MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt12 Structured version   Visualization version   GIF version

Theorem cnmpt12 22726
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt1t.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
cnmpt12.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt12.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmpt12.c (𝜑 → (𝑦𝑌, 𝑧𝑍𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀))
cnmpt12.d ((𝑦 = 𝐴𝑧 = 𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
cnmpt12 (𝜑 → (𝑥𝑋𝐷) ∈ (𝐽 Cn 𝑀))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑧,𝐵   𝑦,𝐷,𝑧   𝑥,𝑦   𝜑,𝑥   𝑥,𝐽,𝑦   𝑥,𝑧,𝑀,𝑦   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑦,𝑧)   𝐷(𝑥)   𝐽(𝑧)   𝐾(𝑧)   𝐿(𝑧)

Proof of Theorem cnmpt12
StepHypRef Expression
1 cnmptid.j . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmpt12.k . . . . . 6 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 cnmpt11.a . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
4 cnf2 22308 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐴):𝑋𝑌)
51, 2, 3, 4syl3anc 1369 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋𝑌)
65fvmptelrn 6969 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
7 cnmpt12.l . . . . . 6 (𝜑𝐿 ∈ (TopOn‘𝑍))
8 cnmpt1t.b . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
9 cnf2 22308 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥𝑋𝐵):𝑋𝑍)
101, 7, 8, 9syl3anc 1369 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋𝑍)
1110fvmptelrn 6969 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑍)
126, 11jca 511 . . . . 5 ((𝜑𝑥𝑋) → (𝐴𝑌𝐵𝑍))
13 txtopon 22650 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)))
142, 7, 13syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)))
15 cnmpt12.c . . . . . . . . . . 11 (𝜑 → (𝑦𝑌, 𝑧𝑍𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀))
16 cntop2 22300 . . . . . . . . . . 11 ((𝑦𝑌, 𝑧𝑍𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀) → 𝑀 ∈ Top)
1715, 16syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ Top)
18 toptopon2 21975 . . . . . . . . . 10 (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘ 𝑀))
1917, 18sylib 217 . . . . . . . . 9 (𝜑𝑀 ∈ (TopOn‘ 𝑀))
20 cnf2 22308 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)) ∧ 𝑀 ∈ (TopOn‘ 𝑀) ∧ (𝑦𝑌, 𝑧𝑍𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀)) → (𝑦𝑌, 𝑧𝑍𝐶):(𝑌 × 𝑍)⟶ 𝑀)
2114, 19, 15, 20syl3anc 1369 . . . . . . . 8 (𝜑 → (𝑦𝑌, 𝑧𝑍𝐶):(𝑌 × 𝑍)⟶ 𝑀)
22 eqid 2738 . . . . . . . . 9 (𝑦𝑌, 𝑧𝑍𝐶) = (𝑦𝑌, 𝑧𝑍𝐶)
2322fmpo 7881 . . . . . . . 8 (∀𝑦𝑌𝑧𝑍 𝐶 𝑀 ↔ (𝑦𝑌, 𝑧𝑍𝐶):(𝑌 × 𝑍)⟶ 𝑀)
2421, 23sylibr 233 . . . . . . 7 (𝜑 → ∀𝑦𝑌𝑧𝑍 𝐶 𝑀)
25 r2al 3124 . . . . . . 7 (∀𝑦𝑌𝑧𝑍 𝐶 𝑀 ↔ ∀𝑦𝑧((𝑦𝑌𝑧𝑍) → 𝐶 𝑀))
2624, 25sylib 217 . . . . . 6 (𝜑 → ∀𝑦𝑧((𝑦𝑌𝑧𝑍) → 𝐶 𝑀))
2726adantr 480 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑦𝑧((𝑦𝑌𝑧𝑍) → 𝐶 𝑀))
28 eleq1 2826 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦𝑌𝐴𝑌))
29 eleq1 2826 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝑍𝐵𝑍))
3028, 29bi2anan9 635 . . . . . . 7 ((𝑦 = 𝐴𝑧 = 𝐵) → ((𝑦𝑌𝑧𝑍) ↔ (𝐴𝑌𝐵𝑍)))
31 cnmpt12.d . . . . . . . 8 ((𝑦 = 𝐴𝑧 = 𝐵) → 𝐶 = 𝐷)
3231eleq1d 2823 . . . . . . 7 ((𝑦 = 𝐴𝑧 = 𝐵) → (𝐶 𝑀𝐷 𝑀))
3330, 32imbi12d 344 . . . . . 6 ((𝑦 = 𝐴𝑧 = 𝐵) → (((𝑦𝑌𝑧𝑍) → 𝐶 𝑀) ↔ ((𝐴𝑌𝐵𝑍) → 𝐷 𝑀)))
3433spc2gv 3529 . . . . 5 ((𝐴𝑌𝐵𝑍) → (∀𝑦𝑧((𝑦𝑌𝑧𝑍) → 𝐶 𝑀) → ((𝐴𝑌𝐵𝑍) → 𝐷 𝑀)))
3512, 27, 12, 34syl3c 66 . . . 4 ((𝜑𝑥𝑋) → 𝐷 𝑀)
3631, 22ovmpoga 7405 . . . 4 ((𝐴𝑌𝐵𝑍𝐷 𝑀) → (𝐴(𝑦𝑌, 𝑧𝑍𝐶)𝐵) = 𝐷)
376, 11, 35, 36syl3anc 1369 . . 3 ((𝜑𝑥𝑋) → (𝐴(𝑦𝑌, 𝑧𝑍𝐶)𝐵) = 𝐷)
3837mpteq2dva 5170 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴(𝑦𝑌, 𝑧𝑍𝐶)𝐵)) = (𝑥𝑋𝐷))
391, 3, 8, 15cnmpt12f 22725 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴(𝑦𝑌, 𝑧𝑍𝐶)𝐵)) ∈ (𝐽 Cn 𝑀))
4038, 39eqeltrrd 2840 1 (𝜑 → (𝑥𝑋𝐷) ∈ (𝐽 Cn 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wcel 2108  wral 3063   cuni 4836  cmpt 5153   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  Topctop 21950  TopOnctopon 21967   Cn ccn 22283   ×t ctx 22619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cn 22286  df-tx 22621
This theorem is referenced by:  cnmptkk  22742  cnmptk1p  22744  pcocn  24086  pcopt  24091  pcopt2  24092  pcoass  24093  resqrtcn  25807  sqrtcn  25808  rmulccn  31780  pl1cn  31807  cxpcncf1  32475  cxpcncf2  43330
  Copyright terms: Public domain W3C validator