MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard2 Structured version   Visualization version   GIF version

Theorem findcard2 9078
Description: Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.) Avoid ax-pow 5304. (Revised by BTernaryTau, 26-Aug-2024.)
Hypotheses
Ref Expression
findcard2.1 (𝑥 = ∅ → (𝜑𝜓))
findcard2.2 (𝑥 = 𝑦 → (𝜑𝜒))
findcard2.3 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
findcard2.4 (𝑥 = 𝐴 → (𝜑𝜏))
findcard2.5 𝜓
findcard2.6 (𝑦 ∈ Fin → (𝜒𝜃))
Assertion
Ref Expression
findcard2 (𝐴 ∈ Fin → 𝜏)
Distinct variable groups:   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝑥,𝐴   𝜑,𝑦,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)   𝐴(𝑦,𝑧)

Proof of Theorem findcard2
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 findcard2.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
2 isfi 8901 . . 3 (𝑥 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑥𝑤)
3 breq2 5096 . . . . . . . 8 (𝑤 = ∅ → (𝑥𝑤𝑥 ≈ ∅))
43imbi1d 341 . . . . . . 7 (𝑤 = ∅ → ((𝑥𝑤𝜑) ↔ (𝑥 ≈ ∅ → 𝜑)))
54albidv 1920 . . . . . 6 (𝑤 = ∅ → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥 ≈ ∅ → 𝜑)))
6 breq2 5096 . . . . . . . 8 (𝑤 = 𝑣 → (𝑥𝑤𝑥𝑣))
76imbi1d 341 . . . . . . 7 (𝑤 = 𝑣 → ((𝑥𝑤𝜑) ↔ (𝑥𝑣𝜑)))
87albidv 1920 . . . . . 6 (𝑤 = 𝑣 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥𝑣𝜑)))
9 breq2 5096 . . . . . . . 8 (𝑤 = suc 𝑣 → (𝑥𝑤𝑥 ≈ suc 𝑣))
109imbi1d 341 . . . . . . 7 (𝑤 = suc 𝑣 → ((𝑥𝑤𝜑) ↔ (𝑥 ≈ suc 𝑣𝜑)))
1110albidv 1920 . . . . . 6 (𝑤 = suc 𝑣 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥 ≈ suc 𝑣𝜑)))
12 en0 8943 . . . . . . . 8 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
13 findcard2.5 . . . . . . . . 9 𝜓
14 findcard2.1 . . . . . . . . 9 (𝑥 = ∅ → (𝜑𝜓))
1513, 14mpbiri 258 . . . . . . . 8 (𝑥 = ∅ → 𝜑)
1612, 15sylbi 217 . . . . . . 7 (𝑥 ≈ ∅ → 𝜑)
1716ax-gen 1795 . . . . . 6 𝑥(𝑥 ≈ ∅ → 𝜑)
18 nnon 7805 . . . . . . . . . . . 12 (𝑣 ∈ ω → 𝑣 ∈ On)
19 rexdif1en 9074 . . . . . . . . . . . 12 ((𝑣 ∈ On ∧ 𝑤 ≈ suc 𝑣) → ∃𝑧𝑤 (𝑤 ∖ {𝑧}) ≈ 𝑣)
2018, 19sylan 580 . . . . . . . . . . 11 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → ∃𝑧𝑤 (𝑤 ∖ {𝑧}) ≈ 𝑣)
21 snssi 4759 . . . . . . . . . . . . . . . 16 (𝑧𝑤 → {𝑧} ⊆ 𝑤)
22 uncom 4109 . . . . . . . . . . . . . . . . 17 ((𝑤 ∖ {𝑧}) ∪ {𝑧}) = ({𝑧} ∪ (𝑤 ∖ {𝑧}))
23 undif 4433 . . . . . . . . . . . . . . . . . 18 ({𝑧} ⊆ 𝑤 ↔ ({𝑧} ∪ (𝑤 ∖ {𝑧})) = 𝑤)
2423biimpi 216 . . . . . . . . . . . . . . . . 17 ({𝑧} ⊆ 𝑤 → ({𝑧} ∪ (𝑤 ∖ {𝑧})) = 𝑤)
2522, 24eqtrid 2776 . . . . . . . . . . . . . . . 16 ({𝑧} ⊆ 𝑤 → ((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤)
26 vex 3440 . . . . . . . . . . . . . . . . . . 19 𝑤 ∈ V
2726difexi 5269 . . . . . . . . . . . . . . . . . 18 (𝑤 ∖ {𝑧}) ∈ V
28 breq1 5095 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑤 ∖ {𝑧}) → (𝑦𝑣 ↔ (𝑤 ∖ {𝑧}) ≈ 𝑣))
2928anbi2d 630 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑤 ∖ {𝑧}) → ((𝑣 ∈ ω ∧ 𝑦𝑣) ↔ (𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣)))
30 uneq1 4112 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑤 ∖ {𝑧}) → (𝑦 ∪ {𝑧}) = ((𝑤 ∖ {𝑧}) ∪ {𝑧}))
3130sbceq1d 3747 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑤 ∖ {𝑧}) → ([(𝑦 ∪ {𝑧}) / 𝑥]𝜑[((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))
3231imbi2d 340 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑤 ∖ {𝑧}) → ((∀𝑥(𝑥𝑣𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑) ↔ (∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑)))
3329, 32imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑤 ∖ {𝑧}) → (((𝑣 ∈ ω ∧ 𝑦𝑣) → (∀𝑥(𝑥𝑣𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑)) ↔ ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))))
34 breq1 5095 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → (𝑥𝑣𝑦𝑣))
35 findcard2.2 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → (𝜑𝜒))
3634, 35imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → ((𝑥𝑣𝜑) ↔ (𝑦𝑣𝜒)))
3736spvv 1988 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥(𝑥𝑣𝜑) → (𝑦𝑣𝜒))
38 rspe 3219 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣 ∈ ω ∧ 𝑦𝑣) → ∃𝑣 ∈ ω 𝑦𝑣)
39 isfi 8901 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ Fin ↔ ∃𝑣 ∈ ω 𝑦𝑣)
4038, 39sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ ω ∧ 𝑦𝑣) → 𝑦 ∈ Fin)
41 pm2.27 42 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑣 → ((𝑦𝑣𝜒) → 𝜒))
