MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramcl Structured version   Visualization version   GIF version

Theorem ramcl 16832
Description: Ramsey's theorem: the Ramsey number is an integer for every finite coloring and set of upper bounds. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
ramcl ((𝑀 ∈ ℕ0𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ ℕ0)

Proof of Theorem ramcl
Dummy variables 𝑓 𝑥 𝑔 𝑘 𝑚 𝑛 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0ex 12349 . . . 4 0 ∈ V
2 simpr 486 . . . 4 ((𝑀 ∈ ℕ0𝑅 ∈ Fin) → 𝑅 ∈ Fin)
3 elmapg 8708 . . . 4 ((ℕ0 ∈ V ∧ 𝑅 ∈ Fin) → (𝐹 ∈ (ℕ0m 𝑅) ↔ 𝐹:𝑅⟶ℕ0))
41, 2, 3sylancr 588 . . 3 ((𝑀 ∈ ℕ0𝑅 ∈ Fin) → (𝐹 ∈ (ℕ0m 𝑅) ↔ 𝐹:𝑅⟶ℕ0))
5 oveq1 7353 . . . . . . . . 9 (𝑥 = 0 → (𝑥 Ramsey 𝑓) = (0 Ramsey 𝑓))
65eleq1d 2822 . . . . . . . 8 (𝑥 = 0 → ((𝑥 Ramsey 𝑓) ∈ ℕ0 ↔ (0 Ramsey 𝑓) ∈ ℕ0))
76ralbidv 3172 . . . . . . 7 (𝑥 = 0 → (∀𝑓 ∈ (ℕ0m 𝑅)(𝑥 Ramsey 𝑓) ∈ ℕ0 ↔ ∀𝑓 ∈ (ℕ0m 𝑅)(0 Ramsey 𝑓) ∈ ℕ0))
87imbi2d 341 . . . . . 6 (𝑥 = 0 → ((𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0m 𝑅)(𝑥 Ramsey 𝑓) ∈ ℕ0) ↔ (𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0m 𝑅)(0 Ramsey 𝑓) ∈ ℕ0)))
9 oveq1 7353 . . . . . . . . 9 (𝑥 = 𝑚 → (𝑥 Ramsey 𝑓) = (𝑚 Ramsey 𝑓))
109eleq1d 2822 . . . . . . . 8 (𝑥 = 𝑚 → ((𝑥 Ramsey 𝑓) ∈ ℕ0 ↔ (𝑚 Ramsey 𝑓) ∈ ℕ0))
1110ralbidv 3172 . . . . . . 7 (𝑥 = 𝑚 → (∀𝑓 ∈ (ℕ0m 𝑅)(𝑥 Ramsey 𝑓) ∈ ℕ0 ↔ ∀𝑓 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑓) ∈ ℕ0))
1211imbi2d 341 . . . . . 6 (𝑥 = 𝑚 → ((𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0m 𝑅)(𝑥 Ramsey 𝑓) ∈ ℕ0) ↔ (𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑓) ∈ ℕ0)))
13 oveq1 7353 . . . . . . . . 9 (𝑥 = (𝑚 + 1) → (𝑥 Ramsey 𝑓) = ((𝑚 + 1) Ramsey 𝑓))
1413eleq1d 2822 . . . . . . . 8 (𝑥 = (𝑚 + 1) → ((𝑥 Ramsey 𝑓) ∈ ℕ0 ↔ ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0))
1514ralbidv 3172 . . . . . . 7 (𝑥 = (𝑚 + 1) → (∀𝑓 ∈ (ℕ0m 𝑅)(𝑥 Ramsey 𝑓) ∈ ℕ0 ↔ ∀𝑓 ∈ (ℕ0m 𝑅)((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0))
1615imbi2d 341 . . . . . 6 (𝑥 = (𝑚 + 1) → ((𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0m 𝑅)(𝑥 Ramsey 𝑓) ∈ ℕ0) ↔ (𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0m 𝑅)((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0)))
17 oveq1 7353 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑥 Ramsey 𝑓) = (𝑀 Ramsey 𝑓))
1817eleq1d 2822 . . . . . . . 8 (𝑥 = 𝑀 → ((𝑥 Ramsey 𝑓) ∈ ℕ0 ↔ (𝑀 Ramsey 𝑓) ∈ ℕ0))
1918ralbidv 3172 . . . . . . 7 (𝑥 = 𝑀 → (∀𝑓 ∈ (ℕ0m 𝑅)(𝑥 Ramsey 𝑓) ∈ ℕ0 ↔ ∀𝑓 ∈ (ℕ0m 𝑅)(𝑀 Ramsey 𝑓) ∈ ℕ0))
2019imbi2d 341 . . . . . 6 (𝑥 = 𝑀 → ((𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0m 𝑅)(𝑥 Ramsey 𝑓) ∈ ℕ0) ↔ (𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0m 𝑅)(𝑀 Ramsey 𝑓) ∈ ℕ0)))
21 elmapi 8717 . . . . . . . 8 (𝑓 ∈ (ℕ0m 𝑅) → 𝑓:𝑅⟶ℕ0)
22 0ramcl 16826 . . . . . . . 8 ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ0) → (0 Ramsey 𝑓) ∈ ℕ0)
2321, 22sylan2 594 . . . . . . 7 ((𝑅 ∈ Fin ∧ 𝑓 ∈ (ℕ0m 𝑅)) → (0 Ramsey 𝑓) ∈ ℕ0)
2423ralrimiva 3141 . . . . . 6 (𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0m 𝑅)(0 Ramsey 𝑓) ∈ ℕ0)
25 oveq2 7354 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑚 Ramsey 𝑓) = (𝑚 Ramsey 𝑔))
2625eleq1d 2822 . . . . . . . . . 10 (𝑓 = 𝑔 → ((𝑚 Ramsey 𝑓) ∈ ℕ0 ↔ (𝑚 Ramsey 𝑔) ∈ ℕ0))
2726cbvralvw 3223 . . . . . . . . 9 (∀𝑓 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑓) ∈ ℕ0 ↔ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0)
28 simpll 765 . . . . . . . . . . . . . 14 (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (𝑓 ∈ (ℕ0m 𝑅) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0)) → 𝑅 ∈ Fin)
2921ad2antrl 726 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (𝑓 ∈ (ℕ0m 𝑅) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0)) → 𝑓:𝑅⟶ℕ0)
3029ffvelcdmda 7026 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (𝑓 ∈ (ℕ0m 𝑅) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0)) ∧ 𝑘𝑅) → (𝑓𝑘) ∈ ℕ0)
3128, 30fsumnn0cl 15552 . . . . . . . . . . . . 13 (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (𝑓 ∈ (ℕ0m 𝑅) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0)) → Σ𝑘𝑅 (𝑓𝑘) ∈ ℕ0)
32 eqeq2 2749 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (Σ𝑘𝑅 (𝑘) = 𝑥 ↔ Σ𝑘𝑅 (𝑘) = 0))
3332anbi2d 630 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → ((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑥) ↔ (:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 0)))
3433imbi1d 342 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → (((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) ↔ ((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 0) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)))
3534albidv 1923 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) ↔ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 0) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)))
