MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard2OLD Structured version   Visualization version   GIF version

Theorem findcard2OLD 8834
Description: Obsolete version of findcard2 8763 as of 6-Aug-2024. (Contributed by Jeff Madsen, 8-Jul-2010.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
findcard2OLD.1 (𝑥 = ∅ → (𝜑𝜓))
findcard2OLD.2 (𝑥 = 𝑦 → (𝜑𝜒))
findcard2OLD.3 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
findcard2OLD.4 (𝑥 = 𝐴 → (𝜑𝜏))
findcard2OLD.5 𝜓
findcard2OLD.6 (𝑦 ∈ Fin → (𝜒𝜃))
Assertion
Ref Expression
findcard2OLD (𝐴 ∈ Fin → 𝜏)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)

Proof of Theorem findcard2OLD
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 findcard2OLD.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
2 isfi 8579 . . 3 (𝑥 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑥𝑤)
3 breq2 5034 . . . . . . . 8 (𝑤 = ∅ → (𝑥𝑤𝑥 ≈ ∅))
43imbi1d 345 . . . . . . 7 (𝑤 = ∅ → ((𝑥𝑤𝜑) ↔ (𝑥 ≈ ∅ → 𝜑)))
54albidv 1927 . . . . . 6 (𝑤 = ∅ → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥 ≈ ∅ → 𝜑)))
6 breq2 5034 . . . . . . . 8 (𝑤 = 𝑣 → (𝑥𝑤𝑥𝑣))
76imbi1d 345 . . . . . . 7 (𝑤 = 𝑣 → ((𝑥𝑤𝜑) ↔ (𝑥𝑣𝜑)))
87albidv 1927 . . . . . 6 (𝑤 = 𝑣 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥𝑣𝜑)))
9 breq2 5034 . . . . . . . 8 (𝑤 = suc 𝑣 → (𝑥𝑤𝑥 ≈ suc 𝑣))
109imbi1d 345 . . . . . . 7 (𝑤 = suc 𝑣 → ((𝑥𝑤𝜑) ↔ (𝑥 ≈ suc 𝑣𝜑)))
1110albidv 1927 . . . . . 6 (𝑤 = suc 𝑣 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥 ≈ suc 𝑣𝜑)))
12 en0 8618 . . . . . . . 8 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
13 findcard2OLD.5 . . . . . . . . 9 𝜓
14 findcard2OLD.1 . . . . . . . . 9 (𝑥 = ∅ → (𝜑𝜓))
1513, 14mpbiri 261 . . . . . . . 8 (𝑥 = ∅ → 𝜑)
1612, 15sylbi 220 . . . . . . 7 (𝑥 ≈ ∅ → 𝜑)
1716ax-gen 1802 . . . . . 6 𝑥(𝑥 ≈ ∅ → 𝜑)
18 nsuceq0 6252 . . . . . . . . . . . 12 suc 𝑣 ≠ ∅
19 breq1 5033 . . . . . . . . . . . . . . . 16 (𝑤 = ∅ → (𝑤 ≈ suc 𝑣 ↔ ∅ ≈ suc 𝑣))
2019anbi2d 632 . . . . . . . . . . . . . . 15 (𝑤 = ∅ → ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) ↔ (𝑣 ∈ ω ∧ ∅ ≈ suc 𝑣)))
21 peano1 7620 . . . . . . . . . . . . . . . . . 18 ∅ ∈ ω
22 peano2 7621 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ω → suc 𝑣 ∈ ω)
23 nneneq 8750 . . . . . . . . . . . . . . . . . 18 ((∅ ∈ ω ∧ suc 𝑣 ∈ ω) → (∅ ≈ suc 𝑣 ↔ ∅ = suc 𝑣))
2421, 22, 23sylancr 590 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ω → (∅ ≈ suc 𝑣 ↔ ∅ = suc 𝑣))
2524biimpa 480 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ω ∧ ∅ ≈ suc 𝑣) → ∅ = suc 𝑣)
2625eqcomd 2744 . . . . . . . . . . . . . . 15 ((𝑣 ∈ ω ∧ ∅ ≈ suc 𝑣) → suc 𝑣 = ∅)
2720, 26syl6bi 256 . . . . . . . . . . . . . 14 (𝑤 = ∅ → ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → suc 𝑣 = ∅))
2827com12 32 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑤 = ∅ → suc 𝑣 = ∅))
2928necon3d 2955 . . . . . . . . . . . 12 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (suc 𝑣 ≠ ∅ → 𝑤 ≠ ∅))
3018, 29mpi 20 . . . . . . . . . . 11 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → 𝑤 ≠ ∅)
3130ex 416 . . . . . . . . . 10 (𝑣 ∈ ω → (𝑤 ≈ suc 𝑣𝑤 ≠ ∅))
32 n0 4235 . . . . . . . . . . . 12 (𝑤 ≠ ∅ ↔ ∃𝑧 𝑧𝑤)
33 dif1en 8761 . . . . . . . . . . . . . . 15 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣𝑧𝑤) → (𝑤 ∖ {𝑧}) ≈ 𝑣)
