MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth3 Structured version   Visualization version   GIF version

Theorem axgroth3 10826
Description: Alternate version of the Tarski-Grothendieck Axiom. ax-cc 10430 is used to derive this version. (Contributed by NM, 26-Mar-2007.)
Assertion
Ref Expression
axgroth3 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣

Proof of Theorem axgroth3
StepHypRef Expression
1 axgroth2 10820 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦)))
2 ssid 4005 . . . . . . . . . . . 12 𝑧𝑧
3 sseq1 4008 . . . . . . . . . . . . . 14 (𝑣 = 𝑧 → (𝑣𝑧𝑧𝑧))
4 elequ1 2114 . . . . . . . . . . . . . 14 (𝑣 = 𝑧 → (𝑣𝑤𝑧𝑤))
53, 4imbi12d 345 . . . . . . . . . . . . 13 (𝑣 = 𝑧 → ((𝑣𝑧𝑣𝑤) ↔ (𝑧𝑧𝑧𝑤)))
65spvv 2001 . . . . . . . . . . . 12 (∀𝑣(𝑣𝑧𝑣𝑤) → (𝑧𝑧𝑧𝑤))
72, 6mpi 20 . . . . . . . . . . 11 (∀𝑣(𝑣𝑧𝑣𝑤) → 𝑧𝑤)
87reximi 3085 . . . . . . . . . 10 (∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤) → ∃𝑤𝑦 𝑧𝑤)
9 eluni2 4913 . . . . . . . . . 10 (𝑧 𝑦 ↔ ∃𝑤𝑦 𝑧𝑤)
108, 9sylibr 233 . . . . . . . . 9 (∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤) → 𝑧 𝑦)
1110adantl 483 . . . . . . . 8 ((∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) → 𝑧 𝑦)
1211ralimi 3084 . . . . . . 7 (∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) → ∀𝑧𝑦 𝑧 𝑦)
13 dfss3 3971 . . . . . . 7 (𝑦 𝑦 ↔ ∀𝑧𝑦 𝑧 𝑦)
1412, 13sylibr 233 . . . . . 6 (∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) → 𝑦 𝑦)
15 vex 3479 . . . . . . . . . . 11 𝑦 ∈ V
16 grothac 10825 . . . . . . . . . . 11 dom card = V
1715, 16eleqtrri 2833 . . . . . . . . . 10 𝑦 ∈ dom card
18 vex 3479 . . . . . . . . . . 11 𝑧 ∈ V
1918, 16eleqtrri 2833 . . . . . . . . . 10 𝑧 ∈ dom card
20 ne0i 4335 . . . . . . . . . . 11 (𝑥𝑦𝑦 ≠ ∅)
2115dominf 10440 . . . . . . . . . . 11 ((𝑦 ≠ ∅ ∧ 𝑦 𝑦) → ω ≼ 𝑦)
2220, 21sylan 581 . . . . . . . . . 10 ((𝑥𝑦𝑦 𝑦) → ω ≼ 𝑦)
23 infdif2 10205 . . . . . . . . . 10 ((𝑦 ∈ dom card ∧ 𝑧 ∈ dom card ∧ ω ≼ 𝑦) → ((𝑦𝑧) ≼ 𝑧𝑦𝑧))
2417, 19, 22, 23mp3an12i 1466 . . . . . . . . 9 ((𝑥𝑦𝑦 𝑦) → ((𝑦𝑧) ≼ 𝑧𝑦𝑧))
2524orbi1d 916 . . . . . . . 8 ((𝑥𝑦𝑦 𝑦) → (((𝑦𝑧) ≼ 𝑧𝑧𝑦) ↔ (𝑦𝑧𝑧𝑦)))
2625imbi2d 341 . . . . . . 7 ((𝑥𝑦𝑦 𝑦) → ((𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ (𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
2726albidv 1924 . . . . . 6 ((𝑥𝑦𝑦 𝑦) → (∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
2814, 27sylan2 594 . . . . 5 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) → (∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
2928pm5.32i 576 . . . 4 (((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
30 df-3an 1090 . . . 4 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))))
31 df-3an 1090 . . . 4 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))) ↔ ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
3229, 30, 313bitr4i 303 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
3332exbii 1851 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
341, 33mpbir 230 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088  wal 1540  wex 1782  wcel 2107  wne 2941  wral 3062  wrex 3071  Vcvv 3475  cdif 3946  wss 3949  c0 4323   cuni 4909   class class class wbr 5149  dom cdm 5677  ωcom 7855  cdom 8937  cardccrd 9930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-reg 9587  ax-inf2 9636  ax-cc 10430  ax-groth 10818
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-oi 9505  df-dju 9896  df-card 9934
This theorem is referenced by:  axgroth4  10827
  Copyright terms: Public domain W3C validator