MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard2 Structured version   Visualization version   GIF version

Theorem findcard2 8354
Description: Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.)
Hypotheses
Ref Expression
findcard2.1 (𝑥 = ∅ → (𝜑𝜓))
findcard2.2 (𝑥 = 𝑦 → (𝜑𝜒))
findcard2.3 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
findcard2.4 (𝑥 = 𝐴 → (𝜑𝜏))
findcard2.5 𝜓
findcard2.6 (𝑦 ∈ Fin → (𝜒𝜃))
Assertion
Ref Expression
findcard2 (𝐴 ∈ Fin → 𝜏)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)

Proof of Theorem findcard2
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 findcard2.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
2 isfi 8131 . . 3 (𝑥 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑥𝑤)
3 breq2 4790 . . . . . . . 8 (𝑤 = ∅ → (𝑥𝑤𝑥 ≈ ∅))
43imbi1d 330 . . . . . . 7 (𝑤 = ∅ → ((𝑥𝑤𝜑) ↔ (𝑥 ≈ ∅ → 𝜑)))
54albidv 2001 . . . . . 6 (𝑤 = ∅ → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥 ≈ ∅ → 𝜑)))
6 breq2 4790 . . . . . . . 8 (𝑤 = 𝑣 → (𝑥𝑤𝑥𝑣))
76imbi1d 330 . . . . . . 7 (𝑤 = 𝑣 → ((𝑥𝑤𝜑) ↔ (𝑥𝑣𝜑)))
87albidv 2001 . . . . . 6 (𝑤 = 𝑣 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥𝑣𝜑)))
9 breq2 4790 . . . . . . . 8 (𝑤 = suc 𝑣 → (𝑥𝑤𝑥 ≈ suc 𝑣))
109imbi1d 330 . . . . . . 7 (𝑤 = suc 𝑣 → ((𝑥𝑤𝜑) ↔ (𝑥 ≈ suc 𝑣𝜑)))
1110albidv 2001 . . . . . 6 (𝑤 = suc 𝑣 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥 ≈ suc 𝑣𝜑)))
12 en0 8170 . . . . . . . 8 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
13 findcard2.5 . . . . . . . . 9 𝜓
14 findcard2.1 . . . . . . . . 9 (𝑥 = ∅ → (𝜑𝜓))
1513, 14mpbiri 248 . . . . . . . 8 (𝑥 = ∅ → 𝜑)
1612, 15sylbi 207 . . . . . . 7 (𝑥 ≈ ∅ → 𝜑)
1716ax-gen 1870 . . . . . 6 𝑥(𝑥 ≈ ∅ → 𝜑)
18 nsuceq0 5946 . . . . . . . . . . . 12 suc 𝑣 ≠ ∅
19 breq1 4789 . . . . . . . . . . . . . . . 16 (𝑤 = ∅ → (𝑤 ≈ suc 𝑣 ↔ ∅ ≈ suc 𝑣))
2019anbi2d 614 . . . . . . . . . . . . . . 15 (𝑤 = ∅ → ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) ↔ (𝑣 ∈ ω ∧ ∅ ≈ suc 𝑣)))
21 peano1 7230 . . . . . . . . . . . . . . . . . 18 ∅ ∈ ω
22 peano2 7231 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ω → suc 𝑣 ∈ ω)
23 nneneq 8297 . . . . . . . . . . . . . . . . . 18 ((∅ ∈ ω ∧ suc 𝑣 ∈ ω) → (∅ ≈ suc 𝑣 ↔ ∅ = suc 𝑣))
2421, 22, 23sylancr 575 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ω → (∅ ≈ suc 𝑣 ↔ ∅ = suc 𝑣))
2524biimpa 462 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ω ∧ ∅ ≈ suc 𝑣) → ∅ = suc 𝑣)
2625eqcomd 2777 . . . . . . . . . . . . . . 15 ((𝑣 ∈ ω ∧ ∅ ≈ suc 𝑣) → suc 𝑣 = ∅)
2720, 26syl6bi 243 . . . . . . . . . . . . . 14 (𝑤 = ∅ → ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → suc 𝑣 = ∅))
2827com12 32 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑤 = ∅ → suc 𝑣 = ∅))
2928necon3d 2964 . . . . . . . . . . . 12 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (suc 𝑣 ≠ ∅ → 𝑤 ≠ ∅))
3018, 29mpi 20 . . . . . . . . . . 11 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → 𝑤 ≠ ∅)
3130ex 397 . . . . . . . . . 10 (𝑣 ∈ ω → (𝑤 ≈ suc 𝑣𝑤 ≠ ∅))
32 n0 4078 . . . . . . . . . . . 12 (𝑤 ≠ ∅ ↔ ∃𝑧 𝑧𝑤)
33 dif1en 8347 . . . . . . . . . . . . . . 15 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣𝑧𝑤) → (𝑤 ∖ {𝑧}) ≈ 𝑣)
34333expia 1114 . . . . . . . . . . . . . 14 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑧𝑤 → (𝑤 ∖ {𝑧}) ≈ 𝑣))
35 snssi 4474 . . . . . . . . . . . . . . . . . 18 (𝑧𝑤 → {𝑧} ⊆ 𝑤)
36 uncom 3908 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∖ {𝑧}) ∪ {𝑧}) = ({𝑧} ∪ (𝑤 ∖ {𝑧}))
