Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprsymrelfolem1 Structured version   Visualization version   GIF version

Theorem sprsymrelfolem1 47473
Description: Lemma 1 for sprsymrelfo 47478. (Contributed by AV, 22-Nov-2021.)
Hypothesis
Ref Expression
sprsymrelfo.q 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)}
Assertion
Ref Expression
sprsymrelfolem1 𝑄 ∈ 𝒫 (Pairs‘𝑉)
Distinct variable group:   𝑉,𝑞
Allowed substitution hints:   𝑄(𝑞,𝑎,𝑏)   𝑅(𝑞,𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem sprsymrelfolem1
StepHypRef Expression
1 sprsymrelfo.q . 2 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)}
2 fvex 6894 . . 3 (Pairs‘𝑉) ∈ V
3 ssrab2 4060 . . 3 {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ⊆ (Pairs‘𝑉)
42, 3elpwi2 5310 . 2 {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎𝑉𝑏𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ∈ 𝒫 (Pairs‘𝑉)
51, 4eqeltri 2831 1 𝑄 ∈ 𝒫 (Pairs‘𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3052  {crab 3420  Vcvv 3464  𝒫 cpw 4580  {cpr 4608   class class class wbr 5124  cfv 6536  Pairscspr 47458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-pw 4582  df-sn 4607  df-pr 4609  df-uni 4889  df-iota 6489  df-fv 6544
This theorem is referenced by:  sprsymrelfo  47478
  Copyright terms: Public domain W3C validator