|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sprsymrelfolem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for sprsymrelfo 47484. (Contributed by AV, 22-Nov-2021.) | 
| Ref | Expression | 
|---|---|
| sprsymrelfo.q | ⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} | 
| Ref | Expression | 
|---|---|
| sprsymrelfolem1 | ⊢ 𝑄 ∈ 𝒫 (Pairs‘𝑉) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sprsymrelfo.q | . 2 ⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} | |
| 2 | fvex 6919 | . . 3 ⊢ (Pairs‘𝑉) ∈ V | |
| 3 | ssrab2 4080 | . . 3 ⊢ {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ⊆ (Pairs‘𝑉) | |
| 4 | 2, 3 | elpwi2 5335 | . 2 ⊢ {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ∈ 𝒫 (Pairs‘𝑉) | 
| 5 | 1, 4 | eqeltri 2837 | 1 ⊢ 𝑄 ∈ 𝒫 (Pairs‘𝑉) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3061 {crab 3436 Vcvv 3480 𝒫 cpw 4600 {cpr 4628 class class class wbr 5143 ‘cfv 6561 Pairscspr 47464 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-pw 4602 df-sn 4627 df-pr 4629 df-uni 4908 df-iota 6514 df-fv 6569 | 
| This theorem is referenced by: sprsymrelfo 47484 | 
| Copyright terms: Public domain | W3C validator |