37 undif 4191 . . . . . . . . . . . . . . . . . . . 20 ({𝑧} ⊆ 𝑤 ↔ ({𝑧} ∪ (𝑤 ∖ {𝑧})) = 𝑤)
3837biimpi 206 . . . . . . . . . . . . . . . . . . 19 ({𝑧} ⊆ 𝑤 → ({𝑧} ∪ (𝑤 ∖ {𝑧})) = 𝑤)
3936, 38syl5eq 2817 . . . . . . . . . . . . . . . . . 18 ({𝑧} ⊆ 𝑤 → ((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤)
40 vex 3354 . . . . . . . . . . . . . . . . . . . . 21 𝑤 ∈ V
41 difexg 4942 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ V → (𝑤 ∖ {𝑧}) ∈ V)
4240, 41ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∖ {𝑧}) ∈ V
43 breq1 4789 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑤 ∖ {𝑧}) → (𝑦𝑣 ↔ (𝑤 ∖ {𝑧}) ≈ 𝑣))
4443anbi2d 614 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑤 ∖ {𝑧}) → ((𝑣 ∈ ω ∧ 𝑦𝑣) ↔ (𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣)))
45 uneq1 3911 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑤 ∖ {𝑧}) → (𝑦 ∪ {𝑧}) = ((𝑤 ∖ {𝑧}) ∪ {𝑧}))
4645sbceq1d 3592 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑤 ∖ {𝑧}) → ([(𝑦 ∪ {𝑧}) / 𝑥]𝜑[((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))
4746imbi2d 329 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑤 ∖ {𝑧}) → ((∀𝑥(𝑥𝑣𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑) ↔ (∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑)))
4844, 47imbi12d 333 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑤 ∖ {𝑧}) → (((𝑣 ∈ ω ∧ 𝑦𝑣) → (∀𝑥(𝑥𝑣𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑)) ↔ ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))))
49 breq1 4789 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑦 → (𝑥𝑣𝑦𝑣))
50 findcard2.2 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑦 → (𝜑𝜒))
5149, 50imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → ((𝑥𝑣𝜑) ↔ (𝑦𝑣𝜒)))
5251spv 2422 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑥(𝑥𝑣𝜑) → (𝑦𝑣𝜒))
53 rspe 3151 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ ω ∧ 𝑦𝑣) → ∃𝑣 ∈ ω 𝑦𝑣)
54 isfi 8131 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ Fin ↔ ∃𝑣 ∈ ω 𝑦𝑣)
5553, 54sylibr 224 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 ∈ ω ∧ 𝑦𝑣) → 𝑦 ∈ Fin)
56 pm2.27 42 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝑣 → ((𝑦𝑣𝜒) → 𝜒))
5756adantl 467 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 ∈ ω ∧ 𝑦𝑣) → ((𝑦𝑣𝜒) → 𝜒))
58 findcard2.6 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ Fin → (𝜒𝜃))
5955, 57, 58sylsyld 61 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣 ∈ ω ∧ 𝑦𝑣) → ((𝑦𝑣𝜒) → 𝜃))
6052, 59syl5 34 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ ω ∧ 𝑦𝑣) → (∀𝑥(𝑥𝑣𝜑) → 𝜃))
61 vex 3354 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 ∈ V
62 snex 5036 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑧} ∈ V
6361, 62unex 7101 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∪ {𝑧}) ∈ V
64 findcard2.3 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
6563, 64sbcie 3622 . . . . . . . . . . . . . . . . . . . . 21 ([(𝑦 ∪ {𝑧}) / 𝑥]𝜑𝜃)
6660, 65syl6ibr 242 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ω ∧ 𝑦𝑣) → (∀𝑥(𝑥𝑣𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑))
6742, 48, 66vtocl 3410 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))
68 dfsbcq 3589 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ([((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑[𝑤 / 𝑥]𝜑))
