Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpolconN Structured version   Visualization version   GIF version

Theorem lpolconN 40000
Description: Contraposition property of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolcon.v 𝑉 = (Baseβ€˜π‘Š)
lpolcon.p 𝑃 = (LPolβ€˜π‘Š)
lpolcon.w (πœ‘ β†’ π‘Š ∈ 𝑋)
lpolcon.o (πœ‘ β†’ βŠ₯ ∈ 𝑃)
lpolcon.x (πœ‘ β†’ 𝑋 βŠ† 𝑉)
lpolcon.y (πœ‘ β†’ π‘Œ βŠ† 𝑉)
lpolcon.c (πœ‘ β†’ 𝑋 βŠ† π‘Œ)
Assertion
Ref Expression
lpolconN (πœ‘ β†’ ( βŠ₯ β€˜π‘Œ) βŠ† ( βŠ₯ β€˜π‘‹))

Proof of Theorem lpolconN
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpolcon.o . . 3 (πœ‘ β†’ βŠ₯ ∈ 𝑃)
2 lpolcon.w . . . 4 (πœ‘ β†’ π‘Š ∈ 𝑋)
3 lpolcon.v . . . . 5 𝑉 = (Baseβ€˜π‘Š)
4 eqid 2733 . . . . 5 (LSubSpβ€˜π‘Š) = (LSubSpβ€˜π‘Š)
5 eqid 2733 . . . . 5 (0gβ€˜π‘Š) = (0gβ€˜π‘Š)
6 eqid 2733 . . . . 5 (LSAtomsβ€˜π‘Š) = (LSAtomsβ€˜π‘Š)
7 eqid 2733 . . . . 5 (LSHypβ€˜π‘Š) = (LSHypβ€˜π‘Š)
8 lpolcon.p . . . . 5 𝑃 = (LPolβ€˜π‘Š)
93, 4, 5, 6, 7, 8islpolN 39996 . . . 4 (π‘Š ∈ 𝑋 β†’ ( βŠ₯ ∈ 𝑃 ↔ ( βŠ₯ :𝒫 π‘‰βŸΆ(LSubSpβ€˜π‘Š) ∧ (( βŠ₯ β€˜π‘‰) = {(0gβ€˜π‘Š)} ∧ βˆ€π‘₯βˆ€π‘¦((π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯)) ∧ βˆ€π‘₯ ∈ (LSAtomsβ€˜π‘Š)(( βŠ₯ β€˜π‘₯) ∈ (LSHypβ€˜π‘Š) ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯)))))
102, 9syl 17 . . 3 (πœ‘ β†’ ( βŠ₯ ∈ 𝑃 ↔ ( βŠ₯ :𝒫 π‘‰βŸΆ(LSubSpβ€˜π‘Š) ∧ (( βŠ₯ β€˜π‘‰) = {(0gβ€˜π‘Š)} ∧ βˆ€π‘₯βˆ€π‘¦((π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯)) ∧ βˆ€π‘₯ ∈ (LSAtomsβ€˜π‘Š)(( βŠ₯ β€˜π‘₯) ∈ (LSHypβ€˜π‘Š) ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯)))))
111, 10mpbid 231 . 2 (πœ‘ β†’ ( βŠ₯ :𝒫 π‘‰βŸΆ(LSubSpβ€˜π‘Š) ∧ (( βŠ₯ β€˜π‘‰) = {(0gβ€˜π‘Š)} ∧ βˆ€π‘₯βˆ€π‘¦((π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯)) ∧ βˆ€π‘₯ ∈ (LSAtomsβ€˜π‘Š)(( βŠ₯ β€˜π‘₯) ∈ (LSHypβ€˜π‘Š) ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯))))
12 simpr2 1196 . . 3 (( βŠ₯ :𝒫 π‘‰βŸΆ(LSubSpβ€˜π‘Š) ∧ (( βŠ₯ β€˜π‘‰) = {(0gβ€˜π‘Š)} ∧ βˆ€π‘₯βˆ€π‘¦((π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯)) ∧ βˆ€π‘₯ ∈ (LSAtomsβ€˜π‘Š)(( βŠ₯ β€˜π‘₯) ∈ (LSHypβ€˜π‘Š) ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯))) β†’ βˆ€π‘₯βˆ€π‘¦((π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯)))
13 lpolcon.x . . . . 5 (πœ‘ β†’ 𝑋 βŠ† 𝑉)
14 lpolcon.y . . . . 5 (πœ‘ β†’ π‘Œ βŠ† 𝑉)
15 lpolcon.c . . . . 5 (πœ‘ β†’ 𝑋 βŠ† π‘Œ)
1613, 14, 153jca 1129 . . . 4 (πœ‘ β†’ (𝑋 βŠ† 𝑉 ∧ π‘Œ βŠ† 𝑉 ∧ 𝑋 βŠ† π‘Œ))
173fvexi 6860 . . . . . . 7 𝑉 ∈ V
1817elpw2 5306 . . . . . 6 (𝑋 ∈ 𝒫 𝑉 ↔ 𝑋 βŠ† 𝑉)
1913, 18sylibr 233 . . . . 5 (πœ‘ β†’ 𝑋 ∈ 𝒫 𝑉)
2017elpw2 5306 . . . . . 6 (π‘Œ ∈ 𝒫 𝑉 ↔ π‘Œ βŠ† 𝑉)
2114, 20sylibr 233 . . . . 5 (πœ‘ β†’ π‘Œ ∈ 𝒫 𝑉)
22 sseq1 3973 . . . . . . . . 9 (π‘₯ = 𝑋 β†’ (π‘₯ βŠ† 𝑉 ↔ 𝑋 βŠ† 𝑉))
23 biidd 262 . . . . . . . . 9 (π‘₯ = 𝑋 β†’ (𝑦 βŠ† 𝑉 ↔ 𝑦 βŠ† 𝑉))
24 sseq1 3973 . . . . . . . . 9 (π‘₯ = 𝑋 β†’ (π‘₯ βŠ† 𝑦 ↔ 𝑋 βŠ† 𝑦))
2522, 23, 243anbi123d 1437 . . . . . . . 8 (π‘₯ = 𝑋 β†’ ((π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦) ↔ (𝑋 βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ 𝑋 βŠ† 𝑦)))
