Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sprsymrelfolem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for sprsymrelfo 44837. (Contributed by AV, 22-Nov-2021.) |
Ref | Expression |
---|---|
sprsymrelfo.q | ⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} |
Ref | Expression |
---|---|
sprsymrelfolem1 | ⊢ 𝑄 ∈ 𝒫 (Pairs‘𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprsymrelfo.q | . 2 ⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} | |
2 | fvex 6769 | . . 3 ⊢ (Pairs‘𝑉) ∈ V | |
3 | ssrab2 4009 | . . 3 ⊢ {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ⊆ (Pairs‘𝑉) | |
4 | 2, 3 | elpwi2 5265 | . 2 ⊢ {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ∈ 𝒫 (Pairs‘𝑉) |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 𝑄 ∈ 𝒫 (Pairs‘𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 Vcvv 3422 𝒫 cpw 4530 {cpr 4560 class class class wbr 5070 ‘cfv 6418 Pairscspr 44817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-fv 6426 |
This theorem is referenced by: sprsymrelfo 44837 |
Copyright terms: Public domain | W3C validator |