MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  karden Structured version   Visualization version   GIF version

Theorem karden 9886
Description: If we allow the Axiom of Regularity, we can avoid the Axiom of Choice by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank. This theorem proves the equinumerosity relationship for this definition (compare carden 10542). The hypotheses correspond to the definition of kard of [Enderton] p. 222 (which we don't define separately since currently we do not use it elsewhere). This theorem along with kardex 9885 justify the definition of kard. The restriction to the least rank prevents the proper class that would result from {π‘₯ ∣ π‘₯ β‰ˆ 𝐴}. (Contributed by NM, 18-Dec-2003.) (Revised by AV, 12-Jul-2022.)
Hypotheses
Ref Expression
karden.a 𝐴 ∈ V
karden.c 𝐢 = {π‘₯ ∣ (π‘₯ β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))}
karden.d 𝐷 = {π‘₯ ∣ (π‘₯ β‰ˆ 𝐡 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))}
Assertion
Ref Expression
karden (𝐢 = 𝐷 ↔ 𝐴 β‰ˆ 𝐡)
Distinct variable groups:   π‘₯,𝑦,𝐴   π‘₯,𝐡,𝑦
Allowed substitution hints:   𝐢(π‘₯,𝑦)   𝐷(π‘₯,𝑦)

Proof of Theorem karden
Dummy variables 𝑧 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 karden.a . . . . . . 7 𝐴 ∈ V
2 breq1 5150 . . . . . . 7 (𝑀 = 𝐴 β†’ (𝑀 β‰ˆ 𝐴 ↔ 𝐴 β‰ˆ 𝐴))
31enref 8977 . . . . . . 7 𝐴 β‰ˆ 𝐴
41, 2, 3ceqsexv2d 3528 . . . . . 6 βˆƒπ‘€ 𝑀 β‰ˆ 𝐴
5 abn0 4379 . . . . . 6 ({𝑀 ∣ 𝑀 β‰ˆ 𝐴} β‰  βˆ… ↔ βˆƒπ‘€ 𝑀 β‰ˆ 𝐴)
64, 5mpbir 230 . . . . 5 {𝑀 ∣ 𝑀 β‰ˆ 𝐴} β‰  βˆ…
7 scott0 9877 . . . . . 6 ({𝑀 ∣ 𝑀 β‰ˆ 𝐴} = βˆ… ↔ {𝑧 ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} ∣ βˆ€π‘¦ ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦)} = βˆ…)
87necon3bii 2993 . . . . 5 ({𝑀 ∣ 𝑀 β‰ˆ 𝐴} β‰  βˆ… ↔ {𝑧 ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} ∣ βˆ€π‘¦ ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦)} β‰  βˆ…)
96, 8mpbi 229 . . . 4 {𝑧 ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} ∣ βˆ€π‘¦ ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦)} β‰  βˆ…
10 rabn0 4384 . . . 4 ({𝑧 ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} ∣ βˆ€π‘¦ ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦)} β‰  βˆ… ↔ βˆƒπ‘§ ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴}βˆ€π‘¦ ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦))
119, 10mpbi 229 . . 3 βˆƒπ‘§ ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴}βˆ€π‘¦ ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦)
12 vex 3478 . . . . . . . 8 𝑧 ∈ V
13 breq1 5150 . . . . . . . 8 (𝑀 = 𝑧 β†’ (𝑀 β‰ˆ 𝐴 ↔ 𝑧 β‰ˆ 𝐴))
1412, 13elab 3667 . . . . . . 7 (𝑧 ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} ↔ 𝑧 β‰ˆ 𝐴)
15 breq1 5150 . . . . . . . 8 (𝑀 = 𝑦 β†’ (𝑀 β‰ˆ 𝐴 ↔ 𝑦 β‰ˆ 𝐴))
1615ralab 3686 . . . . . . 7 (βˆ€π‘¦ ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦) ↔ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦)))
1714, 16anbi12i 627 . . . . . 6 ((𝑧 ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} ∧ βˆ€π‘¦ ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦)) ↔ (𝑧 β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦))))
