MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt12 Structured version   Visualization version   GIF version

Theorem cnmpt12 23676
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt1t.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
cnmpt12.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt12.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmpt12.c (𝜑 → (𝑦𝑌, 𝑧𝑍𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀))
cnmpt12.d ((𝑦 = 𝐴𝑧 = 𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
cnmpt12 (𝜑 → (𝑥𝑋𝐷) ∈ (𝐽 Cn 𝑀))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑧,𝐵   𝑦,𝐷,𝑧   𝑥,𝑦   𝜑,𝑥   𝑥,𝐽,𝑦   𝑥,𝑧,𝑀,𝑦   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑦,𝑧)   𝐷(𝑥)   𝐽(𝑧)   𝐾(𝑧)   𝐿(𝑧)

Proof of Theorem cnmpt12
StepHypRef Expression
1 cnmptid.j . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmpt12.k . . . . . 6 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 cnmpt11.a . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
4 cnf2 23258 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐴):𝑋𝑌)
51, 2, 3, 4syl3anc 1372 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋𝑌)
65fvmptelcdm 7132 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
7 cnmpt12.l . . . . . 6 (𝜑𝐿 ∈ (TopOn‘𝑍))
8 cnmpt1t.b . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
9 cnf2 23258 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥𝑋𝐵):𝑋𝑍)
101, 7, 8, 9syl3anc 1372 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋𝑍)
1110fvmptelcdm 7132 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑍)
126, 11jca 511 . . . . 5 ((𝜑𝑥𝑋) → (𝐴𝑌𝐵𝑍))
13 txtopon 23600 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)))
142, 7, 13syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)))
15 cnmpt12.c . . . . . . . . . . 11 (𝜑 → (𝑦𝑌, 𝑧𝑍𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀))
16 cntop2 23250 . . . . . . . . . . 11 ((𝑦𝑌, 𝑧𝑍𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀) → 𝑀 ∈ Top)
1715, 16syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ Top)
18 toptopon2 22925 . . . . . . . . . 10 (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘ 𝑀))
1917, 18sylib 218 . . . . . . . . 9 (𝜑𝑀 ∈ (TopOn‘ 𝑀))
20 cnf2 23258 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)) ∧ 𝑀 ∈ (TopOn‘ 𝑀) ∧ (𝑦𝑌, 𝑧𝑍𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀)) → (𝑦𝑌, 𝑧𝑍𝐶):(𝑌 × 𝑍)⟶ 𝑀)
2114, 19, 15, 20syl3anc 1372 . . . . . . . 8 (𝜑 → (𝑦𝑌, 𝑧𝑍𝐶):(𝑌 × 𝑍)⟶ 𝑀)
22 eqid 2736 . . . . . . . . 9 (𝑦𝑌, 𝑧𝑍𝐶) = (𝑦𝑌, 𝑧𝑍𝐶)
2322fmpo 8094 . . . . . . . 8 (∀𝑦𝑌𝑧𝑍 𝐶 𝑀 ↔ (𝑦𝑌, 𝑧𝑍𝐶):(𝑌 × 𝑍)⟶ 𝑀)
2421, 23sylibr 234 . . . . . . 7 (𝜑 → ∀𝑦𝑌𝑧𝑍 𝐶 𝑀)
25 r2al 3194 . . . . . . 7 (∀𝑦𝑌𝑧𝑍 𝐶 𝑀 ↔ ∀𝑦𝑧((𝑦𝑌𝑧𝑍) → 𝐶 𝑀))
2624, 25sylib 218 . . . . . 6 (𝜑 → ∀𝑦𝑧((𝑦𝑌𝑧𝑍) → 𝐶 𝑀))
2726adantr 480 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑦𝑧((𝑦𝑌𝑧𝑍) → 𝐶 𝑀))
28 eleq1 2828 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦𝑌𝐴𝑌))
29 eleq1 2828 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝑍𝐵𝑍))
3028, 29bi2anan9 638 . . . . . . 7 ((𝑦 = 𝐴𝑧 = 𝐵) → ((𝑦𝑌𝑧𝑍) ↔ (𝐴𝑌𝐵𝑍)))
31 cnmpt12.d . . . . . . . 8 ((𝑦 = 𝐴𝑧 = 𝐵) → 𝐶 = 𝐷)
3231eleq1d 2825 . . . . . . 7 ((𝑦 = 𝐴𝑧 = 𝐵) → (𝐶 𝑀𝐷 𝑀))
3330, 32imbi12d 344 . . . . . 6 ((𝑦 = 𝐴𝑧 = 𝐵) → (((𝑦𝑌𝑧𝑍) → 𝐶 𝑀) ↔ ((𝐴𝑌𝐵𝑍) → 𝐷 𝑀)))
3433spc2gv 3599 . . . . 5 ((𝐴𝑌𝐵𝑍) → (∀𝑦𝑧((𝑦𝑌𝑧𝑍) → 𝐶 𝑀) → ((𝐴𝑌𝐵𝑍) → 𝐷 𝑀)))
3512, 27, 12, 34syl3c 66 . . . 4 ((𝜑𝑥𝑋) → 𝐷 𝑀)
3631, 22ovmpoga 7588 . . . 4 ((𝐴𝑌𝐵𝑍𝐷 𝑀) → (𝐴(𝑦𝑌, 𝑧𝑍𝐶)𝐵) = 𝐷)
376, 11, 35, 36syl3anc 1372 . . 3 ((𝜑𝑥𝑋) → (𝐴(𝑦𝑌, 𝑧𝑍𝐶)𝐵) = 𝐷)
3837mpteq2dva 5241 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴(𝑦𝑌, 𝑧𝑍𝐶)𝐵)) = (𝑥𝑋𝐷))
391, 3, 8, 15cnmpt12f 23675 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴(𝑦𝑌, 𝑧𝑍𝐶)𝐵)) ∈ (𝐽 Cn 𝑀))
4038, 39eqeltrrd 2841 1 (𝜑 → (𝑥𝑋𝐷) ∈ (𝐽 Cn 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wcel 2107  wral 3060   cuni 4906  cmpt 5224   × cxp 5682  wf 6556  cfv 6560  (class class class)co 7432  cmpo 7434  Topctop 22900  TopOnctopon 22917   Cn ccn 23233   ×t ctx 23569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-map 8869  df-topgen 17489  df-top 22901  df-topon 22918  df-bases 22954  df-cn 23236  df-tx 23571
This theorem is referenced by:  cnmptkk  23692  cnmptk1p  23694  divccn  24898  iihalf1cn  24960  iihalf2cn  24963  icchmeo  24972  pcocn  25051  pcopt  25056  pcopt2  25057  pcoass  25058  mulcncf  25481  plycn  26301  psercn2  26467  resqrtcn  26793  sqrtcn  26794  efrlim  27013  rmulccn  33928  pl1cn  33955  cxpcncf1  34611  cvxpconn  35248  knoppcnlem10  36504  fprodcnlem  45619  cxpcncf2  45919
  Copyright terms: Public domain W3C validator