Proof of Theorem axgroth3
Step | Hyp | Ref
| Expression |
1 | | axgroth2 10512 |
. 2
⊢
∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
2 | | ssid 3939 |
. . . . . . . . . . . 12
⊢ 𝑧 ⊆ 𝑧 |
3 | | sseq1 3942 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑧 → (𝑣 ⊆ 𝑧 ↔ 𝑧 ⊆ 𝑧)) |
4 | | elequ1 2115 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑧 → (𝑣 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤)) |
5 | 3, 4 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑧 → ((𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤) ↔ (𝑧 ⊆ 𝑧 → 𝑧 ∈ 𝑤))) |
6 | 5 | spvv 2001 |
. . . . . . . . . . . 12
⊢
(∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤) → (𝑧 ⊆ 𝑧 → 𝑧 ∈ 𝑤)) |
7 | 2, 6 | mpi 20 |
. . . . . . . . . . 11
⊢
(∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤) → 𝑧 ∈ 𝑤) |
8 | 7 | reximi 3174 |
. . . . . . . . . 10
⊢
(∃𝑤 ∈
𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤) → ∃𝑤 ∈ 𝑦 𝑧 ∈ 𝑤) |
9 | | eluni2 4840 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ∪ 𝑦
↔ ∃𝑤 ∈
𝑦 𝑧 ∈ 𝑤) |
10 | 8, 9 | sylibr 233 |
. . . . . . . . 9
⊢
(∃𝑤 ∈
𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤) → 𝑧 ∈ ∪ 𝑦) |
11 | 10 | adantl 481 |
. . . . . . . 8
⊢
((∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) → 𝑧 ∈ ∪ 𝑦) |
12 | 11 | ralimi 3086 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) → ∀𝑧 ∈ 𝑦 𝑧 ∈ ∪ 𝑦) |
13 | | dfss3 3905 |
. . . . . . 7
⊢ (𝑦 ⊆ ∪ 𝑦
↔ ∀𝑧 ∈
𝑦 𝑧 ∈ ∪ 𝑦) |
14 | 12, 13 | sylibr 233 |
. . . . . 6
⊢
(∀𝑧 ∈
𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) → 𝑦 ⊆ ∪ 𝑦) |
15 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
16 | | grothac 10517 |
. . . . . . . . . . 11
⊢ dom card
= V |
17 | 15, 16 | eleqtrri 2838 |
. . . . . . . . . 10
⊢ 𝑦 ∈ dom
card |
18 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
19 | 18, 16 | eleqtrri 2838 |
. . . . . . . . . 10
⊢ 𝑧 ∈ dom
card |
20 | | ne0i 4265 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑦 → 𝑦 ≠ ∅) |
21 | 15 | dominf 10132 |
. . . . . . . . . . 11
⊢ ((𝑦 ≠ ∅ ∧ 𝑦 ⊆ ∪ 𝑦)
→ ω ≼ 𝑦) |
22 | 20, 21 | sylan 579 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦) → ω ≼ 𝑦) |
23 | | infdif2 9897 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ dom card ∧ 𝑧 ∈ dom card ∧ ω
≼ 𝑦) → ((𝑦 ∖ 𝑧) ≼ 𝑧 ↔ 𝑦 ≼ 𝑧)) |
24 | 17, 19, 22, 23 | mp3an12i 1463 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦) → ((𝑦 ∖ 𝑧) ≼ 𝑧 ↔ 𝑦 ≼ 𝑧)) |
25 | 24 | orbi1d 913 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦) → (((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦) ↔ (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
26 | 25 | imbi2d 340 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦) → ((𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)) ↔ (𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)))) |
27 | 26 | albidv 1924 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ∪ 𝑦) → (∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)) ↔ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)))) |
28 | 14, 27 | sylan2 592 |
. . . . 5
⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤))) → (∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)) ↔ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)))) |
29 | 28 | pm5.32i 574 |
. . . 4
⊢ (((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤))) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) ↔ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤))) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)))) |
30 | | df-3an 1087 |
. . . 4
⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) ↔ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤))) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)))) |
31 | | df-3an 1087 |
. . . 4
⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) ↔ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤))) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)))) |
32 | 29, 30, 31 | 3bitr4i 302 |
. . 3
⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) ↔ (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)))) |
33 | 32 | exbii 1851 |
. 2
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)))) |
34 | 1, 33 | mpbir 230 |
1
⊢
∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → ((𝑦 ∖ 𝑧) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) |