MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard2 Structured version   Visualization version   GIF version

Theorem findcard2 8909
Description: Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.) Avoid ax-pow 5283. (Revised by BTernaryTau, 26-Aug-2024.)
Hypotheses
Ref Expression
findcard2.1 (𝑥 = ∅ → (𝜑𝜓))
findcard2.2 (𝑥 = 𝑦 → (𝜑𝜒))
findcard2.3 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
findcard2.4 (𝑥 = 𝐴 → (𝜑𝜏))
findcard2.5 𝜓
findcard2.6 (𝑦 ∈ Fin → (𝜒𝜃))
Assertion
Ref Expression
findcard2 (𝐴 ∈ Fin → 𝜏)
Distinct variable groups:   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝑥,𝐴   𝜑,𝑦,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)   𝐴(𝑦,𝑧)

Proof of Theorem findcard2
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 findcard2.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
2 isfi 8719 . . 3 (𝑥 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑥𝑤)
3 breq2 5074 . . . . . . . 8 (𝑤 = ∅ → (𝑥𝑤𝑥 ≈ ∅))
43imbi1d 341 . . . . . . 7 (𝑤 = ∅ → ((𝑥𝑤𝜑) ↔ (𝑥 ≈ ∅ → 𝜑)))
54albidv 1924 . . . . . 6 (𝑤 = ∅ → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥 ≈ ∅ → 𝜑)))
6 breq2 5074 . . . . . . . 8 (𝑤 = 𝑣 → (𝑥𝑤𝑥𝑣))
76imbi1d 341 . . . . . . 7 (𝑤 = 𝑣 → ((𝑥𝑤𝜑) ↔ (𝑥𝑣𝜑)))
87albidv 1924 . . . . . 6 (𝑤 = 𝑣 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥𝑣𝜑)))
9 breq2 5074 . . . . . . . 8 (𝑤 = suc 𝑣 → (𝑥𝑤𝑥 ≈ suc 𝑣))
109imbi1d 341 . . . . . . 7 (𝑤 = suc 𝑣 → ((𝑥𝑤𝜑) ↔ (𝑥 ≈ suc 𝑣𝜑)))
1110albidv 1924 . . . . . 6 (𝑤 = suc 𝑣 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥 ≈ suc 𝑣𝜑)))
12 en0 8758 . . . . . . . 8 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
13 findcard2.5 . . . . . . . . 9 𝜓
14 findcard2.1 . . . . . . . . 9 (𝑥 = ∅ → (𝜑𝜓))
1513, 14mpbiri 257 . . . . . . . 8 (𝑥 = ∅ → 𝜑)
1612, 15sylbi 216 . . . . . . 7 (𝑥 ≈ ∅ → 𝜑)
1716ax-gen 1799 . . . . . 6 𝑥(𝑥 ≈ ∅ → 𝜑)
18 rexdif1en 8906 . . . . . . . . . . 11 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → ∃𝑧𝑤 (𝑤 ∖ {𝑧}) ≈ 𝑣)
19 snssi 4738 . . . . . . . . . . . . . . . 16 (𝑧𝑤 → {𝑧} ⊆ 𝑤)
20 uncom 4083 . . . . . . . . . . . . . . . . 17 ((𝑤 ∖ {𝑧}) ∪ {𝑧}) = ({𝑧} ∪ (𝑤 ∖ {𝑧}))
21 undif 4412 . . . . . . . . . . . . . . . . . 18 ({𝑧} ⊆ 𝑤 ↔ ({𝑧} ∪ (𝑤 ∖ {𝑧})) = 𝑤)
2221biimpi 215 . . . . . . . . . . . . . . . . 17 ({𝑧} ⊆ 𝑤 → ({𝑧} ∪ (𝑤 ∖ {𝑧})) = 𝑤)
2320, 22eqtrid 2790 . . . . . . . . . . . . . . . 16 ({𝑧} ⊆ 𝑤 → ((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤)
24 vex 3426 . . . . . . . . . . . . . . . . . . 19 𝑤 ∈ V
2524difexi 5247 . . . . . . . . . . . . . . . . . 18 (𝑤 ∖ {𝑧}) ∈ V
26 breq1 5073 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑤 ∖ {𝑧}) → (𝑦𝑣 ↔ (𝑤 ∖ {𝑧}) ≈ 𝑣))
2726anbi2d 628 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑤 ∖ {𝑧}) → ((𝑣 ∈ ω ∧ 𝑦𝑣) ↔ (𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣)))
28 uneq1 4086 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑤 ∖ {𝑧}) → (𝑦 ∪ {𝑧}) = ((𝑤 ∖ {𝑧}) ∪ {𝑧}))
2928sbceq1d 3716 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑤 ∖ {𝑧}) → ([(𝑦 ∪ {𝑧}) / 𝑥]𝜑[((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))
3029imbi2d 340 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑤 ∖ {𝑧}) → ((∀𝑥(𝑥𝑣𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑) ↔ (∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑)))
3127, 30imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑤 ∖ {𝑧}) → (((𝑣 ∈ ω ∧ 𝑦𝑣) → (∀𝑥(𝑥𝑣𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑)) ↔ ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))))
32 breq1 5073 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → (𝑥𝑣𝑦𝑣))
33 findcard2.2 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → (𝜑𝜒))
3432, 33imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → ((𝑥𝑣𝜑) ↔ (𝑦𝑣𝜒)))
3534spvv 2001 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥(𝑥𝑣𝜑) → (𝑦𝑣𝜒))
36 rspe 3232 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣 ∈ ω ∧ 𝑦𝑣) → ∃𝑣 ∈ ω 𝑦𝑣)
37 isfi 8719 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ Fin ↔ ∃𝑣 ∈ ω 𝑦𝑣)
3836, 37sylibr 233 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ ω ∧ 𝑦𝑣) → 𝑦 ∈ Fin)
39 pm2.27 42 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑣 → ((𝑦𝑣𝜒) → 𝜒))
