MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth3 Structured version   Visualization version   GIF version

Theorem axgroth3 10767
Description: Alternate version of the Tarski-Grothendieck Axiom. ax-cc 10371 is used to derive this version. (Contributed by NM, 26-Mar-2007.)
Assertion
Ref Expression
axgroth3 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣

Proof of Theorem axgroth3
StepHypRef Expression
1 axgroth2 10761 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦)))
2 ssid 3966 . . . . . . . . . . . 12 𝑧𝑧
3 sseq1 3969 . . . . . . . . . . . . . 14 (𝑣 = 𝑧 → (𝑣𝑧𝑧𝑧))
4 elequ1 2113 . . . . . . . . . . . . . 14 (𝑣 = 𝑧 → (𝑣𝑤𝑧𝑤))
53, 4imbi12d 344 . . . . . . . . . . . . 13 (𝑣 = 𝑧 → ((𝑣𝑧𝑣𝑤) ↔ (𝑧𝑧𝑧𝑤)))
65spvv 2000 . . . . . . . . . . . 12 (∀𝑣(𝑣𝑧𝑣𝑤) → (𝑧𝑧𝑧𝑤))
72, 6mpi 20 . . . . . . . . . . 11 (∀𝑣(𝑣𝑧𝑣𝑤) → 𝑧𝑤)
87reximi 3087 . . . . . . . . . 10 (∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤) → ∃𝑤𝑦 𝑧𝑤)
9 eluni2 4869 . . . . . . . . . 10 (𝑧 𝑦 ↔ ∃𝑤𝑦 𝑧𝑤)
108, 9sylibr 233 . . . . . . . . 9 (∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤) → 𝑧 𝑦)
1110adantl 482 . . . . . . . 8 ((∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) → 𝑧 𝑦)
1211ralimi 3086 . . . . . . 7 (∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) → ∀𝑧𝑦 𝑧 𝑦)
13 dfss3 3932 . . . . . . 7 (𝑦 𝑦 ↔ ∀𝑧𝑦 𝑧 𝑦)
1412, 13sylibr 233 . . . . . 6 (∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) → 𝑦 𝑦)
15 vex 3449 . . . . . . . . . . 11 𝑦 ∈ V
16 grothac 10766 . . . . . . . . . . 11 dom card = V
1715, 16eleqtrri 2837 . . . . . . . . . 10 𝑦 ∈ dom card
18 vex 3449 . . . . . . . . . . 11 𝑧 ∈ V
1918, 16eleqtrri 2837 . . . . . . . . . 10 𝑧 ∈ dom card
20 ne0i 4294 . . . . . . . . . . 11 (𝑥𝑦𝑦 ≠ ∅)
2115dominf 10381 . . . . . . . . . . 11 ((𝑦 ≠ ∅ ∧ 𝑦 𝑦) → ω ≼ 𝑦)
2220, 21sylan 580 . . . . . . . . . 10 ((𝑥𝑦𝑦 𝑦) → ω ≼ 𝑦)
23 infdif2 10146 . . . . . . . . . 10 ((𝑦 ∈ dom card ∧ 𝑧 ∈ dom card ∧ ω ≼ 𝑦) → ((𝑦𝑧) ≼ 𝑧𝑦𝑧))
2417, 19, 22, 23mp3an12i 1465 . . . . . . . . 9 ((𝑥𝑦𝑦 𝑦) → ((𝑦𝑧) ≼ 𝑧𝑦𝑧))
2524orbi1d 915 . . . . . . . 8 ((𝑥𝑦𝑦 𝑦) → (((𝑦𝑧) ≼ 𝑧𝑧𝑦) ↔ (𝑦𝑧𝑧𝑦)))
2625imbi2d 340 . . . . . . 7 ((𝑥𝑦𝑦 𝑦) → ((𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ (𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
2726albidv 1923 . . . . . 6 ((𝑥𝑦𝑦 𝑦) → (∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
2814, 27sylan2 593 . . . . 5 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) → (∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
2928pm5.32i 575 . . . 4 (((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
30 df-3an 1089 . . . 4 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))))
31 df-3an 1089 . . . 4 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))) ↔ ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
3229, 30, 313bitr4i 302 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
3332exbii 1850 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
341, 33mpbir 230 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087  wal 1539  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  cdif 3907  wss 3910  c0 4282   cuni 4865   class class class wbr 5105  dom cdm 5633  ωcom 7802  cdom 8881  cardccrd 9871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-reg 9528  ax-inf2 9577  ax-cc 10371  ax-groth 10759
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-oi 9446  df-dju 9837  df-card 9875
This theorem is referenced by:  axgroth4  10768
  Copyright terms: Public domain W3C validator