34333expia 1122 . . . . . . . . . . . . . 14 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑧𝑤 → (𝑤 ∖ {𝑧}) ≈ 𝑣))
35 snssi 4696 . . . . . . . . . . . . . . . . . 18 (𝑧𝑤 → {𝑧} ⊆ 𝑤)
36 uncom 4043 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∖ {𝑧}) ∪ {𝑧}) = ({𝑧} ∪ (𝑤 ∖ {𝑧}))
37 undif 4371 . . . . . . . . . . . . . . . . . . . 20 ({𝑧} ⊆ 𝑤 ↔ ({𝑧} ∪ (𝑤 ∖ {𝑧})) = 𝑤)
3837biimpi 219 . . . . . . . . . . . . . . . . . . 19 ({𝑧} ⊆ 𝑤 → ({𝑧} ∪ (𝑤 ∖ {𝑧})) = 𝑤)
3936, 38syl5eq 2785 . . . . . . . . . . . . . . . . . 18 ({𝑧} ⊆ 𝑤 → ((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤)
40 vex 3402 . . . . . . . . . . . . . . . . . . . . 21 𝑤 ∈ V
4140difexi 5196 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∖ {𝑧}) ∈ V
42 breq1 5033 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑤 ∖ {𝑧}) → (𝑦𝑣 ↔ (𝑤 ∖ {𝑧}) ≈ 𝑣))
4342anbi2d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑤 ∖ {𝑧}) → ((𝑣 ∈ ω ∧ 𝑦𝑣) ↔ (𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣)))
44 uneq1 4046 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑤 ∖ {𝑧}) → (𝑦 ∪ {𝑧}) = ((𝑤 ∖ {𝑧}) ∪ {𝑧}))
4544sbceq1d 3685 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑤 ∖ {𝑧}) → ([(𝑦 ∪ {𝑧}) / 𝑥]𝜑[((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))
4645imbi2d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑤 ∖ {𝑧}) → ((∀𝑥(𝑥𝑣𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑) ↔ (∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑)))
4743, 46imbi12d 348 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑤 ∖ {𝑧}) → (((𝑣 ∈ ω ∧ 𝑦𝑣) → (∀𝑥(𝑥𝑣𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑)) ↔ ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))))
48 breq1 5033 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑦 → (𝑥𝑣𝑦𝑣))
49 findcard2OLD.2 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑦 → (𝜑𝜒))
5048, 49imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → ((𝑥𝑣𝜑) ↔ (𝑦𝑣𝜒)))
5150spvv 2008 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑥(𝑥𝑣𝜑) → (𝑦𝑣𝜒))
52 rspe 3214 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ ω ∧ 𝑦𝑣) → ∃𝑣 ∈ ω 𝑦𝑣)
53 isfi 8579 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ Fin ↔ ∃𝑣 ∈ ω 𝑦𝑣)
5452, 53sylibr 237 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 ∈ ω ∧ 𝑦𝑣) → 𝑦 ∈ Fin)
55 pm2.27 42 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝑣 → ((𝑦𝑣𝜒) → 𝜒))
5655adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 ∈ ω ∧ 𝑦𝑣) → ((𝑦𝑣𝜒) → 𝜒))
57 findcard2OLD.6 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ Fin → (𝜒𝜃))
5854, 56, 57sylsyld 61 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣 ∈ ω ∧ 𝑦𝑣) → ((𝑦𝑣𝜒) → 𝜃))
5951, 58syl5 34 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ ω ∧ 𝑦𝑣) → (∀𝑥(𝑥𝑣𝜑) → 𝜃))
60 vex 3402 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 ∈ V
61 snex 5298 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑧} ∈ V
6260, 61unex 7487 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∪ {𝑧}) ∈ V
63 findcard2OLD.3 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
6462, 63sbcie 3722 . . . . . . . . . . . . . . . . . . . . 21 ([(𝑦 ∪ {𝑧}) / 𝑥]𝜑𝜃)
6559, 64syl6ibr 255 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ω ∧ 𝑦𝑣) → (∀𝑥(𝑥𝑣𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑))
6641, 47, 65vtocl 3463 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))