4241adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ ω ∧ 𝑦𝑣) → ((𝑦𝑣𝜒) → 𝜒))
43 findcard2.6 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ Fin → (𝜒𝜃))
4440, 42, 43sylsyld 61 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ω ∧ 𝑦𝑣) → ((𝑦𝑣𝜒) → 𝜃))
4537, 44syl5 34 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ω ∧ 𝑦𝑣) → (∀𝑥(𝑥𝑣𝜑) → 𝜃))
46 vex 3440 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
47 vsnex 5373 . . . . . . . . . . . . . . . . . . . . 21 {𝑧} ∈ V
4846, 47unex 7680 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∪ {𝑧}) ∈ V
49 findcard2.3 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
5048, 49sbcie 3784 . . . . . . . . . . . . . . . . . . 19 ([(𝑦 ∪ {𝑧}) / 𝑥]𝜑𝜃)
5145, 50imbitrrdi 252 . . . . . . . . . . . . . . . . . 18 ((𝑣 ∈ ω ∧ 𝑦𝑣) → (∀𝑥(𝑥𝑣𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑))
5227, 33, 51vtocl 3513 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))
53 dfsbcq 3744 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ([((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑[𝑤 / 𝑥]𝜑))
5453imbi2d 340 . . . . . . . . . . . . . . . . 17 (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ((∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑) ↔ (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
5552, 54imbitrid 244 . . . . . . . . . . . . . . . 16 (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
5621, 25, 553syl 18 . . . . . . . . . . . . . . 15 (𝑧𝑤 → ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
5756expd 415 . . . . . . . . . . . . . 14 (𝑧𝑤 → (𝑣 ∈ ω → ((𝑤 ∖ {𝑧}) ≈ 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))))
5857com12 32 . . . . . . . . . . . . 13 (𝑣 ∈ ω → (𝑧𝑤 → ((𝑤 ∖ {𝑧}) ≈ 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))))
5958rexlimdv 3128 . . . . . . . . . . . 12 (𝑣 ∈ ω → (∃𝑧𝑤 (𝑤 ∖ {𝑧}) ≈ 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
6059adantr 480 . . . . . . . . . . 11 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (∃𝑧𝑤 (𝑤 ∖ {𝑧}) ≈ 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
6120, 60mpd 15 . . . . . . . . . 10 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))
6261ex 412 . . . . . . . . 9 (𝑣 ∈ ω → (𝑤 ≈ suc 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
6362com23 86 . . . . . . . 8 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → (𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)))
6463alrimdv 1929 . . . . . . 7 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → ∀𝑤(𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)))
65 nfv 1914 . . . . . . . 8 𝑤(𝑥 ≈ suc 𝑣𝜑)
66 nfv 1914 . . . . . . . . 9 𝑥 𝑤 ≈ suc 𝑣
67 nfsbc1v 3762 . . . . . . . . 9 𝑥[𝑤 / 𝑥]𝜑
6866, 67nfim 1896 . . . . . . . 8 𝑥(𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)
69 breq1 5095 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥 ≈ suc 𝑣𝑤 ≈ suc 𝑣))
70 sbceq1a 3753 . . . . . . . . 9 (𝑥 = 𝑤 → (𝜑[𝑤 / 𝑥]𝜑))
7169, 70imbi12d 344 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑥 ≈ suc 𝑣𝜑) ↔ (𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)))
7265, 68, 71cbvalv1 2339 . . . . . . 7 (∀𝑥(𝑥 ≈ suc 𝑣𝜑) ↔ ∀𝑤(𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑))
7364, 72imbitrrdi 252 . . . . . 6 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → ∀𝑥(𝑥 ≈ suc 𝑣𝜑)))
745, 8, 11, 17, 73finds1 7832 . . . . 5 (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))
757419.21bi 2190 . . . 4 (𝑤 ∈ ω → (𝑥𝑤𝜑))
7675rexlimiv 3123 . . 3 (∃𝑤 ∈ ω 𝑥𝑤𝜑)
772, 76sylbi 217 . 2 (𝑥 ∈ Fin → 𝜑)
781, 77vtoclga 3532 1 (𝐴 ∈ Fin → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wrex 3053  [wsbc 3742  cdif 3900  cun 3901  wss 3903  c0 4284  {csn 4577   class class class wbr 5092  Oncon0 6307  suc csuc 6309  ωcom 7799  cen 8869  Fincfn 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-en 8873  df-fin 8876
This theorem is referenced by:  findcard2s  9079  ssfi  9087  cnvfi  9090  fnfi  9092  frfi  9174  imafiOLD  9205  pwfi  9208  iunfi  9233  finsschain  9249  infdiffi  9554  fin1a2lem10  10303  wunfi  10615  rexfiuz  15255  modfsummod  15701  lcmfunsnlem  16552  lcmfun  16556  drsdirfi  18211  fiuncmp  23289  finiunmbl  25443  fineqvac  35072  mbfresfi  37646  heibor1lem  37789  pclfinclN  39929
  Copyright terms: Public domain W3C validator