MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth3 Structured version   Visualization version   GIF version

Theorem axgroth3 10729
Description: Alternate version of the Tarski-Grothendieck Axiom. ax-cc 10333 is used to derive this version. (Contributed by NM, 26-Mar-2007.)
Assertion
Ref Expression
axgroth3 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣

Proof of Theorem axgroth3
StepHypRef Expression
1 axgroth2 10723 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦)))
2 ssid 3953 . . . . . . . . . . . 12 𝑧𝑧
3 sseq1 3956 . . . . . . . . . . . . . 14 (𝑣 = 𝑧 → (𝑣𝑧𝑧𝑧))
4 elequ1 2120 . . . . . . . . . . . . . 14 (𝑣 = 𝑧 → (𝑣𝑤𝑧𝑤))
53, 4imbi12d 344 . . . . . . . . . . . . 13 (𝑣 = 𝑧 → ((𝑣𝑧𝑣𝑤) ↔ (𝑧𝑧𝑧𝑤)))
65spvv 1989 . . . . . . . . . . . 12 (∀𝑣(𝑣𝑧𝑣𝑤) → (𝑧𝑧𝑧𝑤))
72, 6mpi 20 . . . . . . . . . . 11 (∀𝑣(𝑣𝑧𝑣𝑤) → 𝑧𝑤)
87reximi 3071 . . . . . . . . . 10 (∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤) → ∃𝑤𝑦 𝑧𝑤)
9 eluni2 4862 . . . . . . . . . 10 (𝑧 𝑦 ↔ ∃𝑤𝑦 𝑧𝑤)
108, 9sylibr 234 . . . . . . . . 9 (∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤) → 𝑧 𝑦)
1110adantl 481 . . . . . . . 8 ((∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) → 𝑧 𝑦)
1211ralimi 3070 . . . . . . 7 (∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) → ∀𝑧𝑦 𝑧 𝑦)
13 dfss3 3919 . . . . . . 7 (𝑦 𝑦 ↔ ∀𝑧𝑦 𝑧 𝑦)
1412, 13sylibr 234 . . . . . 6 (∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) → 𝑦 𝑦)
15 vex 3441 . . . . . . . . . . 11 𝑦 ∈ V
16 grothac 10728 . . . . . . . . . . 11 dom card = V
1715, 16eleqtrri 2832 . . . . . . . . . 10 𝑦 ∈ dom card
18 vex 3441 . . . . . . . . . . 11 𝑧 ∈ V
1918, 16eleqtrri 2832 . . . . . . . . . 10 𝑧 ∈ dom card
20 ne0i 4290 . . . . . . . . . . 11 (𝑥𝑦𝑦 ≠ ∅)
2115dominf 10343 . . . . . . . . . . 11 ((𝑦 ≠ ∅ ∧ 𝑦 𝑦) → ω ≼ 𝑦)
2220, 21sylan 580 . . . . . . . . . 10 ((𝑥𝑦𝑦 𝑦) → ω ≼ 𝑦)
23 infdif2 10107 . . . . . . . . . 10 ((𝑦 ∈ dom card ∧ 𝑧 ∈ dom card ∧ ω ≼ 𝑦) → ((𝑦𝑧) ≼ 𝑧𝑦𝑧))
2417, 19, 22, 23mp3an12i 1467 . . . . . . . . 9 ((𝑥𝑦𝑦 𝑦) → ((𝑦𝑧) ≼ 𝑧𝑦𝑧))
2524orbi1d 916 . . . . . . . 8 ((𝑥𝑦𝑦 𝑦) → (((𝑦𝑧) ≼ 𝑧𝑧𝑦) ↔ (𝑦𝑧𝑧𝑦)))
2625imbi2d 340 . . . . . . 7 ((𝑥𝑦𝑦 𝑦) → ((𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ (𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
2726albidv 1921 . . . . . 6 ((𝑥𝑦𝑦 𝑦) → (∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
2814, 27sylan2 593 . . . . 5 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) → (∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
2928pm5.32i 574 . . . 4 (((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
30 df-3an 1088 . . . 4 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))))
31 df-3an 1088 . . . 4 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))) ↔ ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
3229, 30, 313bitr4i 303 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
3332exbii 1849 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
341, 33mpbir 231 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1539  wex 1780  wcel 2113  wne 2929  wral 3048  wrex 3057  Vcvv 3437  cdif 3895  wss 3898  c0 4282   cuni 4858   class class class wbr 5093  dom cdm 5619  ωcom 7802  cdom 8873  cardccrd 9835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-reg 9485  ax-inf2 9538  ax-cc 10333  ax-groth 10721
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-oi 9403  df-dju 9801  df-card 9839
This theorem is referenced by:  axgroth4  10730
  Copyright terms: Public domain W3C validator