Step | Hyp | Ref
| Expression |
1 | | hashcl 14071 |
. . 3
⊢ (𝑉 ∈ Fin →
(♯‘𝑉) ∈
ℕ0) |
2 | | dfclel 2817 |
. . . 4
⊢
((♯‘𝑉)
∈ ℕ0 ↔ ∃𝑛(𝑛 = (♯‘𝑉) ∧ 𝑛 ∈
ℕ0)) |
3 | | eqeq2 2750 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 0 →
((♯‘𝑣) = 𝑥 ↔ (♯‘𝑣) = 0)) |
4 | 3 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = 0))) |
5 | 4 | imbi1d 342 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → (((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 0) → 𝜓))) |
6 | 5 | 2albidv 1926 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 0) → 𝜓))) |
7 | | eqeq2 2750 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((♯‘𝑣) = 𝑥 ↔ (♯‘𝑣) = 𝑦)) |
8 | 7 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑦))) |
9 | 8 | imbi1d 342 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑦) → 𝜓))) |
10 | 9 | 2albidv 1926 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑦) → 𝜓))) |
11 | | eqeq2 2750 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦 + 1) → ((♯‘𝑣) = 𝑥 ↔ (♯‘𝑣) = (𝑦 + 1))) |
12 | 11 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑦 + 1) → ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1)))) |
13 | 12 | imbi1d 342 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑦 + 1) → (((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1)) → 𝜓))) |
14 | 13 | 2albidv 1926 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 + 1) → (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1)) → 𝜓))) |
15 | | eqeq2 2750 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑛 → ((♯‘𝑣) = 𝑥 ↔ (♯‘𝑣) = 𝑛)) |
16 | 15 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑛 → ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛))) |
17 | 16 | imbi1d 342 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑛 → (((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) → 𝜓))) |
18 | 17 | 2albidv 1926 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑛 → (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) → 𝜓))) |
19 | | brfi1ind.base |
. . . . . . . . . . . 12
⊢ ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 0) → 𝜓) |
20 | 19 | gen2 1799 |
. . . . . . . . . . 11
⊢
∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 0) → 𝜓) |
21 | | breq12 5079 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝑣𝐺𝑒 ↔ 𝑤𝐺𝑓)) |
22 | | fveqeq2 6783 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑤 → ((♯‘𝑣) = 𝑦 ↔ (♯‘𝑤) = 𝑦)) |
23 | 22 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → ((♯‘𝑣) = 𝑦 ↔ (♯‘𝑤) = 𝑦)) |
24 | 21, 23 | anbi12d 631 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑦) ↔ (𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦))) |
25 | | brfi1ind.2 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) |
26 | 24, 25 | imbi12d 345 |
. . . . . . . . . . . . 13
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑦) → 𝜓) ↔ ((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃))) |
27 | 26 | cbval2vw 2043 |
. . . . . . . . . . . 12
⊢
(∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑦) → 𝜓) ↔ ∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃)) |
28 | | nn0p1gt0 12262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ℕ0
→ 0 < (𝑦 +
1)) |
29 | 28 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℕ0
∧ (♯‘𝑣) =
(𝑦 + 1)) → 0 <
(𝑦 + 1)) |
30 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℕ0
∧ (♯‘𝑣) =
(𝑦 + 1)) →
(♯‘𝑣) = (𝑦 + 1)) |
31 | 29, 30 | breqtrrd 5102 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ0
∧ (♯‘𝑣) =
(𝑦 + 1)) → 0 <
(♯‘𝑣)) |
32 | 31 | adantrl 713 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℕ0
∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1))) → 0 < (♯‘𝑣)) |
33 | | hashgt0elex 14116 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑣 ∈ V ∧ 0 <
(♯‘𝑣)) →
∃𝑛 𝑛 ∈ 𝑣) |
34 | | brfi1ind.3 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑣𝐺𝑒 ∧ 𝑛 ∈ 𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹) |
35 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ 𝑣 ∈ V |
36 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → 𝑛 ∈ 𝑣) |
37 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → 𝑦 ∈ ℕ0) |
38 | | hashdifsnp1 14210 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑣 ∈ V ∧ 𝑛 ∈ 𝑣 ∧ 𝑦 ∈ ℕ0) →
((♯‘𝑣) = (𝑦 + 1) →
(♯‘(𝑣 ∖
{𝑛})) = 𝑦)) |
39 | 35, 36, 37, 38 | mp3an2i 1465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → ((♯‘𝑣) = (𝑦 + 1) → (♯‘(𝑣 ∖ {𝑛})) = 𝑦)) |
40 | 39 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) ∧ (♯‘𝑣) = (𝑦 + 1)) → (♯‘(𝑣 ∖ {𝑛})) = 𝑦) |
41 | | peano2nn0 12273 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 1) ∈
ℕ0) |
42 | 41 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) ∧ (♯‘𝑣) = (𝑦 + 1)) → (𝑦 + 1) ∈
ℕ0) |
43 | 42 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (♯‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → (𝑦 + 1) ∈
ℕ0) |
44 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