4039adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ ω ∧ 𝑦𝑣) → ((𝑦𝑣𝜒) → 𝜒))
41 findcard2.6 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ Fin → (𝜒𝜃))
4238, 40, 41sylsyld 61 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ω ∧ 𝑦𝑣) → ((𝑦𝑣𝜒) → 𝜃))
4335, 42syl5 34 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ω ∧ 𝑦𝑣) → (∀𝑥(𝑥𝑣𝜑) → 𝜃))
44 vex 3426 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
45 snex 5349 . . . . . . . . . . . . . . . . . . . . 21 {𝑧} ∈ V
4644, 45unex 7574 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∪ {𝑧}) ∈ V
47 findcard2.3 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
4846, 47sbcie 3754 . . . . . . . . . . . . . . . . . . 19 ([(𝑦 ∪ {𝑧}) / 𝑥]𝜑𝜃)
4943, 48syl6ibr 251 . . . . . . . . . . . . . . . . . 18 ((𝑣 ∈ ω ∧ 𝑦𝑣) → (∀𝑥(𝑥𝑣𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑))
5025, 31, 49vtocl 3488 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))
51 dfsbcq 3713 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ([((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑[𝑤 / 𝑥]𝜑))
5251imbi2d 340 . . . . . . . . . . . . . . . . 17 (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ((∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑) ↔ (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
5350, 52syl5ib 243 . . . . . . . . . . . . . . . 16 (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
5419, 23, 533syl 18 . . . . . . . . . . . . . . 15 (𝑧𝑤 → ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
5554expd 415 . . . . . . . . . . . . . 14 (𝑧𝑤 → (𝑣 ∈ ω → ((𝑤 ∖ {𝑧}) ≈ 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))))
5655com12 32 . . . . . . . . . . . . 13 (𝑣 ∈ ω → (𝑧𝑤 → ((𝑤 ∖ {𝑧}) ≈ 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))))
5756rexlimdv 3211 . . . . . . . . . . . 12 (𝑣 ∈ ω → (∃𝑧𝑤 (𝑤 ∖ {𝑧}) ≈ 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
5857adantr 480 . . . . . . . . . . 11 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (∃𝑧𝑤 (𝑤 ∖ {𝑧}) ≈ 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
5918, 58mpd 15 . . . . . . . . . 10 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))
6059ex 412 . . . . . . . . 9 (𝑣 ∈ ω → (𝑤 ≈ suc 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
6160com23 86 . . . . . . . 8 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → (𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)))
6261alrimdv 1933 . . . . . . 7 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → ∀𝑤(𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)))
63 nfv 1918 . . . . . . . 8 𝑤(𝑥 ≈ suc 𝑣𝜑)
64 nfv 1918 . . . . . . . . 9 𝑥 𝑤 ≈ suc 𝑣
65 nfsbc1v 3731 . . . . . . . . 9 𝑥[𝑤 / 𝑥]𝜑
6664, 65nfim 1900 . . . . . . . 8 𝑥(𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)
67 breq1 5073 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥 ≈ suc 𝑣𝑤 ≈ suc 𝑣))
68 sbceq1a 3722 . . . . . . . . 9 (𝑥 = 𝑤 → (𝜑[𝑤 / 𝑥]𝜑))
6967, 68imbi12d 344 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑥 ≈ suc 𝑣𝜑) ↔ (𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)))
7063, 66, 69cbvalv1 2340 . . . . . . 7 (∀𝑥(𝑥 ≈ suc 𝑣𝜑) ↔ ∀𝑤(𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑))
7162, 70syl6ibr 251 . . . . . 6 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → ∀𝑥(𝑥 ≈ suc 𝑣𝜑)))
725, 8, 11, 17, 71finds1 7722 . . . . 5 (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))
737219.21bi 2184 . . . 4 (𝑤 ∈ ω → (𝑥𝑤𝜑))
7473rexlimiv 3208 . . 3 (∃𝑤 ∈ ω 𝑥𝑤𝜑)
752, 74sylbi 216 . 2 (𝑥 ∈ Fin → 𝜑)
761, 75vtoclga 3503 1 (𝐴 ∈ Fin → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  wrex 3064  [wsbc 3711  cdif 3880  cun 3881  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  suc csuc 6253  ωcom 7687  cen 8688  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-en 8692  df-fin 8695
This theorem is referenced by:  findcard2s  8910  ssfi  8918  imafi  8920  pwfi  8923  cnvfi  8924  fnfi  8925  frfi  8989  iunfi  9037  finsschain  9056  infdiffi  9346  fin1a2lem10  10096  wunfi  10408  rexfiuz  14987  modfsummod  15434  lcmfunsnlem  16274  lcmfun  16278  drsdirfi  17938  fiuncmp  22463  finiunmbl  24613  fineqvac  32966  mbfresfi  35750  heibor1lem  35894  pclfinclN  37891
  Copyright terms: Public domain W3C validator