| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sprsymrelfolem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for sprsymrelfo 47471. (Contributed by AV, 22-Nov-2021.) |
| Ref | Expression |
|---|---|
| sprsymrelfo.q | ⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} |
| Ref | Expression |
|---|---|
| sprsymrelfolem1 | ⊢ 𝑄 ∈ 𝒫 (Pairs‘𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sprsymrelfo.q | . 2 ⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} | |
| 2 | fvex 6853 | . . 3 ⊢ (Pairs‘𝑉) ∈ V | |
| 3 | ssrab2 4039 | . . 3 ⊢ {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ⊆ (Pairs‘𝑉) | |
| 4 | 2, 3 | elpwi2 5285 | . 2 ⊢ {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ∈ 𝒫 (Pairs‘𝑉) |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 𝑄 ∈ 𝒫 (Pairs‘𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3402 Vcvv 3444 𝒫 cpw 4559 {cpr 4587 class class class wbr 5102 ‘cfv 6499 Pairscspr 47451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-pw 4561 df-sn 4586 df-pr 4588 df-uni 4868 df-iota 6452 df-fv 6507 |
| This theorem is referenced by: sprsymrelfo 47471 |
| Copyright terms: Public domain | W3C validator |