MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfi1indALT Structured version   Visualization version   GIF version

Theorem brfi1indALT 13854
Description: Alternate proof of brfi1ind 13853, which does not use brfi1uzind 13852. (Contributed by Alexander van der Vekens, 7-Jan-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
brfi1ind.r Rel 𝐺
brfi1ind.f 𝐹 ∈ V
brfi1ind.1 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
brfi1ind.2 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
brfi1ind.3 ((𝑣𝐺𝑒𝑛𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹)
brfi1ind.4 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
brfi1ind.base ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 0) → 𝜓)
brfi1ind.step ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
Assertion
Ref Expression
brfi1indALT ((𝑉𝐺𝐸𝑉 ∈ Fin) → 𝜑)
Distinct variable groups:   𝑒,𝐸,𝑛,𝑣   𝑓,𝐹,𝑤   𝑒,𝐺,𝑓,𝑛,𝑣,𝑤,𝑦   𝑒,𝑉,𝑛,𝑣   𝜓,𝑓,𝑛,𝑤,𝑦   𝜃,𝑒,𝑛,𝑣   𝜒,𝑓,𝑤   𝜑,𝑒,𝑛,𝑣
Allowed substitution hints:   𝜑(𝑦,𝑤,𝑓)   𝜓(𝑣,𝑒)   𝜒(𝑦,𝑣,𝑒,𝑛)   𝜃(𝑦,𝑤,𝑓)   𝐸(𝑦,𝑤,𝑓)   𝐹(𝑦,𝑣,𝑒,𝑛)   𝑉(𝑦,𝑤,𝑓)

Proof of Theorem brfi1indALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hashcl 13713 . . 3 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
2 dfclel 2871 . . . 4 ((♯‘𝑉) ∈ ℕ0 ↔ ∃𝑛(𝑛 = (♯‘𝑉) ∧ 𝑛 ∈ ℕ0))
3 eqeq2 2810 . . . . . . . . . . . . . 14 (𝑥 = 0 → ((♯‘𝑣) = 𝑥 ↔ (♯‘𝑣) = 0))
43anbi2d 631 . . . . . . . . . . . . 13 (𝑥 = 0 → ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = 0)))
54imbi1d 345 . . . . . . . . . . . 12 (𝑥 = 0 → (((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 0) → 𝜓)))
652albidv 1924 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 0) → 𝜓)))
7 eqeq2 2810 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((♯‘𝑣) = 𝑥 ↔ (♯‘𝑣) = 𝑦))
87anbi2d 631 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑦)))
98imbi1d 345 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑦) → 𝜓)))
1092albidv 1924 . . . . . . . . . . 11 (𝑥 = 𝑦 → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑦) → 𝜓)))
11 eqeq2 2810 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 + 1) → ((♯‘𝑣) = 𝑥 ↔ (♯‘𝑣) = (𝑦 + 1)))
1211anbi2d 631 . . . . . . . . . . . . 13 (𝑥 = (𝑦 + 1) → ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1))))
1312imbi1d 345 . . . . . . . . . . . 12 (𝑥 = (𝑦 + 1) → (((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1)) → 𝜓)))
14132albidv 1924 . . . . . . . . . . 11 (𝑥 = (𝑦 + 1) → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1)) → 𝜓)))
15 eqeq2 2810 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → ((♯‘𝑣) = 𝑥 ↔ (♯‘𝑣) = 𝑛))
1615anbi2d 631 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛)))
1716imbi1d 345 . . . . . . . . . . . 12 (𝑥 = 𝑛 → (((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) → 𝜓)))
18172albidv 1924 . . . . . . . . . . 11 (𝑥 = 𝑛 → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) → 𝜓)))
19 brfi1ind.base . . . . . . . . . . . 12 ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 0) → 𝜓)
2019gen2 1798 . . . . . . . . . . 11 𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 0) → 𝜓)
21 breq12 5035 . . . . . . . . . . . . . . 15 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝑣𝐺𝑒𝑤𝐺𝑓))
22 fveqeq2 6654 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑤 → ((♯‘𝑣) = 𝑦 ↔ (♯‘𝑤) = 𝑦))
2322adantr 484 . . . . . . . . . . . . . . 15 ((𝑣 = 𝑤𝑒 = 𝑓) → ((♯‘𝑣) = 𝑦 ↔ (♯‘𝑤) = 𝑦))
2421, 23anbi12d 633 . . . . . . . . . . . . . 14 ((𝑣 = 𝑤𝑒 = 𝑓) → ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑦) ↔ (𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦)))
25 brfi1ind.2 . . . . . . . . . . . . . 14 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
2624, 25imbi12d 348 . . . . . . . . . . . . 13 ((𝑣 = 𝑤𝑒 = 𝑓) → (((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑦) → 𝜓) ↔ ((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃)))
2726cbval2vw 2047 . . . . . . . . . . . 12 (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑦) → 𝜓) ↔ ∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃))
28 nn0p1gt0 11914 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ0 → 0 < (𝑦 + 1))
2928adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ0 ∧ (♯‘𝑣) = (𝑦 + 1)) → 0 < (𝑦 + 1))
30 simpr 488 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ0 ∧ (♯‘𝑣) = (𝑦 + 1)) → (♯‘𝑣) = (𝑦 + 1))
3129, 30breqtrrd 5058 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0 ∧ (♯‘𝑣) = (𝑦 + 1)) → 0 < (♯‘𝑣))
3231adantrl 715 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1))) → 0 < (♯‘𝑣))
33 hashgt0elex 13758 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣 ∈ V ∧ 0 < (♯‘𝑣)) → ∃𝑛 𝑛𝑣)
34 brfi1ind.3 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣𝐺𝑒𝑛𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹)
35 vex 3444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑣 ∈ V
36 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 ∈ ℕ0𝑛𝑣) → 𝑛𝑣)