67 dfsbcq 3682 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ([((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑[𝑤 / 𝑥]𝜑))
6867imbi2d 344 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ((∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑) ↔ (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
6966, 68syl5ib 247 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7035, 39, 693syl 18 . . . . . . . . . . . . . . . . 17 (𝑧𝑤 → ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7170expd 419 . . . . . . . . . . . . . . . 16 (𝑧𝑤 → (𝑣 ∈ ω → ((𝑤 ∖ {𝑧}) ≈ 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))))
7271com12 32 . . . . . . . . . . . . . . 15 (𝑣 ∈ ω → (𝑧𝑤 → ((𝑤 ∖ {𝑧}) ≈ 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))))
7372adantr 484 . . . . . . . . . . . . . 14 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑧𝑤 → ((𝑤 ∖ {𝑧}) ≈ 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))))
7434, 73mpdd 43 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑧𝑤 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7574exlimdv 1940 . . . . . . . . . . . 12 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (∃𝑧 𝑧𝑤 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7632, 75syl5bi 245 . . . . . . . . . . 11 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑤 ≠ ∅ → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7776ex 416 . . . . . . . . . 10 (𝑣 ∈ ω → (𝑤 ≈ suc 𝑣 → (𝑤 ≠ ∅ → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))))
7831, 77mpdd 43 . . . . . . . . 9 (𝑣 ∈ ω → (𝑤 ≈ suc 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7978com23 86 . . . . . . . 8 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → (𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)))
8079alrimdv 1936 . . . . . . 7 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → ∀𝑤(𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)))
81 nfv 1921 . . . . . . . 8 𝑤(𝑥 ≈ suc 𝑣𝜑)
82 nfv 1921 . . . . . . . . 9 𝑥 𝑤 ≈ suc 𝑣
83 nfsbc1v 3700 . . . . . . . . 9 𝑥[𝑤 / 𝑥]𝜑
8482, 83nfim 1903 . . . . . . . 8 𝑥(𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)
85 breq1 5033 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥 ≈ suc 𝑣𝑤 ≈ suc 𝑣))
86 sbceq1a 3691 . . . . . . . . 9 (𝑥 = 𝑤 → (𝜑[𝑤 / 𝑥]𝜑))
8785, 86imbi12d 348 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑥 ≈ suc 𝑣𝜑) ↔ (𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)))
8881, 84, 87cbvalv1 2343 . . . . . . 7 (∀𝑥(𝑥 ≈ suc 𝑣𝜑) ↔ ∀𝑤(𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑))
8980, 88syl6ibr 255 . . . . . 6 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → ∀𝑥(𝑥 ≈ suc 𝑣𝜑)))
905, 8, 11, 17, 89finds1 7632 . . . . 5 (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))
919019.21bi 2190 . . . 4 (𝑤 ∈ ω → (𝑥𝑤𝜑))
9291rexlimiv 3190 . . 3 (∃𝑤 ∈ ω 𝑥𝑤𝜑)
932, 92sylbi 220 . 2 (𝑥 ∈ Fin → 𝜑)
941, 93vtoclga 3478 1 (𝐴 ∈ Fin → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1540   = wceq 1542  wex 1786  wcel 2114  wne 2934  wrex 3054  [wsbc 3680  cdif 3840  cun 3841  wss 3843  c0 4211  {csn 4516   class class class wbr 5030  suc csuc 6174  ωcom 7599  cen 8552  Fincfn 8555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-om 7600  df-er 8320  df-en 8556  df-fin 8559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator