Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprsymrelfolem1 Structured version   Visualization version   GIF version

Theorem sprsymrelfolem1 47366
Description: Lemma 1 for sprsymrelfo 47371. (Contributed by AV, 22-Nov-2021.)
Hypothesis
Ref Expression
sprsymrelfo.q 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)}
Assertion
Ref Expression
sprsymrelfolem1 𝑄 ∈ 𝒫 (Pairs‘𝑉)
Distinct variable group:   𝑉,𝑞
Allowed substitution hints:   𝑄(𝑞,𝑎,𝑏)   𝑅(𝑞,𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem sprsymrelfolem1
StepHypRef Expression
1 sprsymrelfo.q . 2 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)}
2 fvex 6933 . . 3 (Pairs‘𝑉) ∈ V
3 ssrab2 4103 . . 3 {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ⊆ (Pairs‘𝑉)
42, 3elpwi2 5353 . 2 {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ∈ 𝒫 (Pairs‘𝑉)
51, 4eqeltri 2840 1 𝑄 ∈ 𝒫 (Pairs‘𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  𝒫 cpw 4622  {cpr 4650   class class class wbr 5166  cfv 6573  Pairscspr 47351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-pw 4624  df-sn 4649  df-pr 4651  df-uni 4932  df-iota 6525  df-fv 6581
This theorem is referenced by:  sprsymrelfo  47371
  Copyright terms: Public domain W3C validator