Step | Hyp | Ref
| Expression |
1 | | lpolcon.o |
. . 3
β’ (π β β₯ β π) |
2 | | lpolcon.w |
. . . 4
β’ (π β π β π) |
3 | | lpolcon.v |
. . . . 5
β’ π = (Baseβπ) |
4 | | eqid 2733 |
. . . . 5
β’
(LSubSpβπ) =
(LSubSpβπ) |
5 | | eqid 2733 |
. . . . 5
β’
(0gβπ) = (0gβπ) |
6 | | eqid 2733 |
. . . . 5
β’
(LSAtomsβπ) =
(LSAtomsβπ) |
7 | | eqid 2733 |
. . . . 5
β’
(LSHypβπ) =
(LSHypβπ) |
8 | | lpolcon.p |
. . . . 5
β’ π = (LPolβπ) |
9 | 3, 4, 5, 6, 7, 8 | islpolN 39996 |
. . . 4
β’ (π β π β ( β₯ β π β ( β₯ :π« πβΆ(LSubSpβπ) β§ (( β₯ βπ) = {(0gβπ)} β§ βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β§ βπ₯ β (LSAtomsβπ)(( β₯ βπ₯) β (LSHypβπ) β§ ( β₯ β( β₯
βπ₯)) = π₯))))) |
10 | 2, 9 | syl 17 |
. . 3
β’ (π β ( β₯ β π β ( β₯ :π« πβΆ(LSubSpβπ) β§ (( β₯ βπ) = {(0gβπ)} β§ βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β§ βπ₯ β (LSAtomsβπ)(( β₯ βπ₯) β (LSHypβπ) β§ ( β₯ β( β₯
βπ₯)) = π₯))))) |
11 | 1, 10 | mpbid 231 |
. 2
β’ (π β ( β₯ :π« πβΆ(LSubSpβπ) β§ (( β₯ βπ) = {(0gβπ)} β§ βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β§ βπ₯ β (LSAtomsβπ)(( β₯ βπ₯) β (LSHypβπ) β§ ( β₯ β( β₯
βπ₯)) = π₯)))) |
12 | | simpr2 1196 |
. . 3
β’ (( β₯
:π« πβΆ(LSubSpβπ) β§ (( β₯ βπ) = {(0gβπ)} β§ βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β§ βπ₯ β (LSAtomsβπ)(( β₯ βπ₯) β (LSHypβπ) β§ ( β₯ β( β₯
βπ₯)) = π₯))) β βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯))) |
13 | | lpolcon.x |
. . . . 5
β’ (π β π β π) |
14 | | lpolcon.y |
. . . . 5
β’ (π β π β π) |
15 | | lpolcon.c |
. . . . 5
β’ (π β π β π) |
16 | 13, 14, 15 | 3jca 1129 |
. . . 4
β’ (π β (π β π β§ π β π β§ π β π)) |
17 | 3 | fvexi 6860 |
. . . . . . 7
β’ π β V |
18 | 17 | elpw2 5306 |
. . . . . 6
β’ (π β π« π β π β π) |
19 | 13, 18 | sylibr 233 |
. . . . 5
β’ (π β π β π« π) |
20 | 17 | elpw2 5306 |
. . . . . 6
β’ (π β π« π β π β π) |
21 | 14, 20 | sylibr 233 |
. . . . 5
β’ (π β π β π« π) |
22 | | sseq1 3973 |
. . . . . . . . 9
β’ (π₯ = π β (π₯ β π β π β π)) |
23 | | biidd 262 |
. . . . . . . . 9
β’ (π₯ = π β (π¦ β π β π¦ β π)) |
24 | | sseq1 3973 |
. . . . . . . . 9
β’ (π₯ = π β (π₯ β π¦ β π β π¦)) |
25 | 22, 23, 24 | 3anbi123d 1437 |
. . . . . . . 8
β’ (π₯ = π β ((π₯ β π β§ π¦ β π β§ π₯ β π¦) β (π β π β§ π¦ β π β§ π β π¦))) |
26 | | fveq2 6846 |
. . . . . . . . 9
β’ (π₯ = π β ( β₯ βπ₯) = ( β₯ βπ)) |
27 | 26 | sseq2d 3980 |
. . . . . . . 8
β’ (π₯ = π β (( β₯ βπ¦) β ( β₯ βπ₯) β ( β₯ βπ¦) β ( β₯ βπ))) |
28 | 25, 27 | imbi12d 345 |
. . . . . . 7
β’ (π₯ = π β (((π₯ β π β§ π¦ β π β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β ((π β π β§ π¦ β π β§ π β π¦) β ( β₯ βπ¦) β ( β₯ βπ)))) |
29 | | biidd 262 |
. . . . . . . . 9
β’ (π¦ = π β (π β π β π β π)) |
30 | | sseq1 3973 |
. . . . . . . . 9
β’ (π¦ = π β (π¦ β π β π β π)) |
31 | | sseq2 3974 |
. . . . . . . . 9
β’ (π¦ = π β (π β π¦ β π β π)) |
32 | 29, 30, 31 | 3anbi123d 1437 |
. . . . . . . 8
β’ (π¦ = π β ((π β π β§ π¦ β π β§ π β π¦) β (π β π β§ π β π β§ π β π))) |
33 | | fveq2 6846 |
. . . . . . . . 9
β’ (π¦ = π β ( β₯ βπ¦) = ( β₯ βπ)) |
34 | 33 | sseq1d 3979 |
. . . . . . . 8
β’ (π¦ = π β (( β₯ βπ¦) β ( β₯ βπ) β ( β₯ βπ) β ( β₯ βπ))) |
35 | 32, 34 | imbi12d 345 |
. . . . . . 7
β’ (π¦ = π β (((π β π β§ π¦ β π β§ π β π¦) β ( β₯ βπ¦) β ( β₯ βπ)) β ((π β π β§ π β π β§ π β π) β ( β₯ βπ) β ( β₯ βπ)))) |
36 | 28, 35 | sylan9bb 511 |
. . . . . 6
β’ ((π₯ = π β§ π¦ = π) β (((π₯ β π β§ π¦ β π β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β ((π β π β§ π β π β§ π β π) β ( β₯ βπ) β ( β₯ βπ)))) |
37 | 36 | spc2gv 3561 |
. . . . 5
β’ ((π β π« π β§ π β π« π) β (βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β ((π β π β§ π β π β§ π β π) β ( β₯ βπ) β ( β₯ βπ)))) |
38 | 19, 21, 37 | syl2anc 585 |
. . . 4
β’ (π β (βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β ((π β π β§ π β π β§ π β π) β ( β₯ βπ) β ( β₯ βπ)))) |
39 | 16, 38 | mpid 44 |
. . 3
β’ (π β (βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β ( β₯ βπ) β ( β₯ βπ))) |
40 | 12, 39 | syl5 34 |
. 2
β’ (π β (( β₯ :π« πβΆ(LSubSpβπ) β§ (( β₯ βπ) = {(0gβπ)} β§ βπ₯βπ¦((π₯ β π β§ π¦ β π β§ π₯ β π¦) β ( β₯ βπ¦) β ( β₯ βπ₯)) β§ βπ₯ β (LSAtomsβπ)(( β₯ βπ₯) β (LSHypβπ) β§ ( β₯ β( β₯
βπ₯)) = π₯))) β ( β₯ βπ) β ( β₯ βπ))) |
41 | 11, 40 | mpd 15 |
1
β’ (π β ( β₯ βπ) β ( β₯ βπ)) |