| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elovmpo | Structured version Visualization version GIF version | ||
| Description: Utility lemma for
two-parameter classes.
EDITORIAL: can simplify islmhm 20961. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
| Ref | Expression |
|---|---|
| elovmpo.d | ⊢ 𝐷 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) |
| elovmpo.c | ⊢ 𝐶 ∈ V |
| elovmpo.e | ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐸) |
| Ref | Expression |
|---|---|
| elovmpo | ⊢ (𝐹 ∈ (𝑋𝐷𝑌) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovmpo.d | . . . 4 ⊢ 𝐷 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | elmpocl 7587 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐷𝑌) → (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) |
| 3 | elovmpo.c | . . . . . . 7 ⊢ 𝐶 ∈ V | |
| 4 | 3 | gen2 1797 | . . . . . 6 ⊢ ∀𝑎∀𝑏 𝐶 ∈ V |
| 5 | elovmpo.e | . . . . . . . 8 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐸) | |
| 6 | 5 | eleq1d 2816 | . . . . . . 7 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝐶 ∈ V ↔ 𝐸 ∈ V)) |
| 7 | 6 | spc2gv 3550 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (∀𝑎∀𝑏 𝐶 ∈ V → 𝐸 ∈ V)) |
| 8 | 4, 7 | mpi 20 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝐸 ∈ V) |
| 9 | 5, 1 | ovmpoga 7500 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐸 ∈ V) → (𝑋𝐷𝑌) = 𝐸) |
| 10 | 8, 9 | mpd3an3 1464 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐷𝑌) = 𝐸) |
| 11 | 10 | eleq2d 2817 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐹 ∈ (𝑋𝐷𝑌) ↔ 𝐹 ∈ 𝐸)) |
| 12 | 2, 11 | biadanii 821 | . 2 ⊢ (𝐹 ∈ (𝑋𝐷𝑌) ↔ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝐹 ∈ 𝐸)) |
| 13 | df-3an 1088 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸) ↔ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝐹 ∈ 𝐸)) | |
| 14 | 12, 13 | bitr4i 278 | 1 ⊢ (𝐹 ∈ (𝑋𝐷𝑌) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1539 = wceq 1541 ∈ wcel 2111 Vcvv 3436 (class class class)co 7346 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: isgim 19174 oppglsm 19554 islmim 20996 sn-isghm 42765 |
| Copyright terms: Public domain | W3C validator |