MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth3 Structured version   Visualization version   GIF version

Theorem axgroth3 10822
Description: Alternate version of the Tarski-Grothendieck Axiom. ax-cc 10426 is used to derive this version. (Contributed by NM, 26-Mar-2007.)
Assertion
Ref Expression
axgroth3 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣

Proof of Theorem axgroth3
StepHypRef Expression
1 axgroth2 10816 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦)))
2 ssid 4003 . . . . . . . . . . . 12 𝑧𝑧
3 sseq1 4006 . . . . . . . . . . . . . 14 (𝑣 = 𝑧 → (𝑣𝑧𝑧𝑧))
4 elequ1 2113 . . . . . . . . . . . . . 14 (𝑣 = 𝑧 → (𝑣𝑤𝑧𝑤))
53, 4imbi12d 344 . . . . . . . . . . . . 13 (𝑣 = 𝑧 → ((𝑣𝑧𝑣𝑤) ↔ (𝑧𝑧𝑧𝑤)))
65spvv 2000 . . . . . . . . . . . 12 (∀𝑣(𝑣𝑧𝑣𝑤) → (𝑧𝑧𝑧𝑤))
72, 6mpi 20 . . . . . . . . . . 11 (∀𝑣(𝑣𝑧𝑣𝑤) → 𝑧𝑤)
87reximi 3084 . . . . . . . . . 10 (∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤) → ∃𝑤𝑦 𝑧𝑤)
9 eluni2 4911 . . . . . . . . . 10 (𝑧 𝑦 ↔ ∃𝑤𝑦 𝑧𝑤)
108, 9sylibr 233 . . . . . . . . 9 (∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤) → 𝑧 𝑦)
1110adantl 482 . . . . . . . 8 ((∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) → 𝑧 𝑦)
1211ralimi 3083 . . . . . . 7 (∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) → ∀𝑧𝑦 𝑧 𝑦)
13 dfss3 3969 . . . . . . 7 (𝑦 𝑦 ↔ ∀𝑧𝑦 𝑧 𝑦)
1412, 13sylibr 233 . . . . . 6 (∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) → 𝑦 𝑦)
15 vex 3478 . . . . . . . . . . 11 𝑦 ∈ V
16 grothac 10821 . . . . . . . . . . 11 dom card = V
1715, 16eleqtrri 2832 . . . . . . . . . 10 𝑦 ∈ dom card
18 vex 3478 . . . . . . . . . . 11 𝑧 ∈ V
1918, 16eleqtrri 2832 . . . . . . . . . 10 𝑧 ∈ dom card
20 ne0i 4333 . . . . . . . . . . 11 (𝑥𝑦𝑦 ≠ ∅)
2115dominf 10436 . . . . . . . . . . 11 ((𝑦 ≠ ∅ ∧ 𝑦 𝑦) → ω ≼ 𝑦)
2220, 21sylan 580 . . . . . . . . . 10 ((𝑥𝑦𝑦 𝑦) → ω ≼ 𝑦)
23 infdif2 10201 . . . . . . . . . 10 ((𝑦 ∈ dom card ∧ 𝑧 ∈ dom card ∧ ω ≼ 𝑦) → ((𝑦𝑧) ≼ 𝑧𝑦𝑧))
2417, 19, 22, 23mp3an12i 1465 . . . . . . . . 9 ((𝑥𝑦𝑦 𝑦) → ((𝑦𝑧) ≼ 𝑧𝑦𝑧))
2524orbi1d 915 . . . . . . . 8 ((𝑥𝑦𝑦 𝑦) → (((𝑦𝑧) ≼ 𝑧𝑧𝑦) ↔ (𝑦𝑧𝑧𝑦)))
2625imbi2d 340 . . . . . . 7 ((𝑥𝑦𝑦 𝑦) → ((𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ (𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
2726albidv 1923 . . . . . 6 ((𝑥𝑦𝑦 𝑦) → (∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
2814, 27sylan2 593 . . . . 5 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) → (∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
2928pm5.32i 575 . . . 4 (((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
30 df-3an 1089 . . . 4 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))))
31 df-3an 1089 . . . 4 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))) ↔ ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
3229, 30, 313bitr4i 302 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
3332exbii 1850 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
341, 33mpbir 230 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087  wal 1539  wex 1781  wcel 2106  wne 2940  wral 3061  wrex 3070  Vcvv 3474  cdif 3944  wss 3947  c0 4321   cuni 4907   class class class wbr 5147  dom cdm 5675  ωcom 7851  cdom 8933  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-reg 9583  ax-inf2 9632  ax-cc 10426  ax-groth 10814
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-oi 9501  df-dju 9892  df-card 9930
This theorem is referenced by:  axgroth4  10823
  Copyright terms: Public domain W3C validator