37 simpl 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 ∈ ℕ0𝑛𝑣) → 𝑦 ∈ ℕ0)
38 hashdifsnp1 13850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑣 ∈ V ∧ 𝑛𝑣𝑦 ∈ ℕ0) → ((♯‘𝑣) = (𝑦 + 1) → (♯‘(𝑣 ∖ {𝑛})) = 𝑦))
3935, 36, 37, 38mp3an2i 1463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑦 ∈ ℕ0𝑛𝑣) → ((♯‘𝑣) = (𝑦 + 1) → (♯‘(𝑣 ∖ {𝑛})) = 𝑦))
4039imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (♯‘𝑣) = (𝑦 + 1)) → (♯‘(𝑣 ∖ {𝑛})) = 𝑦)
41 peano2nn0 11925 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ0)
4241ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (♯‘𝑣) = (𝑦 + 1)) → (𝑦 + 1) ∈ ℕ0)
4342ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (♯‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → (𝑦 + 1) ∈ ℕ0)
44 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (♯‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → 𝑣𝐺𝑒)
45 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (♯‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → (♯‘𝑣) = (𝑦 + 1))
46 simprlr 779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (♯‘𝑣) = (𝑦 + 1))) → 𝑛𝑣)
4746adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (♯‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → 𝑛𝑣)
4844, 45, 473jca 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (♯‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))
4943, 48jca 515 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (♯‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → ((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)))
5035difexi 5196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑣 ∖ {𝑛}) ∈ V
51 brfi1ind.f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 𝐹 ∈ V
52 breq12 5035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝑤𝐺𝑓 ↔ (𝑣 ∖ {𝑛})𝐺𝐹))
53 fveqeq2 6654 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑤 = (𝑣 ∖ {𝑛}) → ((♯‘𝑤) = 𝑦 ↔ (♯‘(𝑣 ∖ {𝑛})) = 𝑦))
5453adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ((♯‘𝑤) = 𝑦 ↔ (♯‘(𝑣 ∖ {𝑛})) = 𝑦))
5552, 54anbi12d 633 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) ↔ ((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (♯‘(𝑣 ∖ {𝑛})) = 𝑦)))
56 brfi1ind.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
5755, 56imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ↔ (((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (♯‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒)))
5857spc2gv 3549 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑣 ∖ {𝑛}) ∈ V ∧ 𝐹 ∈ V) → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → (((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (♯‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒)))
5950, 51, 58mp2an 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → (((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (♯‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒))
6059expdimp 456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) → ((♯‘(𝑣 ∖ {𝑛})) = 𝑦𝜒))
6160ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (♯‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → ((♯‘(𝑣 ∖ {𝑛})) = 𝑦𝜒))
62 brfi1ind.step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
6349, 61, 62syl6an 683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (♯‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → ((♯‘(𝑣 ∖ {𝑛})) = 𝑦𝜓))
6463exp41 438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (♯‘𝑣) = (𝑦 + 1)) → (𝑣𝐺𝑒 → ((♯‘(𝑣 ∖ {𝑛})) = 𝑦𝜓)))))
6564com15 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((♯‘(𝑣 ∖ {𝑛})) = 𝑦 → ((𝑣 ∖ {𝑛})𝐺𝐹 → (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (♯‘𝑣) = (𝑦 + 1)) → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
6665com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((♯‘(𝑣 ∖ {𝑛})) = 𝑦 → (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (♯‘𝑣) = (𝑦 + 1)) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
6740, 66mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (♯‘𝑣) = (𝑦 + 1)) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))))
6867ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑦 ∈ ℕ0𝑛𝑣) → ((♯‘𝑣) = (𝑦 + 1) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
6968com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑦 ∈ ℕ0𝑛𝑣) → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((♯‘𝑣) = (𝑦 + 1) → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
7069ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℕ0 → (𝑛𝑣 → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((♯‘𝑣) = (𝑦 + 1) → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))))))
7170com15 101 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑣𝐺𝑒 → (𝑛𝑣 → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))))))
7271imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣𝐺𝑒𝑛𝑣) → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