6968imbi2d 329 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ((∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑) ↔ (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7067, 69syl5ib 234 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7135, 39, 703syl 18 . . . . . . . . . . . . . . . . 17 (𝑧𝑤 → ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7271expd 400 . . . . . . . . . . . . . . . 16 (𝑧𝑤 → (𝑣 ∈ ω → ((𝑤 ∖ {𝑧}) ≈ 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))))
7372com12 32 . . . . . . . . . . . . . . 15 (𝑣 ∈ ω → (𝑧𝑤 → ((𝑤 ∖ {𝑧}) ≈ 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))))
7473adantr 466 . . . . . . . . . . . . . 14 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑧𝑤 → ((𝑤 ∖ {𝑧}) ≈ 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))))
7534, 74mpdd 43 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑧𝑤 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7675exlimdv 2013 . . . . . . . . . . . 12 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (∃𝑧 𝑧𝑤 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7732, 76syl5bi 232 . . . . . . . . . . 11 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑤 ≠ ∅ → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7877ex 397 . . . . . . . . . 10 (𝑣 ∈ ω → (𝑤 ≈ suc 𝑣 → (𝑤 ≠ ∅ → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))))
7931, 78mpdd 43 . . . . . . . . 9 (𝑣 ∈ ω → (𝑤 ≈ suc 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
8079com23 86 . . . . . . . 8 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → (𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)))
8180alrimdv 2009 . . . . . . 7 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → ∀𝑤(𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)))
82 nfv 1995 . . . . . . . 8 𝑤(𝑥 ≈ suc 𝑣𝜑)
83 nfv 1995 . . . . . . . . 9 𝑥 𝑤 ≈ suc 𝑣
84 nfsbc1v 3607 . . . . . . . . 9 𝑥[𝑤 / 𝑥]𝜑
8583, 84nfim 1977 . . . . . . . 8 𝑥(𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)
86 breq1 4789 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥 ≈ suc 𝑣𝑤 ≈ suc 𝑣))
87 sbceq1a 3598 . . . . . . . . 9 (𝑥 = 𝑤 → (𝜑[𝑤 / 𝑥]𝜑))
8886, 87imbi12d 333 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑥 ≈ suc 𝑣𝜑) ↔ (𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)))
8982, 85, 88cbval 2432 . . . . . . 7 (∀𝑥(𝑥 ≈ suc 𝑣𝜑) ↔ ∀𝑤(𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑))
9081, 89syl6ibr 242 . . . . . 6 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → ∀𝑥(𝑥 ≈ suc 𝑣𝜑)))
915, 8, 11, 17, 90finds1 7240 . . . . 5 (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))
929119.21bi 2213 . . . 4 (𝑤 ∈ ω → (𝑥𝑤𝜑))
9392rexlimiv 3175 . . 3 (∃𝑤 ∈ ω 𝑥𝑤𝜑)
942, 93sylbi 207 . 2 (𝑥 ∈ Fin → 𝜑)
951, 94vtoclga 3423 1 (𝐴 ∈ Fin → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wal 1629   = wceq 1631  wex 1852  wcel 2145  wne 2943  wrex 3062  Vcvv 3351  [wsbc 3587  cdif 3720  cun 3721  wss 3723  c0 4063  {csn 4316   class class class wbr 4786  suc csuc 5866  ωcom 7210  cen 8104  Fincfn 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-om 7211  df-1o 7711  df-er 7894  df-en 8108  df-fin 8111
This theorem is referenced by:  findcard2s  8355  frfi  8359  fnfi  8392  iunfi  8408  finsschain  8427  infdiffi  8717  fin1a2lem10  9431  wunfi  9743  rexfiuz  14288  modfsummod  14726  lcmfunsnlem  15555  lcmfun  15559  drsdirfi  17139  fiuncmp  21421  finiunmbl  23525  mbfresfi  33781  heibor1lem  33933  pclfinclN  35751
  Copyright terms: Public domain W3C validator