26 fveq2 6846 . . . . . . . . 9 (π‘₯ = 𝑋 β†’ ( βŠ₯ β€˜π‘₯) = ( βŠ₯ β€˜π‘‹))
2726sseq2d 3980 . . . . . . . 8 (π‘₯ = 𝑋 β†’ (( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯) ↔ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘‹)))
2825, 27imbi12d 345 . . . . . . 7 (π‘₯ = 𝑋 β†’ (((π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯)) ↔ ((𝑋 βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ 𝑋 βŠ† 𝑦) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘‹))))
29 biidd 262 . . . . . . . . 9 (𝑦 = π‘Œ β†’ (𝑋 βŠ† 𝑉 ↔ 𝑋 βŠ† 𝑉))
30 sseq1 3973 . . . . . . . . 9 (𝑦 = π‘Œ β†’ (𝑦 βŠ† 𝑉 ↔ π‘Œ βŠ† 𝑉))
31 sseq2 3974 . . . . . . . . 9 (𝑦 = π‘Œ β†’ (𝑋 βŠ† 𝑦 ↔ 𝑋 βŠ† π‘Œ))
3229, 30, 313anbi123d 1437 . . . . . . . 8 (𝑦 = π‘Œ β†’ ((𝑋 βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ 𝑋 βŠ† 𝑦) ↔ (𝑋 βŠ† 𝑉 ∧ π‘Œ βŠ† 𝑉 ∧ 𝑋 βŠ† π‘Œ)))
33 fveq2 6846 . . . . . . . . 9 (𝑦 = π‘Œ β†’ ( βŠ₯ β€˜π‘¦) = ( βŠ₯ β€˜π‘Œ))
3433sseq1d 3979 . . . . . . . 8 (𝑦 = π‘Œ β†’ (( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘‹) ↔ ( βŠ₯ β€˜π‘Œ) βŠ† ( βŠ₯ β€˜π‘‹)))
3532, 34imbi12d 345 . . . . . . 7 (𝑦 = π‘Œ β†’ (((𝑋 βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ 𝑋 βŠ† 𝑦) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘‹)) ↔ ((𝑋 βŠ† 𝑉 ∧ π‘Œ βŠ† 𝑉 ∧ 𝑋 βŠ† π‘Œ) β†’ ( βŠ₯ β€˜π‘Œ) βŠ† ( βŠ₯ β€˜π‘‹))))
3628, 35sylan9bb 511 . . . . . 6 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ (((π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯)) ↔ ((𝑋 βŠ† 𝑉 ∧ π‘Œ βŠ† 𝑉 ∧ 𝑋 βŠ† π‘Œ) β†’ ( βŠ₯ β€˜π‘Œ) βŠ† ( βŠ₯ β€˜π‘‹))))
3736spc2gv 3561 . . . . 5 ((𝑋 ∈ 𝒫 𝑉 ∧ π‘Œ ∈ 𝒫 𝑉) β†’ (βˆ€π‘₯βˆ€π‘¦((π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯)) β†’ ((𝑋 βŠ† 𝑉 ∧ π‘Œ βŠ† 𝑉 ∧ 𝑋 βŠ† π‘Œ) β†’ ( βŠ₯ β€˜π‘Œ) βŠ† ( βŠ₯ β€˜π‘‹))))
3819, 21, 37syl2anc 585 . . . 4 (πœ‘ β†’ (βˆ€π‘₯βˆ€π‘¦((π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯)) β†’ ((𝑋 βŠ† 𝑉 ∧ π‘Œ βŠ† 𝑉 ∧ 𝑋 βŠ† π‘Œ) β†’ ( βŠ₯ β€˜π‘Œ) βŠ† ( βŠ₯ β€˜π‘‹))))
3916, 38mpid 44 . . 3 (πœ‘ β†’ (βˆ€π‘₯βˆ€π‘¦((π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯)) β†’ ( βŠ₯ β€˜π‘Œ) βŠ† ( βŠ₯ β€˜π‘‹)))
4012, 39syl5 34 . 2 (πœ‘ β†’ (( βŠ₯ :𝒫 π‘‰βŸΆ(LSubSpβ€˜π‘Š) ∧ (( βŠ₯ β€˜π‘‰) = {(0gβ€˜π‘Š)} ∧ βˆ€π‘₯βˆ€π‘¦((π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯)) ∧ βˆ€π‘₯ ∈ (LSAtomsβ€˜π‘Š)(( βŠ₯ β€˜π‘₯) ∈ (LSHypβ€˜π‘Š) ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯))) β†’ ( βŠ₯ β€˜π‘Œ) βŠ† ( βŠ₯ β€˜π‘‹)))
4111, 40mpd 15 1 (πœ‘ β†’ ( βŠ₯ β€˜π‘Œ) βŠ† ( βŠ₯ β€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088  βˆ€wal 1540   = wceq 1542   ∈ wcel 2107  βˆ€wral 3061   βŠ† wss 3914  π’« cpw 4564  {csn 4590  βŸΆwf 6496  β€˜cfv 6500  Basecbs 17091  0gc0g 17329  LSubSpclss 20436  LSAtomsclsa 37486  LSHypclsh 37487  LPolclpoN 39993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-map 8773  df-lpolN 39994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator