Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elovmpo | Structured version Visualization version GIF version |
Description: Utility lemma for
two-parameter classes.
EDITORIAL: can simplify isghm 18834, islmhm 20289. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
Ref | Expression |
---|---|
elovmpo.d | ⊢ 𝐷 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) |
elovmpo.c | ⊢ 𝐶 ∈ V |
elovmpo.e | ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐸) |
Ref | Expression |
---|---|
elovmpo | ⊢ (𝐹 ∈ (𝑋𝐷𝑌) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elovmpo.d | . . . 4 ⊢ 𝐷 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | elmpocl 7511 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐷𝑌) → (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) |
3 | elovmpo.c | . . . . . . 7 ⊢ 𝐶 ∈ V | |
4 | 3 | gen2 1799 | . . . . . 6 ⊢ ∀𝑎∀𝑏 𝐶 ∈ V |
5 | elovmpo.e | . . . . . . . 8 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐸) | |
6 | 5 | eleq1d 2823 | . . . . . . 7 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝐶 ∈ V ↔ 𝐸 ∈ V)) |
7 | 6 | spc2gv 3539 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (∀𝑎∀𝑏 𝐶 ∈ V → 𝐸 ∈ V)) |
8 | 4, 7 | mpi 20 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝐸 ∈ V) |
9 | 5, 1 | ovmpoga 7427 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐸 ∈ V) → (𝑋𝐷𝑌) = 𝐸) |
10 | 8, 9 | mpd3an3 1461 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐷𝑌) = 𝐸) |
11 | 10 | eleq2d 2824 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐹 ∈ (𝑋𝐷𝑌) ↔ 𝐹 ∈ 𝐸)) |
12 | 2, 11 | biadanii 819 | . 2 ⊢ (𝐹 ∈ (𝑋𝐷𝑌) ↔ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝐹 ∈ 𝐸)) |
13 | df-3an 1088 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸) ↔ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝐹 ∈ 𝐸)) | |
14 | 12, 13 | bitr4i 277 | 1 ⊢ (𝐹 ∈ (𝑋𝐷𝑌) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∈ wcel 2106 Vcvv 3432 (class class class)co 7275 ∈ cmpo 7277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: isgim 18878 oppglsm 19247 islmim 20324 |
Copyright terms: Public domain | W3C validator |