3635imbi2d 341 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ↔ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 0) → ((𝑚 + 1) Ramsey ) ∈ ℕ0))))
37 eqeq2 2749 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑛 → (Σ𝑘𝑅 (𝑘) = 𝑥 ↔ Σ𝑘𝑅 (𝑘) = 𝑛))
3837anbi2d 630 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑛 → ((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑥) ↔ (:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛)))
3938imbi1d 342 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑛 → (((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) ↔ ((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)))
4039albidv 1923 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑛 → (∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) ↔ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)))
4140imbi2d 341 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑛 → ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ↔ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0))))
42 eqeq2 2749 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑛 + 1) → (Σ𝑘𝑅 (𝑘) = 𝑥 ↔ Σ𝑘𝑅 (𝑘) = (𝑛 + 1)))
4342anbi2d 630 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑛 + 1) → ((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑥) ↔ (:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = (𝑛 + 1))))
4443imbi1d 342 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑛 + 1) → (((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) ↔ ((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)))
4544albidv 1923 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑛 + 1) → (∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) ↔ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)))
4645imbi2d 341 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑛 + 1) → ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ↔ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey ) ∈ ℕ0))))
47 eqeq2 2749 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = Σ𝑘𝑅 (𝑓𝑘) → (Σ𝑘𝑅 (𝑘) = 𝑥 ↔ Σ𝑘𝑅 (𝑘) = Σ𝑘𝑅 (𝑓𝑘)))
4847anbi2d 630 . . . . . . . . . . . . . . . . . . 19 (𝑥 = Σ𝑘𝑅 (𝑓𝑘) → ((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑥) ↔ (:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = Σ𝑘𝑅 (𝑓𝑘))))
4948imbi1d 342 . . . . . . . . . . . . . . . . . 18 (𝑥 = Σ𝑘𝑅 (𝑓𝑘) → (((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) ↔ ((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = Σ𝑘𝑅 (𝑓𝑘)) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)))
5049albidv 1923 . . . . . . . . . . . . . . . . 17 (𝑥 = Σ𝑘𝑅 (𝑓𝑘) → (∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) ↔ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = Σ𝑘𝑅 (𝑓𝑘)) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)))
5150imbi2d 341 . . . . . . . . . . . . . . . 16 (𝑥 = Σ𝑘𝑅 (𝑓𝑘) → ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑥) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ↔ (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = Σ𝑘𝑅 (𝑓𝑘)) → ((𝑚 + 1) Ramsey ) ∈ ℕ0))))
52 simplll 773 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) → 𝑅 ∈ Fin)
53 ffvelcdm 7024 . . . . . . . . . . . . . . . . . . . . . . . 24 ((:𝑅⟶ℕ0𝑘𝑅) → (𝑘) ∈ ℕ0)
5453adantll 712 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) ∧ 𝑘𝑅) → (𝑘) ∈ ℕ0)
5554nn0red 12404 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) ∧ 𝑘𝑅) → (𝑘) ∈ ℝ)
5654nn0ge0d 12406 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) ∧ 𝑘𝑅) → 0 ≤ (𝑘))
5752, 55, 56fsum00 15614 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) → (Σ𝑘𝑅 (𝑘) = 0 ↔ ∀𝑘𝑅 (𝑘) = 0))
58 fvex 6847 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘) ∈ V
5958rgenw 3066 . . . . . . . . . . . . . . . . . . . . . 22 𝑘𝑅 (𝑘) ∈ V
60 mpteqb 6959 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑘𝑅 (𝑘) ∈ V → ((𝑘𝑅 ↦ (𝑘)) = (𝑘𝑅 ↦ 0) ↔ ∀𝑘𝑅 (𝑘) = 0))
6159, 60ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘𝑅 ↦ (𝑘)) = (𝑘𝑅 ↦ 0) ↔ ∀𝑘𝑅 (𝑘) = 0)
6257, 61bitr4di 289 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) → (Σ𝑘𝑅 (𝑘) = 0 ↔ (𝑘𝑅 ↦ (𝑘)) = (𝑘𝑅 ↦ 0)))
63 simpr 486 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) → :𝑅⟶ℕ0)
6463feqmptd 6902 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) → = (𝑘𝑅 ↦ (𝑘)))
65 fconstmpt 5687 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 × {0}) = (𝑘𝑅 ↦ 0)
6665a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) → (𝑅 × {0}) = (𝑘𝑅 ↦ 0))
6764, 66eqeq12d 2753 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) → ( = (𝑅 × {0}) ↔ (𝑘𝑅 ↦ (𝑘)) = (𝑘𝑅 ↦ 0)))
6862, 67bitr4d 282 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) → (Σ𝑘𝑅 (𝑘) = 0 ↔ = (𝑅 × {0})))
69 xpeq1 5641 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑅 = ∅ → (𝑅 × {0}) = (∅ × {0}))
