Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprsymrelfolem1 Structured version   Visualization version   GIF version

Theorem sprsymrelfolem1 47602
Description: Lemma 1 for sprsymrelfo 47607. (Contributed by AV, 22-Nov-2021.)
Hypothesis
Ref Expression
sprsymrelfo.q 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)}
Assertion
Ref Expression
sprsymrelfolem1 𝑄 ∈ 𝒫 (Pairs‘𝑉)
Distinct variable group:   𝑉,𝑞
Allowed substitution hints:   𝑄(𝑞,𝑎,𝑏)   𝑅(𝑞,𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem sprsymrelfolem1
StepHypRef Expression
1 sprsymrelfo.q . 2 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)}
2 fvex 6835 . . 3 (Pairs‘𝑉) ∈ V
3 ssrab2 4027 . . 3 {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ⊆ (Pairs‘𝑉)
42, 3elpwi2 5271 . 2 {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ∈ 𝒫 (Pairs‘𝑉)
51, 4eqeltri 2827 1 𝑄 ∈ 𝒫 (Pairs‘𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  𝒫 cpw 4547  {cpr 4575   class class class wbr 5089  cfv 6481  Pairscspr 47587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-pw 4549  df-sn 4574  df-pr 4576  df-uni 4857  df-iota 6437  df-fv 6489
This theorem is referenced by:  sprsymrelfo  47607
  Copyright terms: Public domain W3C validator