18 simpl 483 . . . . . . . . 9 ((𝑧 β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦))) β†’ 𝑧 β‰ˆ 𝐴)
1918a1i 11 . . . . . . . 8 (𝐢 = 𝐷 β†’ ((𝑧 β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦))) β†’ 𝑧 β‰ˆ 𝐴))
20 karden.c . . . . . . . . . . . 12 𝐢 = {π‘₯ ∣ (π‘₯ β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))}
21 karden.d . . . . . . . . . . . 12 𝐷 = {π‘₯ ∣ (π‘₯ β‰ˆ 𝐡 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))}
2220, 21eqeq12i 2750 . . . . . . . . . . 11 (𝐢 = 𝐷 ↔ {π‘₯ ∣ (π‘₯ β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))} = {π‘₯ ∣ (π‘₯ β‰ˆ 𝐡 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))})
23 abbib 2804 . . . . . . . . . . 11 ({π‘₯ ∣ (π‘₯ β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))} = {π‘₯ ∣ (π‘₯ β‰ˆ 𝐡 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))} ↔ βˆ€π‘₯((π‘₯ β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))) ↔ (π‘₯ β‰ˆ 𝐡 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))))
2422, 23bitri 274 . . . . . . . . . 10 (𝐢 = 𝐷 ↔ βˆ€π‘₯((π‘₯ β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))) ↔ (π‘₯ β‰ˆ 𝐡 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))))
25 breq1 5150 . . . . . . . . . . . . 13 (π‘₯ = 𝑧 β†’ (π‘₯ β‰ˆ 𝐴 ↔ 𝑧 β‰ˆ 𝐴))
26 fveq2 6888 . . . . . . . . . . . . . . . 16 (π‘₯ = 𝑧 β†’ (rankβ€˜π‘₯) = (rankβ€˜π‘§))
2726sseq1d 4012 . . . . . . . . . . . . . . 15 (π‘₯ = 𝑧 β†’ ((rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦) ↔ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦)))
2827imbi2d 340 . . . . . . . . . . . . . 14 (π‘₯ = 𝑧 β†’ ((𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)) ↔ (𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦))))
2928albidv 1923 . . . . . . . . . . . . 13 (π‘₯ = 𝑧 β†’ (βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)) ↔ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦))))
3025, 29anbi12d 631 . . . . . . . . . . . 12 (π‘₯ = 𝑧 β†’ ((π‘₯ β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))) ↔ (𝑧 β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦)))))
31 breq1 5150 . . . . . . . . . . . . 13 (π‘₯ = 𝑧 β†’ (π‘₯ β‰ˆ 𝐡 ↔ 𝑧 β‰ˆ 𝐡))
3227imbi2d 340 . . . . . . . . . . . . . 14 (π‘₯ = 𝑧 β†’ ((𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)) ↔ (𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦))))
3332albidv 1923 . . . . . . . . . . . . 13 (π‘₯ = 𝑧 β†’ (βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)) ↔ βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦))))
3431, 33anbi12d 631 . . . . . . . . . . . 12 (π‘₯ = 𝑧 β†’ ((π‘₯ β‰ˆ 𝐡 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))) ↔ (𝑧 β‰ˆ 𝐡 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦)))))
3530, 34bibi12d 345 . . . . . . . . . . 11 (π‘₯ = 𝑧 β†’ (((π‘₯ β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))) ↔ (π‘₯ β‰ˆ 𝐡 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))) ↔ ((𝑧 β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦))) ↔ (𝑧 β‰ˆ 𝐡 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦))))))