70 0xp 5723 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∅ × {0}) = ∅
7169, 70eqtrdi 2793 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 = ∅ → (𝑅 × {0}) = ∅)
7271oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 = ∅ → ((𝑚 + 1) Ramsey (𝑅 × {0})) = ((𝑚 + 1) Ramsey ∅))
73 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) → 𝑚 ∈ ℕ0)
74 peano2nn0 12383 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) → (𝑚 + 1) ∈ ℕ0)
76 ram0 16825 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 + 1) ∈ ℕ0 → ((𝑚 + 1) Ramsey ∅) = (𝑚 + 1))
7775, 76syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) → ((𝑚 + 1) Ramsey ∅) = (𝑚 + 1))
7872, 77sylan9eqr 2799 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) ∧ 𝑅 = ∅) → ((𝑚 + 1) Ramsey (𝑅 × {0})) = (𝑚 + 1))
7975adantr 482 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) ∧ 𝑅 = ∅) → (𝑚 + 1) ∈ ℕ0)
8078, 79eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) ∧ 𝑅 = ∅) → ((𝑚 + 1) Ramsey (𝑅 × {0})) ∈ ℕ0)
8175adantr 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) ∧ 𝑅 ≠ ∅) → (𝑚 + 1) ∈ ℕ0)
82 simp-4l 781 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) ∧ 𝑅 ≠ ∅) → 𝑅 ∈ Fin)
83 simpr 486 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) ∧ 𝑅 ≠ ∅) → 𝑅 ≠ ∅)
84 ramz 16828 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑚 + 1) ∈ ℕ0𝑅 ∈ Fin ∧ 𝑅 ≠ ∅) → ((𝑚 + 1) Ramsey (𝑅 × {0})) = 0)
8581, 82, 83, 84syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) ∧ 𝑅 ≠ ∅) → ((𝑚 + 1) Ramsey (𝑅 × {0})) = 0)
86 0nn0 12358 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℕ0
8785, 86eqeltrdi 2846 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) ∧ 𝑅 ≠ ∅) → ((𝑚 + 1) Ramsey (𝑅 × {0})) ∈ ℕ0)
8880, 87pm2.61dane 3030 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) → ((𝑚 + 1) Ramsey (𝑅 × {0})) ∈ ℕ0)
89 oveq2 7354 . . . . . . . . . . . . . . . . . . . . 21 ( = (𝑅 × {0}) → ((𝑚 + 1) Ramsey ) = ((𝑚 + 1) Ramsey (𝑅 × {0})))
9089eleq1d 2822 . . . . . . . . . . . . . . . . . . . 20 ( = (𝑅 × {0}) → (((𝑚 + 1) Ramsey ) ∈ ℕ0 ↔ ((𝑚 + 1) Ramsey (𝑅 × {0})) ∈ ℕ0))
9188, 90syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) → ( = (𝑅 × {0}) → ((𝑚 + 1) Ramsey ) ∈ ℕ0))
9268, 91sylbid 239 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ :𝑅⟶ℕ0) → (Σ𝑘𝑅 (𝑘) = 0 → ((𝑚 + 1) Ramsey ) ∈ ℕ0))
9392expimpd 455 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) → ((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 0) → ((𝑚 + 1) Ramsey ) ∈ ℕ0))
9493alrimiv 1930 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 0) → ((𝑚 + 1) Ramsey ) ∈ ℕ0))
95 ffn 6660 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:𝑅⟶ℕ0𝑓 Fn 𝑅)
9695ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))) → 𝑓 Fn 𝑅)
97 ffnfv 7057 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:𝑅⟶ℕ ↔ (𝑓 Fn 𝑅 ∧ ∀𝑥𝑅 (𝑓𝑥) ∈ ℕ))
9897baib 537 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 Fn 𝑅 → (𝑓:𝑅⟶ℕ ↔ ∀𝑥𝑅 (𝑓𝑥) ∈ ℕ))
9996, 98syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))) → (𝑓:𝑅⟶ℕ ↔ ∀𝑥𝑅 (𝑓𝑥) ∈ ℕ))
100 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑚 ∈ ℕ0)
101100ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → 𝑚 ∈ ℕ0)
102101, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → (𝑚 + 1) ∈ ℕ0)
103 simp-4l 781 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → 𝑅 ∈ Fin)
104 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → 𝑓:𝑅⟶ℕ)
105 nnssnn0 12346 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ℕ ⊆ ℕ0
106 fss 6677 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓:𝑅⟶ℕ ∧ ℕ ⊆ ℕ0) → 𝑓:𝑅⟶ℕ0)
107104, 105, 106sylancl 587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → 𝑓:𝑅⟶ℕ0)
108101nn0cnd 12405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → 𝑚 ∈ ℂ)
109 ax-1cn 11039 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1 ∈ ℂ
110 pncan 11337 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑚 + 1) − 1) = 𝑚)
111108, 109, 110sylancl 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → ((𝑚 + 1) − 1) = 𝑚)
112111oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → (((𝑚 + 1) − 1) Ramsey (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))))) = (𝑚 Ramsey (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))))))
113 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑔 = (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))))) → (𝑚 Ramsey 𝑔) = (𝑚 Ramsey (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))))))
114113eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑔 = (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))))) → ((𝑚 Ramsey 𝑔) ∈ ℕ0 ↔ (𝑚 Ramsey (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))))) ∈ ℕ0))
115 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) → ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0)
116115ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0)
117103adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) → 𝑅 ∈ Fin)
118117mptexd 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) → (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))) ∈ V)
119 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0))
120104ffvelcdmda 7026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) → (𝑓𝑥) ∈ ℕ)
121 nnm1nn0 12384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑓𝑥) ∈ ℕ → ((𝑓𝑥) − 1) ∈ ℕ0)
122120, 121syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) → ((𝑓𝑥) − 1) ∈ ℕ0)
123122adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) ∧ 𝑦𝑅) → ((𝑓𝑥) − 1) ∈ ℕ0)
124107adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) → 𝑓:𝑅⟶ℕ0)
125124ffvelcdmda 7026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) ∧ 𝑦𝑅) → (𝑓𝑦) ∈ ℕ0)
126123, 125ifcld 4527 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) ∧ 𝑦𝑅) → if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)) ∈ ℕ0)
127126fmpttd 7054 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) → (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))):𝑅⟶ℕ0)
128 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) → 𝑓:𝑅⟶ℕ)
129 simpr 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) → 𝑥𝑅)
130 ffvelcdm 7024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑓:𝑅⟶ℕ ∧ 𝑘𝑅) → (𝑓𝑘) ∈ ℕ)
1311303ad2antl2 1186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) ∧ 𝑘𝑅) → (𝑓𝑘) ∈ ℕ)
132131nncnd 12099 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) ∧ 𝑘𝑅) → (𝑓𝑘) ∈ ℂ)
133132subid1d 11431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) ∧ 𝑘𝑅) → ((𝑓𝑘) − 0) = (𝑓𝑘))
134133ifeq2d 4501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) ∧ 𝑘𝑅) → if(𝑘 = 𝑥, ((𝑓𝑘) − 1), ((𝑓𝑘) − 0)) = if(𝑘 = 𝑥, ((𝑓𝑘) − 1), (𝑓𝑘)))
135 fveq2 6834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑘 = 𝑥 → (𝑓𝑘) = (𝑓𝑥))
136135adantl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) ∧ 𝑘𝑅) ∧ 𝑘 = 𝑥) → (𝑓𝑘) = (𝑓𝑥))
137136oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) ∧ 𝑘𝑅) ∧ 𝑘 = 𝑥) → ((𝑓𝑘) − 1) = ((𝑓𝑥) − 1))
138137ifeq1da 4512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) ∧ 𝑘𝑅) → if(𝑘 = 𝑥, ((𝑓𝑘) − 1), (𝑓𝑘)) = if(𝑘 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑘)))
139134, 138eqtr2d 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) ∧ 𝑘𝑅) → if(𝑘 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑘)) = if(𝑘 = 𝑥, ((𝑓𝑘) − 1), ((𝑓𝑘) − 0)))
140 ovif2 7444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑓𝑘) − if(𝑘 = 𝑥, 1, 0)) = if(𝑘 = 𝑥, ((𝑓𝑘) − 1), ((𝑓𝑘) − 0))
141139, 140eqtr4di 2795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) ∧ 𝑘𝑅) → if(𝑘 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑘)) = ((𝑓𝑘) − if(𝑘 = 𝑥, 1, 0)))
142141sumeq2dv 15519 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) → Σ𝑘𝑅 if(𝑘 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑘)) = Σ𝑘𝑅 ((𝑓𝑘) − if(𝑘 = 𝑥, 1, 0)))
143 simp1 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) → 𝑅 ∈ Fin)
144 0cn 11077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 0 ∈ ℂ
145109, 144ifcli 4528 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 if(𝑘 = 𝑥, 1, 0) ∈ ℂ
146145a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) ∧ 𝑘𝑅) → if(𝑘 = 𝑥, 1, 0) ∈ ℂ)
147143, 132, 146fsumsub 15604 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) → Σ𝑘𝑅 ((𝑓𝑘) − if(𝑘 = 𝑥, 1, 0)) = (Σ𝑘𝑅 (𝑓𝑘) − Σ𝑘𝑅 if(𝑘 = 𝑥, 1, 0)))
148 elsng 4595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑘𝑅 → (𝑘 ∈ {𝑥} ↔ 𝑘 = 𝑥))
149148ifbid 4504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑘𝑅 → if(𝑘 ∈ {𝑥}, 1, 0) = if(𝑘 = 𝑥, 1, 0))
150149sumeq2i 15515 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Σ𝑘𝑅 if(𝑘 ∈ {𝑥}, 1, 0) = Σ𝑘𝑅 if(𝑘 = 𝑥, 1, 0)
151 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) → 𝑥𝑅)
152151snssd 4764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) → {𝑥} ⊆ 𝑅)
153 sumhash 16699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑅 ∈ Fin ∧ {𝑥} ⊆ 𝑅) → Σ𝑘𝑅 if(𝑘 ∈ {𝑥}, 1, 0) = (♯‘{𝑥}))
154143, 152, 153syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) → Σ𝑘𝑅 if(𝑘 ∈ {𝑥}, 1, 0) = (♯‘{𝑥}))
155 hashsng 14193 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑥𝑅 → (♯‘{𝑥}) = 1)
156151, 155syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) → (♯‘{𝑥}) = 1)
157154, 156eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) → Σ𝑘𝑅 if(𝑘 ∈ {𝑥}, 1, 0) = 1)
158150, 157eqtr3id 2791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) → Σ𝑘𝑅 if(𝑘 = 𝑥, 1, 0) = 1)
159158oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) → (Σ𝑘𝑅 (𝑓𝑘) − Σ𝑘𝑅 if(𝑘 = 𝑥, 1, 0)) = (Σ𝑘𝑅 (𝑓𝑘) − 1))
160142, 147, 1593eqtrd 2781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ ∧ 𝑥𝑅) → Σ𝑘𝑅 if(𝑘 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑘)) = (Σ𝑘𝑅 (𝑓𝑘) − 1))