7334, 72mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑣𝐺𝑒𝑛𝑣) → ((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))))
7473ex 416 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣𝐺𝑒 → (𝑛𝑣 → ((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
7574com4l 92 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛𝑣 → ((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
7675exlimiv 1931 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑛 𝑛𝑣 → ((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
7733, 76syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ V ∧ 0 < (♯‘𝑣)) → ((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
7877ex 416 . . . . . . . . . . . . . . . . . . . 20 (𝑣 ∈ V → (0 < (♯‘𝑣) → ((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))))))
7978com25 99 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ V → (𝑣𝐺𝑒 → ((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (0 < (♯‘𝑣) → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))))))
8079elv 3446 . . . . . . . . . . . . . . . . . 18 (𝑣𝐺𝑒 → ((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (0 < (♯‘𝑣) → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
8180imp 410 . . . . . . . . . . . . . . . . 17 ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1)) → (𝑦 ∈ ℕ0 → (0 < (♯‘𝑣) → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))))
8281impcom 411 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1))) → (0 < (♯‘𝑣) → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)))
8332, 82mpd 15 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1))) → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))
8483impancom 455 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0 ∧ ∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃)) → ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1)) → 𝜓))
8584alrimivv 1929 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃)) → ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1)) → 𝜓))
8685ex 416 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1)) → 𝜓)))
8727, 86syl5bi 245 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑦) → 𝜓) → ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1)) → 𝜓)))
886, 10, 14, 18, 20, 87nn0ind 12065 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) → 𝜓))
89 brfi1ind.r . . . . . . . . . . . . 13 Rel 𝐺
9089brrelex12i 5571 . . . . . . . . . . . 12 (𝑉𝐺𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
91 breq12 5035 . . . . . . . . . . . . . . . . 17 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑣𝐺𝑒𝑉𝐺𝐸))
92 fveqeq2 6654 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑉 → ((♯‘𝑣) = 𝑛 ↔ (♯‘𝑉) = 𝑛))
9392adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑣 = 𝑉𝑒 = 𝐸) → ((♯‘𝑣) = 𝑛 ↔ (♯‘𝑉) = 𝑛))
9491, 93anbi12d 633 . . . . . . . . . . . . . . . 16 ((𝑣 = 𝑉𝑒 = 𝐸) → ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) ↔ (𝑉𝐺𝐸 ∧ (♯‘𝑉) = 𝑛)))
95 brfi1ind.1 . . . . . . . . . . . . . . . 16 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
9694, 95imbi12d 348 . . . . . . . . . . . . . . 15 ((𝑣 = 𝑉𝑒 = 𝐸) → (((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) → 𝜓) ↔ ((𝑉𝐺𝐸 ∧ (♯‘𝑉) = 𝑛) → 𝜑)))
9796spc2gv 3549 . . . . . . . . . . . . . 14 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) → 𝜓) → ((𝑉𝐺𝐸 ∧ (♯‘𝑉) = 𝑛) → 𝜑)))
9897com23 86 . . . . . . . . . . . . 13 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ((𝑉𝐺𝐸 ∧ (♯‘𝑉) = 𝑛) → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) → 𝜓) → 𝜑)))
9998expd 419 . . . . . . . . . . . 12 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝐺𝐸 → ((♯‘𝑉) = 𝑛 → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) → 𝜓) → 𝜑))))
10090, 99mpcom 38 . . . . . . . . . . 11 (𝑉𝐺𝐸 → ((♯‘𝑉) = 𝑛 → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) → 𝜓) → 𝜑)))
101100imp 410 . . . . . . . . . 10 ((𝑉𝐺𝐸 ∧ (♯‘𝑉) = 𝑛) → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) → 𝜓) → 𝜑))
10288, 101syl5 34 . . . . . . . . 9 ((𝑉𝐺𝐸 ∧ (♯‘𝑉) = 𝑛) → (𝑛 ∈ ℕ0𝜑))
103102expcom 417 . . . . . . . 8 ((♯‘𝑉) = 𝑛 → (𝑉𝐺𝐸 → (𝑛 ∈ ℕ0𝜑)))
104103com23 86 . . . . . . 7 ((♯‘𝑉) = 𝑛 → (𝑛 ∈ ℕ0 → (𝑉𝐺𝐸𝜑)))
105104eqcoms 2806 . . . . . 6 (𝑛 = (♯‘𝑉) → (𝑛 ∈ ℕ0 → (𝑉𝐺𝐸𝜑)))
106105imp 410 . . . . 5 ((𝑛 = (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) → (𝑉𝐺𝐸𝜑))
107106exlimiv 1931 . . . 4 (∃𝑛(𝑛 = (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) → (𝑉𝐺𝐸𝜑))
1082, 107sylbi 220 . . 3 ((♯‘𝑉) ∈ ℕ0 → (𝑉𝐺𝐸𝜑))
1091, 108syl 17 . 2 (𝑉 ∈ Fin → (𝑉𝐺𝐸𝜑))
110109impcom 411 1 ((𝑉𝐺𝐸𝑉 ∈ Fin) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wal 1536   = wceq 1538  wex 1781  wcel 2111  Vcvv 3441  cdif 3878  {csn 4525   class class class wbr 5030  Rel wrel 5524  cfv 6324  (class class class)co 7135  Fincfn 8492  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  0cn0 11885  chash 13686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator