MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth3 Structured version   Visualization version   GIF version

Theorem axgroth3 10587
Description: Alternate version of the Tarski-Grothendieck Axiom. ax-cc 10191 is used to derive this version. (Contributed by NM, 26-Mar-2007.)
Assertion
Ref Expression
axgroth3 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣

Proof of Theorem axgroth3
StepHypRef Expression
1 axgroth2 10581 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦)))
2 ssid 3943 . . . . . . . . . . . 12 𝑧𝑧
3 sseq1 3946 . . . . . . . . . . . . . 14 (𝑣 = 𝑧 → (𝑣𝑧𝑧𝑧))
4 elequ1 2113 . . . . . . . . . . . . . 14 (𝑣 = 𝑧 → (𝑣𝑤𝑧𝑤))
53, 4imbi12d 345 . . . . . . . . . . . . 13 (𝑣 = 𝑧 → ((𝑣𝑧𝑣𝑤) ↔ (𝑧𝑧𝑧𝑤)))
65spvv 2000 . . . . . . . . . . . 12 (∀𝑣(𝑣𝑧𝑣𝑤) → (𝑧𝑧𝑧𝑤))
72, 6mpi 20 . . . . . . . . . . 11 (∀𝑣(𝑣𝑧𝑣𝑤) → 𝑧𝑤)
87reximi 3178 . . . . . . . . . 10 (∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤) → ∃𝑤𝑦 𝑧𝑤)
9 eluni2 4843 . . . . . . . . . 10 (𝑧 𝑦 ↔ ∃𝑤𝑦 𝑧𝑤)
108, 9sylibr 233 . . . . . . . . 9 (∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤) → 𝑧 𝑦)
1110adantl 482 . . . . . . . 8 ((∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) → 𝑧 𝑦)
1211ralimi 3087 . . . . . . 7 (∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) → ∀𝑧𝑦 𝑧 𝑦)
13 dfss3 3909 . . . . . . 7 (𝑦 𝑦 ↔ ∀𝑧𝑦 𝑧 𝑦)
1412, 13sylibr 233 . . . . . 6 (∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) → 𝑦 𝑦)
15 vex 3436 . . . . . . . . . . 11 𝑦 ∈ V
16 grothac 10586 . . . . . . . . . . 11 dom card = V
1715, 16eleqtrri 2838 . . . . . . . . . 10 𝑦 ∈ dom card
18 vex 3436 . . . . . . . . . . 11 𝑧 ∈ V
1918, 16eleqtrri 2838 . . . . . . . . . 10 𝑧 ∈ dom card
20 ne0i 4268 . . . . . . . . . . 11 (𝑥𝑦𝑦 ≠ ∅)
2115dominf 10201 . . . . . . . . . . 11 ((𝑦 ≠ ∅ ∧ 𝑦 𝑦) → ω ≼ 𝑦)
2220, 21sylan 580 . . . . . . . . . 10 ((𝑥𝑦𝑦 𝑦) → ω ≼ 𝑦)
23 infdif2 9966 . . . . . . . . . 10 ((𝑦 ∈ dom card ∧ 𝑧 ∈ dom card ∧ ω ≼ 𝑦) → ((𝑦𝑧) ≼ 𝑧𝑦𝑧))
2417, 19, 22, 23mp3an12i 1464 . . . . . . . . 9 ((𝑥𝑦𝑦 𝑦) → ((𝑦𝑧) ≼ 𝑧𝑦𝑧))
2524orbi1d 914 . . . . . . . 8 ((𝑥𝑦𝑦 𝑦) → (((𝑦𝑧) ≼ 𝑧𝑧𝑦) ↔ (𝑦𝑧𝑧𝑦)))
2625imbi2d 341 . . . . . . 7 ((𝑥𝑦𝑦 𝑦) → ((𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ (𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
2726albidv 1923 . . . . . 6 ((𝑥𝑦𝑦 𝑦) → (∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
2814, 27sylan2 593 . . . . 5 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) → (∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
2928pm5.32i 575 . . . 4 (((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
30 df-3an 1088 . . . 4 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))))
31 df-3an 1088 . . . 4 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))) ↔ ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
3229, 30, 313bitr4i 303 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
3332exbii 1850 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))))
341, 33mpbir 230 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086  wal 1537  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  wss 3887  c0 4256   cuni 4839   class class class wbr 5074  dom cdm 5589  ωcom 7712  cdom 8731  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399  ax-cc 10191  ax-groth 10579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-dju 9659  df-card 9697
This theorem is referenced by:  axgroth4  10588
  Copyright terms: Public domain W3C validator