝑃}) → (𝑎 × 𝑎) = ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})))
4443sseq1d 4026 . . . . . 6 (𝑎 = (𝑤 “ {𝑃}) → ((𝑎 × 𝑎) ⊆ 𝑣 ↔ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣))
4544rspcev 3621 . . . . 5 (((𝑤 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃}) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → ∃𝑎 ∈ ((nei‘𝐽)‘{𝑃})(𝑎 × 𝑎) ⊆ 𝑣)
4640, 41, 45syl2anc 584 . . . 4 (((((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) ∧ 𝑤𝑈) ∧ ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣) → ∃𝑎 ∈ ((nei‘𝐽)‘{𝑃})(𝑎 × 𝑎) ⊆ 𝑣)
4727adantr 480 . . . . 5 (((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) → 𝑈 ∈ (UnifOn‘𝑋))
486adantr 480 . . . . 5 (((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) → 𝑃𝑋)
49 simpr 484 . . . . 5 (((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) → 𝑣𝑈)
50 simpll1 1211 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) → 𝑈 ∈ (UnifOn‘𝑋))
51 simplr 769 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) → 𝑢𝑈)
52 ustexsym 24239 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑢))
5350, 51, 52syl2anc 584 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑢))
5450ad2antrr 726 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → 𝑈 ∈ (UnifOn‘𝑋))
55 simplr 769 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → 𝑤𝑈)
56 ustssxp 24228 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈) → 𝑤 ⊆ (𝑋 × 𝑋))
5754, 55, 56syl2anc 584 . . . . . . . . . . 11 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → 𝑤 ⊆ (𝑋 × 𝑋))
58 simpll2 1212 . . . . . . . . . . . 12 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ ((𝑢𝑢) ⊆ 𝑣𝑤𝑈 ∧ (𝑤 = 𝑤𝑤𝑢))) → 𝑃𝑋)
59583anassrs 1359 . . . . . . . . . . 11 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → 𝑃𝑋)
60 ustneism 24247 . . . . . . . . . . 11 ((𝑤 ⊆ (𝑋 × 𝑋) ∧ 𝑃𝑋) → ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ (𝑤𝑤))
6157, 59, 60syl2anc 584 . . . . . . . . . 10 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ (𝑤𝑤))
62 simprl 771 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → 𝑤 = 𝑤)
6362coeq2d 5875 . . . . . . . . . . 11 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → (𝑤𝑤) = (𝑤𝑤))
64 coss1 5868 . . . . . . . . . . . . . 14 (𝑤𝑢 → (𝑤𝑤) ⊆ (𝑢𝑤))
65 coss2 5869 . . . . . . . . . . . . . 14 (𝑤𝑢 → (𝑢𝑤) ⊆ (𝑢𝑢))
6664, 65sstrd 4005 . . . . . . . . . . . . 13 (𝑤𝑢 → (𝑤𝑤) ⊆ (𝑢𝑢))
6766ad2antll 729 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → (𝑤𝑤) ⊆ (𝑢𝑢))
68 simpllr 776 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → (𝑢𝑢) ⊆ 𝑣)
6967, 68sstrd 4005 . . . . . . . . . . 11 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → (𝑤𝑤) ⊆ 𝑣)
7063, 69eqsstrd 4033 . . . . . . . . . 10 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → (𝑤𝑤) ⊆ 𝑣)
7161, 70sstrd 4005 . . . . . . . . 9 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑢)) → ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣)
7271ex 412 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) ∧ 𝑤𝑈) → ((𝑤 = 𝑤𝑤𝑢) → ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣))
7372reximdva 3165 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) → (∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑢) → ∃𝑤𝑈 ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣))
7453, 73mpd 15 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑣) → ∃𝑤𝑈 ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣)
75 ustexhalf 24234 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈) → ∃𝑢𝑈 (𝑢𝑢) ⊆ 𝑣)
76753adant2 1130 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) → ∃𝑢𝑈 (𝑢𝑢) ⊆ 𝑣)
7774, 76r19.29a 3159 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋𝑣𝑈) → ∃𝑤𝑈 ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣)
7847, 48, 49, 77syl3anc 1370 . . . 4 (((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) → ∃𝑤𝑈 ((𝑤 “ {𝑃}) × (𝑤 “ {𝑃})) ⊆ 𝑣)
7946, 78r19.29a 3159 . . 3 (((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) ∧ 𝑣𝑈) → ∃𝑎 ∈ ((nei‘𝐽)‘{𝑃})(𝑎 × 𝑎) ⊆ 𝑣)
8079ralrimiva 3143 . 2 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ∀𝑣𝑈𝑎 ∈ ((nei‘𝐽)‘{𝑃})(𝑎 × 𝑎) ⊆ 𝑣)
81 iscfilu 24312 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (((nei‘𝐽)‘{𝑃}) ∈ (CauFilu𝑈) ↔ (((nei‘𝐽)‘{𝑃}) ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎 ∈ ((nei‘𝐽)‘{𝑃})(𝑎 × 𝑎) ⊆ 𝑣)))
8227, 81syl 17 . 2 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → (((nei‘𝐽)‘{𝑃}) ∈ (CauFilu𝑈) ↔ (((nei‘𝐽)‘{𝑃}) ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎 ∈ ((nei‘𝐽)‘{𝑃})(𝑎 × 𝑎) ⊆ 𝑣)))
8312, 80, 82mpbir2and 713 1 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (CauFilu𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  Vcvv 3477  wss 3962  c0 4338  {csn 4630  cmpt 5230   × cxp 5686  ccnv 5687  ran crn 5689  cima 5691  ccom 5692  cfv 6562  Basecbs 17244  TopOpenctopn 17467  fBascfbas 21369  TopOnctopon 22931  TopSpctps 22953  neicnei 23120  Filcfil 23868  UnifOncust 24223  unifTopcutop 24254  UnifStcuss 24277  UnifSpcusp 24278  CauFiluccfilu 24310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-om 7887  df-1o 8504  df-2o 8505  df-en 8984  df-fin 8987  df-fi 9448  df-fbas 21378  df-top 22915  df-topon 22932  df-topsp 22954  df-nei 23121  df-fil 23869  df-ust 24224  df-utop 24255  df-usp 24281  df-cfilu 24311
This theorem is referenced by:  ucnextcn  24328
  Copyright terms: Public domain W3C validator