((((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (♯‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → 𝑣𝐺𝑒) |
45 | | simplrr 775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
((((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (♯‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → (♯‘𝑣) = (𝑦 + 1)) |
46 | | simprlr 777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (♯‘𝑣) = (𝑦 + 1))) → 𝑛 ∈ 𝑣) |
47 | 46 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
((((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (♯‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → 𝑛 ∈ 𝑣) |
48 | 44, 45, 47 | 3jca 1127 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (♯‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) |
49 | 43, 48 | jca 512 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (♯‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → ((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) |
50 | 35 | difexi 5252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑣 ∖ {𝑛}) ∈ V |
51 | | brfi1ind.f |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ 𝐹 ∈ V |
52 | | breq12 5079 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝑤𝐺𝑓 ↔ (𝑣 ∖ {𝑛})𝐺𝐹)) |
53 | | fveqeq2 6783 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑤 = (𝑣 ∖ {𝑛}) → ((♯‘𝑤) = 𝑦 ↔ (♯‘(𝑣 ∖ {𝑛})) = 𝑦)) |
54 | 53 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ((♯‘𝑤) = 𝑦 ↔ (♯‘(𝑣 ∖ {𝑛})) = 𝑦)) |
55 | 52, 54 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) ↔ ((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (♯‘(𝑣 ∖ {𝑛})) = 𝑦))) |
56 | | brfi1ind.4 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) |
57 | 55, 56 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ↔ (((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (♯‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒))) |
58 | 57 | spc2gv 3539 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝑣 ∖ {𝑛}) ∈ V ∧ 𝐹 ∈ V) → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → (((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (♯‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒))) |
59 | 50, 51, 58 | mp2an 689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → (((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (♯‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒)) |
60 | 59 | expdimp 453 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) → ((♯‘(𝑣 ∖ {𝑛})) = 𝑦 → 𝜒)) |
61 | 60 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (♯‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → ((♯‘(𝑣 ∖ {𝑛})) = 𝑦 → 𝜒)) |
62 | | brfi1ind.step |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑦 + 1) ∈ ℕ0
∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
63 | 49, 61, 62 | syl6an 681 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (♯‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → ((♯‘(𝑣 ∖ {𝑛})) = 𝑦 → 𝜓)) |
64 | 63 | exp41 435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (♯‘𝑣) = (𝑦 + 1)) → (𝑣𝐺𝑒 → ((♯‘(𝑣 ∖ {𝑛})) = 𝑦 → 𝜓))))) |
65 | 64 | com15 101 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((♯‘(𝑣
∖ {𝑛})) = 𝑦 → ((𝑣 ∖ {𝑛})𝐺𝐹 → (((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (♯‘𝑣) = (𝑦 + 1)) → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
66 | 65 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((♯‘(𝑣
∖ {𝑛})) = 𝑦 → (((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (♯‘𝑣) = (𝑦 + 1)) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
67 | 40, 66 | mpcom 38 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) ∧ (♯‘𝑣) = (𝑦 + 1)) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)))) |
68 | 67 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → ((♯‘𝑣) = (𝑦 + 1) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
69 | 68 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((♯‘𝑣) = (𝑦 + 1) → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
70 | 69 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ ℕ0
→ (𝑛 ∈ 𝑣 → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((♯‘𝑣) = (𝑦 + 1) → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))) |
71 | 70 | com15 101 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑣𝐺𝑒 → (𝑛 ∈ 𝑣 → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 →
(∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))) |
72 | 71 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑣𝐺𝑒 ∧ 𝑛 ∈ 𝑣) → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 →
(∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
73 | 34, 72 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑣𝐺𝑒 ∧ 𝑛 ∈ 𝑣) → ((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 →
(∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)))) |
74 | 73 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣𝐺𝑒 → (𝑛 ∈ 𝑣 → ((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 →
(∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
75 | 74 | com4l 92 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ 𝑣 → ((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
76 | 75 | exlimiv 1933 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃𝑛 𝑛 ∈ 𝑣 → ((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
77 | 33, 76 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 ∈ V ∧ 0 <
(♯‘𝑣)) →
((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
78 | 77 | ex 413 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 ∈ V → (0 <
(♯‘𝑣) →
((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))) |
79 | 78 | com25 99 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 ∈ V → (𝑣𝐺𝑒 → ((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (0 <
(♯‘𝑣) →
(∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))) |
80 | 79 | elv 3438 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣𝐺𝑒 → ((♯‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (0 <
(♯‘𝑣) →
(∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
81 | 80 | imp 407 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1)) → (𝑦 ∈ ℕ0 → (0 <
(♯‘𝑣) →
(∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)))) |
82 | 81 | impcom 408 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℕ0
∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1))) → (0 < (♯‘𝑣) → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓))) |
83 | 32, 82 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ0
∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1))) → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → 𝜓)) |
84 | 83 | impancom 452 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ0
∧ ∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃)) → ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1)) → 𝜓)) |
85 | 84 | alrimivv 1931 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ0
∧ ∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃)) → ∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1)) → 𝜓)) |
86 | 85 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ0
→ (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (♯‘𝑤) = 𝑦) → 𝜃) → ∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1)) → 𝜓))) |
87 | 27, 86 | syl5bi 241 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ0
→ (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑦) → 𝜓) → ∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1)) → 𝜓))) |
88 | 6, 10, 14, 18, 20, 87 | nn0ind 12415 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ ∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) → 𝜓)) |
89 | | brfi1ind.r |
. . . . . . . . . . . . 13
⊢ Rel 𝐺 |
90 | 89 | brrelex12i 5642 |
. . . . . . . . . . . 12
⊢ (𝑉𝐺𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) |
91 | | breq12 5079 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑣𝐺𝑒 ↔ 𝑉𝐺𝐸)) |
92 | | fveqeq2 6783 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = 𝑉 → ((♯‘𝑣) = 𝑛 ↔ (♯‘𝑉) = 𝑛)) |
93 | 92 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → ((♯‘𝑣) = 𝑛 ↔ (♯‘𝑉) = 𝑛)) |
94 | 91, 93 | anbi12d 631 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) ↔ (𝑉𝐺𝐸 ∧ (♯‘𝑉) = 𝑛))) |
95 | | brfi1ind.1 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) |
96 | 94, 95 | imbi12d 345 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) → 𝜓) ↔ ((𝑉𝐺𝐸 ∧ (♯‘𝑉) = 𝑛) → 𝜑))) |
97 | 96 | spc2gv 3539 |
. . . . . . . . . . . . . 14
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) → 𝜓) → ((𝑉𝐺𝐸 ∧ (♯‘𝑉) = 𝑛) → 𝜑))) |
98 | 97 | com23 86 |
. . . . . . . . . . . . 13
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ((𝑉𝐺𝐸 ∧ (♯‘𝑉) = 𝑛) → (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) → 𝜓) → 𝜑))) |
99 | 98 | expd 416 |
. . . . . . . . . . . 12
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝐺𝐸 → ((♯‘𝑉) = 𝑛 → (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) → 𝜓) → 𝜑)))) |
100 | 90, 99 | mpcom 38 |
. . . . . . . . . . 11
⊢ (𝑉𝐺𝐸 → ((♯‘𝑉) = 𝑛 → (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) → 𝜓) → 𝜑))) |
101 | 100 | imp 407 |
. . . . . . . . . 10
⊢ ((𝑉𝐺𝐸 ∧ (♯‘𝑉) = 𝑛) → (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝑛) → 𝜓) → 𝜑)) |
102 | 88, 101 | syl5 34 |
. . . . . . . . 9
⊢ ((𝑉𝐺𝐸 ∧ (♯‘𝑉) = 𝑛) → (𝑛 ∈ ℕ0 → 𝜑)) |
103 | 102 | expcom 414 |
. . . . . . . 8
⊢
((♯‘𝑉) =
𝑛 → (𝑉𝐺𝐸 → (𝑛 ∈ ℕ0 → 𝜑))) |
104 | 103 | com23 86 |
. . . . . . 7
⊢
((♯‘𝑉) =
𝑛 → (𝑛 ∈ ℕ0
→ (𝑉𝐺𝐸 → 𝜑))) |
105 | 104 | eqcoms 2746 |
. . . . . 6
⊢ (𝑛 = (♯‘𝑉) → (𝑛 ∈ ℕ0 → (𝑉𝐺𝐸 → 𝜑))) |
106 | 105 | imp 407 |
. . . . 5
⊢ ((𝑛 = (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) → (𝑉𝐺𝐸 → 𝜑)) |
107 | 106 | exlimiv 1933 |
. . . 4
⊢
(∃𝑛(𝑛 = (♯‘𝑉) ∧ 𝑛 ∈ ℕ0) → (𝑉𝐺𝐸 → 𝜑)) |
108 | 2, 107 | sylbi 216 |
. . 3
⊢
((♯‘𝑉)
∈ ℕ0 → (𝑉𝐺𝐸 → 𝜑)) |
109 | 1, 108 | syl 17 |
. 2
⊢ (𝑉 ∈ Fin → (𝑉𝐺𝐸 → 𝜑)) |
110 | 109 | impcom 408 |
1
⊢ ((𝑉𝐺𝐸 ∧ 𝑉 ∈ Fin) → 𝜑) |