161117, 128, 129, 160syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) → Σ𝑘𝑅 if(𝑘 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑘)) = (Σ𝑘𝑅 (𝑓𝑘) − 1))
162 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) → Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))
163162oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) → (Σ𝑘𝑅 (𝑓𝑘) − 1) = ((𝑛 + 1) − 1))
164 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) → 𝑛 ∈ ℕ0)
165164ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) → 𝑛 ∈ ℕ0)
166165nn0cnd 12405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) → 𝑛 ∈ ℂ)
167 pncan 11337 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
168166, 109, 167sylancl 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) → ((𝑛 + 1) − 1) = 𝑛)
169161, 163, 1683eqtrd 2781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) → Σ𝑘𝑅 if(𝑘 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑘)) = 𝑛)
170127, 169jca 513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) → ((𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))):𝑅⟶ℕ0 ∧ Σ𝑘𝑅 if(𝑘 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑘)) = 𝑛))
171 feq1 6641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ( = (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))) → (:𝑅⟶ℕ0 ↔ (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))):𝑅⟶ℕ0))
172 fveq1 6833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ( = (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))) → (𝑘) = ((𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))‘𝑘))
173 equequ1 2028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑦 = 𝑘 → (𝑦 = 𝑥𝑘 = 𝑥))
174 fveq2 6834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑦 = 𝑘 → (𝑓𝑦) = (𝑓𝑘))
175173, 174ifbieq2d 4507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑦 = 𝑘 → if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)) = if(𝑘 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑘)))
176 eqid 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))) = (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))
177 ovex 7379 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑓𝑥) − 1) ∈ V
178 fvex 6847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑓𝑘) ∈ V
179177, 178ifex 4531 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 if(𝑘 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑘)) ∈ V
180175, 176, 179fvmpt 6940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑘𝑅 → ((𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))‘𝑘) = if(𝑘 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑘)))
181172, 180sylan9eq 2797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (( = (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))) ∧ 𝑘𝑅) → (𝑘) = if(𝑘 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑘)))
182181sumeq2dv 15519 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ( = (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))) → Σ𝑘𝑅 (𝑘) = Σ𝑘𝑅 if(𝑘 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑘)))
183182eqeq1d 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ( = (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))) → (Σ𝑘𝑅 (𝑘) = 𝑛 ↔ Σ𝑘𝑅 if(𝑘 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑘)) = 𝑛))
184171, 183anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ( = (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))) → ((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) ↔ ((𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))):𝑅⟶ℕ0 ∧ Σ𝑘𝑅 if(𝑘 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑘)) = 𝑛)))
185 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ( = (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))) → ((𝑚 + 1) Ramsey ) = ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))))
186185eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ( = (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))) → (((𝑚 + 1) Ramsey ) ∈ ℕ0 ↔ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))) ∈ ℕ0))
187184, 186imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ( = (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))) → (((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) ↔ (((𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))):𝑅⟶ℕ0 ∧ Σ𝑘𝑅 if(𝑘 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑘)) = 𝑛) → ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))) ∈ ℕ0)))
188187spcgv 3550 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))) ∈ V → (∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) → (((𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))):𝑅⟶ℕ0 ∧ Σ𝑘𝑅 if(𝑘 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑘)) = 𝑛) → ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))) ∈ ℕ0)))