3635spvv 2000 . . . . . . . . . 10 (βˆ€π‘₯((π‘₯ β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))) ↔ (π‘₯ β‰ˆ 𝐡 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))) β†’ ((𝑧 β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦))) ↔ (𝑧 β‰ˆ 𝐡 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦)))))
3724, 36sylbi 216 . . . . . . . . 9 (𝐢 = 𝐷 β†’ ((𝑧 β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦))) ↔ (𝑧 β‰ˆ 𝐡 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦)))))
38 simpl 483 . . . . . . . . 9 ((𝑧 β‰ˆ 𝐡 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦))) β†’ 𝑧 β‰ˆ 𝐡)
3937, 38syl6bi 252 . . . . . . . 8 (𝐢 = 𝐷 β†’ ((𝑧 β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦))) β†’ 𝑧 β‰ˆ 𝐡))
4019, 39jcad 513 . . . . . . 7 (𝐢 = 𝐷 β†’ ((𝑧 β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦))) β†’ (𝑧 β‰ˆ 𝐴 ∧ 𝑧 β‰ˆ 𝐡)))
41 ensym 8995 . . . . . . . 8 (𝑧 β‰ˆ 𝐴 β†’ 𝐴 β‰ˆ 𝑧)
42 entr 8998 . . . . . . . 8 ((𝐴 β‰ˆ 𝑧 ∧ 𝑧 β‰ˆ 𝐡) β†’ 𝐴 β‰ˆ 𝐡)
4341, 42sylan 580 . . . . . . 7 ((𝑧 β‰ˆ 𝐴 ∧ 𝑧 β‰ˆ 𝐡) β†’ 𝐴 β‰ˆ 𝐡)
4440, 43syl6 35 . . . . . 6 (𝐢 = 𝐷 β†’ ((𝑧 β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦))) β†’ 𝐴 β‰ˆ 𝐡))
4517, 44biimtrid 241 . . . . 5 (𝐢 = 𝐷 β†’ ((𝑧 ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} ∧ βˆ€π‘¦ ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦)) β†’ 𝐴 β‰ˆ 𝐡))
4645expd 416 . . . 4 (𝐢 = 𝐷 β†’ (𝑧 ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} β†’ (βˆ€π‘¦ ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦) β†’ 𝐴 β‰ˆ 𝐡)))
4746rexlimdv 3153 . . 3 (𝐢 = 𝐷 β†’ (βˆƒπ‘§ ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴}βˆ€π‘¦ ∈ {𝑀 ∣ 𝑀 β‰ˆ 𝐴} (rankβ€˜π‘§) βŠ† (rankβ€˜π‘¦) β†’ 𝐴 β‰ˆ 𝐡))
4811, 47mpi 20 . 2 (𝐢 = 𝐷 β†’ 𝐴 β‰ˆ 𝐡)
49 enen2 9114 . . . . 5 (𝐴 β‰ˆ 𝐡 β†’ (π‘₯ β‰ˆ 𝐴 ↔ π‘₯ β‰ˆ 𝐡))
50 enen2 9114 . . . . . . 7 (𝐴 β‰ˆ 𝐡 β†’ (𝑦 β‰ˆ 𝐴 ↔ 𝑦 β‰ˆ 𝐡))
5150imbi1d 341 . . . . . 6 (𝐴 β‰ˆ 𝐡 β†’ ((𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)) ↔ (𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))))
5251albidv 1923 . . . . 5 (𝐴 β‰ˆ 𝐡 β†’ (βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)) ↔ βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))))
5349, 52anbi12d 631 . . . 4 (𝐴 β‰ˆ 𝐡 β†’ ((π‘₯ β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦))) ↔ (π‘₯ β‰ˆ 𝐡 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))))
5453abbidv 2801 . . 3 (𝐴 β‰ˆ 𝐡 β†’ {π‘₯ ∣ (π‘₯ β‰ˆ 𝐴 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐴 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))} = {π‘₯ ∣ (π‘₯ β‰ˆ 𝐡 ∧ βˆ€π‘¦(𝑦 β‰ˆ 𝐡 β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)))})
5554, 20, 213eqtr4g 2797 . 2 (𝐴 β‰ˆ 𝐡 β†’ 𝐢 = 𝐷)
5648, 55impbii 208 1 (𝐢 = 𝐷 ↔ 𝐴 β‰ˆ 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396  βˆ€wal 1539   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  {cab 2709   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432  Vcvv 3474   βŠ† wss 3947  βˆ…c0 4321   class class class wbr 5147  β€˜cfv 6540   β‰ˆ cen 8932  rankcrnk 9754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-r1 9755  df-rank 9756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator