Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sprsymrelfolem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for sprsymrelfo 44949. (Contributed by AV, 22-Nov-2021.) |
Ref | Expression |
---|---|
sprsymrelfo.q | ⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} |
Ref | Expression |
---|---|
sprsymrelfolem1 | ⊢ 𝑄 ∈ 𝒫 (Pairs‘𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprsymrelfo.q | . 2 ⊢ 𝑄 = {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} | |
2 | fvex 6787 | . . 3 ⊢ (Pairs‘𝑉) ∈ V | |
3 | ssrab2 4013 | . . 3 ⊢ {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ⊆ (Pairs‘𝑉) | |
4 | 2, 3 | elpwi2 5270 | . 2 ⊢ {𝑞 ∈ (Pairs‘𝑉) ∣ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑞 = {𝑎, 𝑏} → 𝑎𝑅𝑏)} ∈ 𝒫 (Pairs‘𝑉) |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 𝑄 ∈ 𝒫 (Pairs‘𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 Vcvv 3432 𝒫 cpw 4533 {cpr 4563 class class class wbr 5074 ‘cfv 6433 Pairscspr 44929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 df-pr 4564 df-uni 4840 df-iota 6391 df-fv 6441 |
This theorem is referenced by: sprsymrelfo 44949 |
Copyright terms: Public domain | W3C validator |