189118, 119, 170, 188syl3c 66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) ∧ 𝑥𝑅) → ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))) ∈ ℕ0)
190189fmpttd 7054 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))))):𝑅⟶ℕ0)
191 elmapg 8708 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((ℕ0 ∈ V ∧ 𝑅 ∈ Fin) → ((𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))))) ∈ (ℕ0m 𝑅) ↔ (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))))):𝑅⟶ℕ0))
1921, 103, 191sylancr 588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → ((𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))))) ∈ (ℕ0m 𝑅) ↔ (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))))):𝑅⟶ℕ0))
193190, 192mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))))) ∈ (ℕ0m 𝑅))
194114, 116, 193rspcdva 3577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → (𝑚 Ramsey (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))))) ∈ ℕ0)
195112, 194eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → (((𝑚 + 1) − 1) Ramsey (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))))) ∈ ℕ0)
196 peano2nn0 12383 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑚 + 1) − 1) Ramsey (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))))) ∈ ℕ0 → ((((𝑚 + 1) − 1) Ramsey (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))))) + 1) ∈ ℕ0)
197195, 196syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → ((((𝑚 + 1) − 1) Ramsey (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))))) + 1) ∈ ℕ0)
198 nn0p1nn 12382 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
199100, 198syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 + 1) ∈ ℕ)
200199ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → (𝑚 + 1) ∈ ℕ)
201 equequ1 2028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = 𝑤 → (𝑦 = 𝑥𝑤 = 𝑥))
202 fveq2 6834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = 𝑤 → (𝑓𝑦) = (𝑓𝑤))
203201, 202ifbieq2d 4507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = 𝑤 → if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)) = if(𝑤 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑤)))
204203cbvmptv 5213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))) = (𝑤𝑅 ↦ if(𝑤 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑤)))
205 eqeq2 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = 𝑧 → (𝑤 = 𝑥𝑤 = 𝑧))
206 fveq2 6834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 = 𝑧 → (𝑓𝑥) = (𝑓𝑧))
207206oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = 𝑧 → ((𝑓𝑥) − 1) = ((𝑓𝑧) − 1))
208205, 207ifbieq1d 4505 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = 𝑧 → if(𝑤 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑤)) = if(𝑤 = 𝑧, ((𝑓𝑧) − 1), (𝑓𝑤)))
209208mpteq2dv 5202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = 𝑧 → (𝑤𝑅 ↦ if(𝑤 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑤))) = (𝑤𝑅 ↦ if(𝑤 = 𝑧, ((𝑓𝑧) − 1), (𝑓𝑤))))
210204, 209eqtrid 2789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 = 𝑧 → (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))) = (𝑤𝑅 ↦ if(𝑤 = 𝑧, ((𝑓𝑧) − 1), (𝑓𝑤))))
211210oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = 𝑧 → ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))) = ((𝑚 + 1) Ramsey (𝑤𝑅 ↦ if(𝑤 = 𝑧, ((𝑓𝑧) − 1), (𝑓𝑤)))))
212211cbvmptv 5213 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦))))) = (𝑧𝑅 ↦ ((𝑚 + 1) Ramsey (𝑤𝑅 ↦ if(𝑤 = 𝑧, ((𝑓𝑧) − 1), (𝑓𝑤)))))
213200, 103, 104, 212, 190, 195ramub1 16831 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → ((𝑚 + 1) Ramsey 𝑓) ≤ ((((𝑚 + 1) − 1) Ramsey (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))))) + 1))
214 ramubcl 16821 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑚 + 1) ∈ ℕ0𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ0) ∧ (((((𝑚 + 1) − 1) Ramsey (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))))) + 1) ∈ ℕ0 ∧ ((𝑚 + 1) Ramsey 𝑓) ≤ ((((𝑚 + 1) − 1) Ramsey (𝑥𝑅 ↦ ((𝑚 + 1) Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝑓𝑥) − 1), (𝑓𝑦)))))) + 1))) → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0)
215102, 103, 107, 197, 213, 214syl32anc 1378 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1) ∧ 𝑓:𝑅⟶ℕ)) → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0)
216215expr 458 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1)) → (𝑓:𝑅⟶ℕ → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0))
217216adantrl 714 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))) → (𝑓:𝑅⟶ℕ → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0))
21899, 217sylbird 260 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))) → (∀𝑥𝑅 (𝑓𝑥) ∈ ℕ → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0))
219 rexnal 3101 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑥𝑅 ¬ (𝑓𝑥) ∈ ℕ ↔ ¬ ∀𝑥𝑅 (𝑓𝑥) ∈ ℕ)
220 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))) → 𝑓:𝑅⟶ℕ0)
