| Step | Hyp | Ref
| Expression |
| 1 | | karden.a |
. . . . . . 7
⊢ 𝐴 ∈ V |
| 2 | | breq1 5122 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → (𝑤 ≈ 𝐴 ↔ 𝐴 ≈ 𝐴)) |
| 3 | 1 | enref 8999 |
. . . . . . 7
⊢ 𝐴 ≈ 𝐴 |
| 4 | 1, 2, 3 | ceqsexv2d 3512 |
. . . . . 6
⊢
∃𝑤 𝑤 ≈ 𝐴 |
| 5 | | abn0 4360 |
. . . . . 6
⊢ ({𝑤 ∣ 𝑤 ≈ 𝐴} ≠ ∅ ↔ ∃𝑤 𝑤 ≈ 𝐴) |
| 6 | 4, 5 | mpbir 231 |
. . . . 5
⊢ {𝑤 ∣ 𝑤 ≈ 𝐴} ≠ ∅ |
| 7 | | scott0 9900 |
. . . . . 6
⊢ ({𝑤 ∣ 𝑤 ≈ 𝐴} = ∅ ↔ {𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} = ∅) |
| 8 | 7 | necon3bii 2984 |
. . . . 5
⊢ ({𝑤 ∣ 𝑤 ≈ 𝐴} ≠ ∅ ↔ {𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} ≠ ∅) |
| 9 | 6, 8 | mpbi 230 |
. . . 4
⊢ {𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} ≠ ∅ |
| 10 | | rabn0 4364 |
. . . 4
⊢ ({𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} ≠ ∅ ↔ ∃𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴}∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)) |
| 11 | 9, 10 | mpbi 230 |
. . 3
⊢
∃𝑧 ∈
{𝑤 ∣ 𝑤 ≈ 𝐴}∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) |
| 12 | | vex 3463 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
| 13 | | breq1 5122 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → (𝑤 ≈ 𝐴 ↔ 𝑧 ≈ 𝐴)) |
| 14 | 12, 13 | elab 3658 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ↔ 𝑧 ≈ 𝐴) |
| 15 | | breq1 5122 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (𝑤 ≈ 𝐴 ↔ 𝑦 ≈ 𝐴)) |
| 16 | 15 | ralab 3676 |
. . . . . . 7
⊢
(∀𝑦 ∈
{𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) |
| 17 | 14, 16 | anbi12i 628 |
. . . . . 6
⊢ ((𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ∧ ∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)) ↔ (𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦)))) |
| 18 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧 ≈ 𝐴) |
| 19 | 18 | a1i 11 |
. . . . . . . 8
⊢ (𝐶 = 𝐷 → ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧 ≈ 𝐴)) |
| 20 | | karden.c |
. . . . . . . . . . . 12
⊢ 𝐶 = {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
| 21 | | karden.d |
. . . . . . . . . . . 12
⊢ 𝐷 = {𝑥 ∣ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
| 22 | 20, 21 | eqeq12i 2753 |
. . . . . . . . . . 11
⊢ (𝐶 = 𝐷 ↔ {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = {𝑥 ∣ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))}) |
| 23 | | abbib 2804 |
. . . . . . . . . . 11
⊢ ({𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = {𝑥 ∣ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ↔ ∀𝑥((𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))))) |
| 24 | 22, 23 | bitri 275 |
. . . . . . . . . 10
⊢ (𝐶 = 𝐷 ↔ ∀𝑥((𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))))) |
| 25 | | breq1 5122 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥 ≈ 𝐴 ↔ 𝑧 ≈ 𝐴)) |
| 26 | | fveq2 6876 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (rank‘𝑥) = (rank‘𝑧)) |
| 27 | 26 | sseq1d 3990 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑧) ⊆ (rank‘𝑦))) |
| 28 | 27 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → ((𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦)))) |
| 29 | 28 | albidv 1920 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦)))) |
| 30 | 25, 29 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))))) |
| 31 | | breq1 5122 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥 ≈ 𝐵 ↔ 𝑧 ≈ 𝐵)) |
| 32 | 27 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → ((𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦)))) |
| 33 | 32 | albidv 1920 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦)))) |
| 34 | 31, 33 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑧 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))))) |
| 35 | 30, 34 | bibi12d 345 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (((𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) ↔ ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) ↔ (𝑧 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦)))))) |
| 36 | 35 | spvv 1996 |
. . . . . . . . . 10
⊢
(∀𝑥((𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) → ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) ↔ (𝑧 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))))) |
| 37 | 24, 36 | sylbi 217 |
. . . . . . . . 9
⊢ (𝐶 = 𝐷 → ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) ↔ (𝑧 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))))) |
| 38 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑧 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧 ≈ 𝐵) |
| 39 | 37, 38 | biimtrdi 253 |
. . . . . . . 8
⊢ (𝐶 = 𝐷 → ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧 ≈ 𝐵)) |
| 40 | 19, 39 | jcad 512 |
. . . . . . 7
⊢ (𝐶 = 𝐷 → ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → (𝑧 ≈ 𝐴 ∧ 𝑧 ≈ 𝐵))) |
| 41 | | ensym 9017 |
. . . . . . . 8
⊢ (𝑧 ≈ 𝐴 → 𝐴 ≈ 𝑧) |
| 42 | | entr 9020 |
. . . . . . . 8
⊢ ((𝐴 ≈ 𝑧 ∧ 𝑧 ≈ 𝐵) → 𝐴 ≈ 𝐵) |
| 43 | 41, 42 | sylan 580 |
. . . . . . 7
⊢ ((𝑧 ≈ 𝐴 ∧ 𝑧 ≈ 𝐵) → 𝐴 ≈ 𝐵) |
| 44 | 40, 43 | syl6 35 |
. . . . . 6
⊢ (𝐶 = 𝐷 → ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝐴 ≈ 𝐵)) |
| 45 | 17, 44 | biimtrid 242 |
. . . . 5
⊢ (𝐶 = 𝐷 → ((𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ∧ ∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)) → 𝐴 ≈ 𝐵)) |
| 46 | 45 | expd 415 |
. . . 4
⊢ (𝐶 = 𝐷 → (𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} → (∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) → 𝐴 ≈ 𝐵))) |
| 47 | 46 | rexlimdv 3139 |
. . 3
⊢ (𝐶 = 𝐷 → (∃𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴}∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) → 𝐴 ≈ 𝐵)) |
| 48 | 11, 47 | mpi 20 |
. 2
⊢ (𝐶 = 𝐷 → 𝐴 ≈ 𝐵) |
| 49 | | enen2 9132 |
. . . . 5
⊢ (𝐴 ≈ 𝐵 → (𝑥 ≈ 𝐴 ↔ 𝑥 ≈ 𝐵)) |
| 50 | | enen2 9132 |
. . . . . . 7
⊢ (𝐴 ≈ 𝐵 → (𝑦 ≈ 𝐴 ↔ 𝑦 ≈ 𝐵)) |
| 51 | 50 | imbi1d 341 |
. . . . . 6
⊢ (𝐴 ≈ 𝐵 → ((𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) |
| 52 | 51 | albidv 1920 |
. . . . 5
⊢ (𝐴 ≈ 𝐵 → (∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) |
| 53 | 49, 52 | anbi12d 632 |
. . . 4
⊢ (𝐴 ≈ 𝐵 → ((𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))))) |
| 54 | 53 | abbidv 2801 |
. . 3
⊢ (𝐴 ≈ 𝐵 → {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = {𝑥 ∣ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))}) |
| 55 | 54, 20, 21 | 3eqtr4g 2795 |
. 2
⊢ (𝐴 ≈ 𝐵 → 𝐶 = 𝐷) |
| 56 | 48, 55 | impbii 209 |
1
⊢ (𝐶 = 𝐷 ↔ 𝐴 ≈ 𝐵) |