Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpolconN Structured version   Visualization version   GIF version

Theorem lpolconN 41596
Description: Contraposition property of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolcon.v 𝑉 = (Base‘𝑊)
lpolcon.p 𝑃 = (LPol‘𝑊)
lpolcon.w (𝜑𝑊𝑋)
lpolcon.o (𝜑𝑃)
lpolcon.x (𝜑𝑋𝑉)
lpolcon.y (𝜑𝑌𝑉)
lpolcon.c (𝜑𝑋𝑌)
Assertion
Ref Expression
lpolconN (𝜑 → ( 𝑌) ⊆ ( 𝑋))

Proof of Theorem lpolconN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpolcon.o . . 3 (𝜑𝑃)
2 lpolcon.w . . . 4 (𝜑𝑊𝑋)
3 lpolcon.v . . . . 5 𝑉 = (Base‘𝑊)
4 eqid 2731 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 eqid 2731 . . . . 5 (0g𝑊) = (0g𝑊)
6 eqid 2731 . . . . 5 (LSAtoms‘𝑊) = (LSAtoms‘𝑊)
7 eqid 2731 . . . . 5 (LSHyp‘𝑊) = (LSHyp‘𝑊)
8 lpolcon.p . . . . 5 𝑃 = (LPol‘𝑊)
93, 4, 5, 6, 7, 8islpolN 41592 . . . 4 (𝑊𝑋 → ( 𝑃 ↔ ( :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( 𝑉) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥)))))
102, 9syl 17 . . 3 (𝜑 → ( 𝑃 ↔ ( :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( 𝑉) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥)))))
111, 10mpbid 232 . 2 (𝜑 → ( :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( 𝑉) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))))
12 simpr2 1196 . . 3 (( :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( 𝑉) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))) → ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)))
13 lpolcon.x . . . . 5 (𝜑𝑋𝑉)
14 lpolcon.y . . . . 5 (𝜑𝑌𝑉)
15 lpolcon.c . . . . 5 (𝜑𝑋𝑌)
1613, 14, 153jca 1128 . . . 4 (𝜑 → (𝑋𝑉𝑌𝑉𝑋𝑌))
173fvexi 6836 . . . . . . 7 𝑉 ∈ V
1817elpw2 5270 . . . . . 6 (𝑋 ∈ 𝒫 𝑉𝑋𝑉)
1913, 18sylibr 234 . . . . 5 (𝜑𝑋 ∈ 𝒫 𝑉)
2017elpw2 5270 . . . . . 6 (𝑌 ∈ 𝒫 𝑉𝑌𝑉)
2114, 20sylibr 234 . . . . 5 (𝜑𝑌 ∈ 𝒫 𝑉)
22 sseq1 3955 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥𝑉𝑋𝑉))
23 biidd 262 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑦𝑉𝑦𝑉))
24 sseq1 3955 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥𝑦𝑋𝑦))
2522, 23, 243anbi123d 1438 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑥𝑉𝑦𝑉𝑥𝑦) ↔ (𝑋𝑉𝑦𝑉𝑋𝑦)))
26 fveq2 6822 . . . . . . . . 9 (𝑥 = 𝑋 → ( 𝑥) = ( 𝑋))
2726sseq2d 3962 . . . . . . . 8 (𝑥 = 𝑋 → (( 𝑦) ⊆ ( 𝑥) ↔ ( 𝑦) ⊆ ( 𝑋)))
2825, 27imbi12d 344 . . . . . . 7 (𝑥 = 𝑋 → (((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ↔ ((𝑋𝑉𝑦𝑉𝑋𝑦) → ( 𝑦) ⊆ ( 𝑋))))
29 biidd 262 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑋𝑉𝑋𝑉))
30 sseq1 3955 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑦𝑉𝑌𝑉))
31 sseq2 3956 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑋𝑦𝑋𝑌))
3229, 30, 313anbi123d 1438 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑋𝑉𝑦𝑉𝑋𝑦) ↔ (𝑋𝑉𝑌𝑉𝑋𝑌)))
33 fveq2 6822 . . . . . . . . 9 (𝑦 = 𝑌 → ( 𝑦) = ( 𝑌))
3433sseq1d 3961 . . . . . . . 8 (𝑦 = 𝑌 → (( 𝑦) ⊆ ( 𝑋) ↔ ( 𝑌) ⊆ ( 𝑋)))
3532, 34imbi12d 344 . . . . . . 7 (𝑦 = 𝑌 → (((𝑋𝑉𝑦𝑉𝑋𝑦) → ( 𝑦) ⊆ ( 𝑋)) ↔ ((𝑋𝑉𝑌𝑉𝑋𝑌) → ( 𝑌) ⊆ ( 𝑋))))
3628, 35sylan9bb 509 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ↔ ((𝑋𝑉𝑌𝑉𝑋𝑌) → ( 𝑌) ⊆ ( 𝑋))))
3736spc2gv 3550 . . . . 5 ((𝑋 ∈ 𝒫 𝑉𝑌 ∈ 𝒫 𝑉) → (∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) → ((𝑋𝑉𝑌𝑉𝑋𝑌) → ( 𝑌) ⊆ ( 𝑋))))
3819, 21, 37syl2anc 584 . . . 4 (𝜑 → (∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) → ((𝑋𝑉𝑌𝑉𝑋𝑌) → ( 𝑌) ⊆ ( 𝑋))))
3916, 38mpid 44 . . 3 (𝜑 → (∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) → ( 𝑌) ⊆ ( 𝑋)))
4012, 39syl5 34 . 2 (𝜑 → (( :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( 𝑉) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))) → ( 𝑌) ⊆ ( 𝑋)))
4111, 40mpd 15 1 (𝜑 → ( 𝑌) ⊆ ( 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2111  wral 3047  wss 3897  𝒫 cpw 4547  {csn 4573  wf 6477  cfv 6481  Basecbs 17120  0gc0g 17343  LSubSpclss 20864  LSAtomsclsa 39083  LSHypclsh 39084  LPolclpoN 41589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-lpolN 41590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator