| Step | Hyp | Ref
| Expression |
| 1 | | lpolcon.o |
. . 3
⊢ (𝜑 → ⊥ ∈ 𝑃) |
| 2 | | lpolcon.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| 3 | | lpolcon.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
| 4 | | eqid 2736 |
. . . . 5
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
| 5 | | eqid 2736 |
. . . . 5
⊢
(0g‘𝑊) = (0g‘𝑊) |
| 6 | | eqid 2736 |
. . . . 5
⊢
(LSAtoms‘𝑊) =
(LSAtoms‘𝑊) |
| 7 | | eqid 2736 |
. . . . 5
⊢
(LSHyp‘𝑊) =
(LSHyp‘𝑊) |
| 8 | | lpolcon.p |
. . . . 5
⊢ 𝑃 = (LPol‘𝑊) |
| 9 | 3, 4, 5, 6, 7, 8 | islpolN 41507 |
. . . 4
⊢ (𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥))))) |
| 10 | 2, 9 | syl 17 |
. . 3
⊢ (𝜑 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥))))) |
| 11 | 1, 10 | mpbid 232 |
. 2
⊢ (𝜑 → ( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥)))) |
| 12 | | simpr2 1196 |
. . 3
⊢ (( ⊥
:𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥))) → ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥))) |
| 13 | | lpolcon.x |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
| 14 | | lpolcon.y |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ 𝑉) |
| 15 | | lpolcon.c |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝑌) |
| 16 | 13, 14, 15 | 3jca 1128 |
. . . 4
⊢ (𝜑 → (𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌)) |
| 17 | 3 | fvexi 6895 |
. . . . . . 7
⊢ 𝑉 ∈ V |
| 18 | 17 | elpw2 5309 |
. . . . . 6
⊢ (𝑋 ∈ 𝒫 𝑉 ↔ 𝑋 ⊆ 𝑉) |
| 19 | 13, 18 | sylibr 234 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑉) |
| 20 | 17 | elpw2 5309 |
. . . . . 6
⊢ (𝑌 ∈ 𝒫 𝑉 ↔ 𝑌 ⊆ 𝑉) |
| 21 | 14, 20 | sylibr 234 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝒫 𝑉) |
| 22 | | sseq1 3989 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝑉 ↔ 𝑋 ⊆ 𝑉)) |
| 23 | | biidd 262 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑦 ⊆ 𝑉 ↔ 𝑦 ⊆ 𝑉)) |
| 24 | | sseq1 3989 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑦)) |
| 25 | 22, 23, 24 | 3anbi123d 1438 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) ↔ (𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦))) |
| 26 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → ( ⊥ ‘𝑥) = ( ⊥ ‘𝑋)) |
| 27 | 26 | sseq2d 3996 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥) ↔ ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑋))) |
| 28 | 25, 27 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ↔ ((𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑋)))) |
| 29 | | biidd 262 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → (𝑋 ⊆ 𝑉 ↔ 𝑋 ⊆ 𝑉)) |
| 30 | | sseq1 3989 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → (𝑦 ⊆ 𝑉 ↔ 𝑌 ⊆ 𝑉)) |
| 31 | | sseq2 3990 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → (𝑋 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑌)) |
| 32 | 29, 30, 31 | 3anbi123d 1438 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → ((𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦) ↔ (𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌))) |
| 33 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → ( ⊥ ‘𝑦) = ( ⊥ ‘𝑌)) |
| 34 | 33 | sseq1d 3995 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → (( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑋) ↔ ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋))) |
| 35 | 32, 34 | imbi12d 344 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → (((𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑋)) ↔ ((𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)))) |
| 36 | 28, 35 | sylan9bb 509 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ↔ ((𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)))) |
| 37 | 36 | spc2gv 3584 |
. . . . 5
⊢ ((𝑋 ∈ 𝒫 𝑉 ∧ 𝑌 ∈ 𝒫 𝑉) → (∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) → ((𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)))) |
| 38 | 19, 21, 37 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) → ((𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)))) |
| 39 | 16, 38 | mpid 44 |
. . 3
⊢ (𝜑 → (∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋))) |
| 40 | 12, 39 | syl5 34 |
. 2
⊢ (𝜑 → (( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥))) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋))) |
| 41 | 11, 40 | mpd 15 |
1
⊢ (𝜑 → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) |