221220ffvelcdmda 7026 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))) ∧ 𝑥𝑅) → (𝑓𝑥) ∈ ℕ0)
222 elnn0 12345 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓𝑥) ∈ ℕ0 ↔ ((𝑓𝑥) ∈ ℕ ∨ (𝑓𝑥) = 0))
223221, 222sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))) ∧ 𝑥𝑅) → ((𝑓𝑥) ∈ ℕ ∨ (𝑓𝑥) = 0))
224223ord 862 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))) ∧ 𝑥𝑅) → (¬ (𝑓𝑥) ∈ ℕ → (𝑓𝑥) = 0))
225199ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))) → (𝑚 + 1) ∈ ℕ)
226 simp-4l 781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))) → 𝑅 ∈ Fin)
227225, 226, 2203jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))) → ((𝑚 + 1) ∈ ℕ ∧ 𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ0))
228 ramz2 16827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑚 + 1) ∈ ℕ ∧ 𝑅 ∈ Fin ∧ 𝑓:𝑅⟶ℕ0) ∧ (𝑥𝑅 ∧ (𝑓𝑥) = 0)) → ((𝑚 + 1) Ramsey 𝑓) = 0)
229227, 228sylan 581 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))) ∧ (𝑥𝑅 ∧ (𝑓𝑥) = 0)) → ((𝑚 + 1) Ramsey 𝑓) = 0)
230229, 86eqeltrdi 2846 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))) ∧ (𝑥𝑅 ∧ (𝑓𝑥) = 0)) → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0)
231230expr 458 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))) ∧ 𝑥𝑅) → ((𝑓𝑥) = 0 → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0))
232224, 231syld 47 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))) ∧ 𝑥𝑅) → (¬ (𝑓𝑥) ∈ ℕ → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0))
233232rexlimdva 3150 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))) → (∃𝑥𝑅 ¬ (𝑓𝑥) ∈ ℕ → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0))
234219, 233biimtrrid 242 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))) → (¬ ∀𝑥𝑅 (𝑓𝑥) ∈ ℕ → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0))
235218, 234pm2.61d 179 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) ∧ ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) ∧ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))) → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0)
236235exp31 421 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) → (∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) → ((𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0)))
237236alrimdv 1932 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) → (∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) → ∀𝑓((𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0)))
238 feq1 6641 . . . . . . . . . . . . . . . . . . . . . . 23 ( = 𝑓 → (:𝑅⟶ℕ0𝑓:𝑅⟶ℕ0))
239 fveq1 6833 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( = 𝑓 → (𝑘) = (𝑓𝑘))
240239sumeq2sdv 15520 . . . . . . . . . . . . . . . . . . . . . . . 24 ( = 𝑓 → Σ𝑘𝑅 (𝑘) = Σ𝑘𝑅 (𝑓𝑘))
241240eqeq1d 2739 . . . . . . . . . . . . . . . . . . . . . . 23 ( = 𝑓 → (Σ𝑘𝑅 (𝑘) = (𝑛 + 1) ↔ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1)))
242238, 241anbi12d 632 . . . . . . . . . . . . . . . . . . . . . 22 ( = 𝑓 → ((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = (𝑛 + 1)) ↔ (𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1))))
243 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . 23 ( = 𝑓 → ((𝑚 + 1) Ramsey ) = ((𝑚 + 1) Ramsey 𝑓))
244243eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . 22 ( = 𝑓 → (((𝑚 + 1) Ramsey ) ∈ ℕ0 ↔ ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0))
245242, 244imbi12d 345 . . . . . . . . . . . . . . . . . . . . 21 ( = 𝑓 → (((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) ↔ ((𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0)))
246245cbvalvw 2039 . . . . . . . . . . . . . . . . . . . 20 (∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) ↔ ∀𝑓((𝑓:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑓𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0))
247237, 246syl6ibr 252 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0𝑛 ∈ ℕ0)) → (∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)))
248247anassrs 469 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)))
249248expcom 415 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) → (∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey ) ∈ ℕ0))))
250249a2d 29 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → ((((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = 𝑛) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)) → (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = (𝑛 + 1)) → ((𝑚 + 1) Ramsey ) ∈ ℕ0))))
25136, 41, 46, 51, 94, 250nn0ind 12525 . . . . . . . . . . . . . . 15 𝑘𝑅 (𝑓𝑘) ∈ ℕ0 → (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = Σ𝑘𝑅 (𝑓𝑘)) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)))
252251com12 32 . . . . . . . . . . . . . 14 (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0) → (Σ𝑘𝑅 (𝑓𝑘) ∈ ℕ0 → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = Σ𝑘𝑅 (𝑓𝑘)) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)))
253252adantrl 714 . . . . . . . . . . . . 13 (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (𝑓 ∈ (ℕ0m 𝑅) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0)) → (Σ𝑘𝑅 (𝑓𝑘) ∈ ℕ0 → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = Σ𝑘𝑅 (𝑓𝑘)) → ((𝑚 + 1) Ramsey ) ∈ ℕ0)))
25431, 253mpd 15 . . . . . . . . . . . 12 (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (𝑓 ∈ (ℕ0m 𝑅) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0)) → ∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = Σ𝑘𝑅 (𝑓𝑘)) → ((𝑚 + 1) Ramsey ) ∈ ℕ0))
255240biantrud 533 . . . . . . . . . . . . . . 15 ( = 𝑓 → (:𝑅⟶ℕ0 ↔ (:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = Σ𝑘𝑅 (𝑓𝑘))))
256255, 238bitr3d 281 . . . . . . . . . . . . . 14 ( = 𝑓 → ((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = Σ𝑘𝑅 (𝑓𝑘)) ↔ 𝑓:𝑅⟶ℕ0))
257256, 244imbi12d 345 . . . . . . . . . . . . 13 ( = 𝑓 → (((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = Σ𝑘𝑅 (𝑓𝑘)) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) ↔ (𝑓:𝑅⟶ℕ0 → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0)))
258257spvv 2000 . . . . . . . . . . . 12 (∀((:𝑅⟶ℕ0 ∧ Σ𝑘𝑅 (𝑘) = Σ𝑘𝑅 (𝑓𝑘)) → ((𝑚 + 1) Ramsey ) ∈ ℕ0) → (𝑓:𝑅⟶ℕ0 → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0))
259254, 29, 258sylc 65 . . . . . . . . . . 11 (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ (𝑓 ∈ (ℕ0m 𝑅) ∧ ∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0)) → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0)
260259expr 458 . . . . . . . . . 10 (((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) ∧ 𝑓 ∈ (ℕ0m 𝑅)) → (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 → ((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0))
261260ralrimdva 3149 . . . . . . . . 9 ((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) → (∀𝑔 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑔) ∈ ℕ0 → ∀𝑓 ∈ (ℕ0m 𝑅)((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0))
26227, 261biimtrid 241 . . . . . . . 8 ((𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0) → (∀𝑓 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑓) ∈ ℕ0 → ∀𝑓 ∈ (ℕ0m 𝑅)((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0))
263262expcom 415 . . . . . . 7 (𝑚 ∈ ℕ0 → (𝑅 ∈ Fin → (∀𝑓 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑓) ∈ ℕ0 → ∀𝑓 ∈ (ℕ0m 𝑅)((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0)))
264263a2d 29 . . . . . 6 (𝑚 ∈ ℕ0 → ((𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0m 𝑅)(𝑚 Ramsey 𝑓) ∈ ℕ0) → (𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0m 𝑅)((𝑚 + 1) Ramsey 𝑓) ∈ ℕ0)))
2658, 12, 16, 20, 24, 264nn0ind 12525 . . . . 5 (𝑀 ∈ ℕ0 → (𝑅 ∈ Fin → ∀𝑓 ∈ (ℕ0m 𝑅)(𝑀 Ramsey 𝑓) ∈ ℕ0))
266265imp 408 . . . 4 ((𝑀 ∈ ℕ0𝑅 ∈ Fin) → ∀𝑓 ∈ (ℕ0m 𝑅)(𝑀 Ramsey 𝑓) ∈ ℕ0)
267 oveq2 7354 . . . . . 6 (𝑓 = 𝐹 → (𝑀 Ramsey 𝑓) = (𝑀 Ramsey 𝐹))
268267eleq1d 2822 . . . . 5 (𝑓 = 𝐹 → ((𝑀 Ramsey 𝑓) ∈ ℕ0 ↔ (𝑀 Ramsey 𝐹) ∈ ℕ0))
269268rspccv 3573 . . . 4 (∀𝑓 ∈ (ℕ0m 𝑅)(𝑀 Ramsey 𝑓) ∈ ℕ0 → (𝐹 ∈ (ℕ0m 𝑅) → (𝑀 Ramsey 𝐹) ∈ ℕ0))
270266, 269syl 17 . . 3 ((𝑀 ∈ ℕ0𝑅 ∈ Fin) → (𝐹 ∈ (ℕ0m 𝑅) → (𝑀 Ramsey 𝐹) ∈ ℕ0))
2714, 270sylbird 260 . 2 ((𝑀 ∈ ℕ0𝑅 ∈ Fin) → (𝐹:𝑅⟶ℕ0 → (𝑀 Ramsey 𝐹) ∈ ℕ0))
2722713impia 1117 1 ((𝑀 ∈ ℕ0𝑅 ∈ Fin ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845  w3a 1087  wal 1539   = wceq 1541  wcel 2106  wne 2941  wral 3062  wrex 3071  Vcvv 3443  wss 3905  c0 4277  ifcif 4481  {csn 4581   class class class wbr 5100  cmpt 5183   × cxp 5625   Fn wfn 6483  wf 6484  cfv 6488  (class class class)co 7346  m cmap 8695  Fincfn 8813  cc 10979  0cc0 10981  1c1 10982   + caddc 10984  cle 11120  cmin 11315  cn 12083  0cn0 12343  chash 14154  Σcsu 15501   Ramsey cram 16802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-inf2 9507  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058  ax-pre-sup 11059
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-int 4903  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-se 5583  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-1st 7908  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-oadd 8380  df-er 8578  df-map 8697  df-en 8814  df-dom 8815  df-sdom 8816  df-fin 8817  df-sup 9308  df-inf 9309  df-oi 9376  df-dju 9767  df-card 9805  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-div 11743  df-nn 12084  df-2 12146  df-3 12147  df-n0 12344  df-xnn0 12416  df-z 12430  df-uz 12693  df-rp 12841  df-ico 13195  df-fz 13350  df-fzo 13493  df-seq 13832  df-exp 13893  df-fac 14098  df-bc 14127  df-hash 14155  df-cj 14914  df-re 14915  df-im 14916  df-sqrt 15050  df-abs 15051  df-clim 15301  df-sum 15502  df-ram 16804
This theorem is referenced by:  ramsey  16833
  Copyright terms: Public domain W3C validator