Step | Hyp | Ref
| Expression |
1 | | lpolcon.o |
. . 3
⊢ (𝜑 → ⊥ ∈ 𝑃) |
2 | | lpolcon.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ 𝑋) |
3 | | lpolcon.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
4 | | eqid 2758 |
. . . . 5
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
5 | | eqid 2758 |
. . . . 5
⊢
(0g‘𝑊) = (0g‘𝑊) |
6 | | eqid 2758 |
. . . . 5
⊢
(LSAtoms‘𝑊) =
(LSAtoms‘𝑊) |
7 | | eqid 2758 |
. . . . 5
⊢
(LSHyp‘𝑊) =
(LSHyp‘𝑊) |
8 | | lpolcon.p |
. . . . 5
⊢ 𝑃 = (LPol‘𝑊) |
9 | 3, 4, 5, 6, 7, 8 | islpolN 39094 |
. . . 4
⊢ (𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥))))) |
10 | 2, 9 | syl 17 |
. . 3
⊢ (𝜑 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥))))) |
11 | 1, 10 | mpbid 235 |
. 2
⊢ (𝜑 → ( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥)))) |
12 | | simpr2 1192 |
. . 3
⊢ (( ⊥
:𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥))) → ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥))) |
13 | | lpolcon.x |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
14 | | lpolcon.y |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ 𝑉) |
15 | | lpolcon.c |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝑌) |
16 | 13, 14, 15 | 3jca 1125 |
. . . 4
⊢ (𝜑 → (𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌)) |
17 | 3 | fvexi 6677 |
. . . . . . 7
⊢ 𝑉 ∈ V |
18 | 17 | elpw2 5219 |
. . . . . 6
⊢ (𝑋 ∈ 𝒫 𝑉 ↔ 𝑋 ⊆ 𝑉) |
19 | 13, 18 | sylibr 237 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑉) |
20 | 17 | elpw2 5219 |
. . . . . 6
⊢ (𝑌 ∈ 𝒫 𝑉 ↔ 𝑌 ⊆ 𝑉) |
21 | 14, 20 | sylibr 237 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝒫 𝑉) |
22 | | sseq1 3919 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝑉 ↔ 𝑋 ⊆ 𝑉)) |
23 | | biidd 265 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑦 ⊆ 𝑉 ↔ 𝑦 ⊆ 𝑉)) |
24 | | sseq1 3919 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑦)) |
25 | 22, 23, 24 | 3anbi123d 1433 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) ↔ (𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦))) |
26 | | fveq2 6663 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → ( ⊥ ‘𝑥) = ( ⊥ ‘𝑋)) |
27 | 26 | sseq2d 3926 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥) ↔ ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑋))) |
28 | 25, 27 | imbi12d 348 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ↔ ((𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑋)))) |
29 | | biidd 265 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → (𝑋 ⊆ 𝑉 ↔ 𝑋 ⊆ 𝑉)) |
30 | | sseq1 3919 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → (𝑦 ⊆ 𝑉 ↔ 𝑌 ⊆ 𝑉)) |
31 | | sseq2 3920 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → (𝑋 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑌)) |
32 | 29, 30, 31 | 3anbi123d 1433 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → ((𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦) ↔ (𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌))) |
33 | | fveq2 6663 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → ( ⊥ ‘𝑦) = ( ⊥ ‘𝑌)) |
34 | 33 | sseq1d 3925 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → (( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑋) ↔ ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋))) |
35 | 32, 34 | imbi12d 348 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → (((𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑋)) ↔ ((𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)))) |
36 | 28, 35 | sylan9bb 513 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ↔ ((𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)))) |
37 | 36 | spc2gv 3521 |
. . . . 5
⊢ ((𝑋 ∈ 𝒫 𝑉 ∧ 𝑌 ∈ 𝒫 𝑉) → (∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) → ((𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)))) |
38 | 19, 21, 37 | syl2anc 587 |
. . . 4
⊢ (𝜑 → (∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) → ((𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)))) |
39 | 16, 38 | mpid 44 |
. . 3
⊢ (𝜑 → (∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋))) |
40 | 12, 39 | syl5 34 |
. 2
⊢ (𝜑 → (( ⊥ :𝒫 𝑉⟶(LSubSp‘𝑊) ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥))) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋))) |
41 | 11, 40 | mpd 15 |
1
⊢ (𝜑 → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) |