Step | Hyp | Ref
| Expression |
1 | | karden.a |
. . . . . . 7
⊢ 𝐴 ∈ V |
2 | | breq1 5077 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → (𝑤 ≈ 𝐴 ↔ 𝐴 ≈ 𝐴)) |
3 | 1 | enref 8773 |
. . . . . . 7
⊢ 𝐴 ≈ 𝐴 |
4 | 1, 2, 3 | ceqsexv2d 3481 |
. . . . . 6
⊢
∃𝑤 𝑤 ≈ 𝐴 |
5 | | abn0 4314 |
. . . . . 6
⊢ ({𝑤 ∣ 𝑤 ≈ 𝐴} ≠ ∅ ↔ ∃𝑤 𝑤 ≈ 𝐴) |
6 | 4, 5 | mpbir 230 |
. . . . 5
⊢ {𝑤 ∣ 𝑤 ≈ 𝐴} ≠ ∅ |
7 | | scott0 9644 |
. . . . . 6
⊢ ({𝑤 ∣ 𝑤 ≈ 𝐴} = ∅ ↔ {𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} = ∅) |
8 | 7 | necon3bii 2996 |
. . . . 5
⊢ ({𝑤 ∣ 𝑤 ≈ 𝐴} ≠ ∅ ↔ {𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} ≠ ∅) |
9 | 6, 8 | mpbi 229 |
. . . 4
⊢ {𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} ≠ ∅ |
10 | | rabn0 4319 |
. . . 4
⊢ ({𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} ≠ ∅ ↔ ∃𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴}∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)) |
11 | 9, 10 | mpbi 229 |
. . 3
⊢
∃𝑧 ∈
{𝑤 ∣ 𝑤 ≈ 𝐴}∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) |
12 | | vex 3436 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
13 | | breq1 5077 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → (𝑤 ≈ 𝐴 ↔ 𝑧 ≈ 𝐴)) |
14 | 12, 13 | elab 3609 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ↔ 𝑧 ≈ 𝐴) |
15 | | breq1 5077 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (𝑤 ≈ 𝐴 ↔ 𝑦 ≈ 𝐴)) |
16 | 15 | ralab 3628 |
. . . . . . 7
⊢
(∀𝑦 ∈
{𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) |
17 | 14, 16 | anbi12i 627 |
. . . . . 6
⊢ ((𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ∧ ∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)) ↔ (𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦)))) |
18 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧 ≈ 𝐴) |
19 | 18 | a1i 11 |
. . . . . . . 8
⊢ (𝐶 = 𝐷 → ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧 ≈ 𝐴)) |
20 | | karden.c |
. . . . . . . . . . . 12
⊢ 𝐶 = {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
21 | | karden.d |
. . . . . . . . . . . 12
⊢ 𝐷 = {𝑥 ∣ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
22 | 20, 21 | eqeq12i 2756 |
. . . . . . . . . . 11
⊢ (𝐶 = 𝐷 ↔ {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = {𝑥 ∣ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))}) |
23 | | abbi 2810 |
. . . . . . . . . . 11
⊢
(∀𝑥((𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) ↔ {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = {𝑥 ∣ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))}) |
24 | 22, 23 | bitr4i 277 |
. . . . . . . . . 10
⊢ (𝐶 = 𝐷 ↔ ∀𝑥((𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))))) |
25 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥 ≈ 𝐴 ↔ 𝑧 ≈ 𝐴)) |
26 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → (rank‘𝑥) = (rank‘𝑧)) |
27 | 26 | sseq1d 3952 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑧) ⊆ (rank‘𝑦))) |
28 | 27 | imbi2d 341 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → ((𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦)))) |
29 | 28 | albidv 1923 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦)))) |
30 | 25, 29 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))))) |
31 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥 ≈ 𝐵 ↔ 𝑧 ≈ 𝐵)) |
32 | 27 | imbi2d 341 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → ((𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦)))) |
33 | 32 | albidv 1923 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦)))) |
34 | 31, 33 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑧 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))))) |
35 | 30, 34 | bibi12d 346 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (((𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) ↔ ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) ↔ (𝑧 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦)))))) |
36 | 35 | spvv 2000 |
. . . . . . . . . 10
⊢
(∀𝑥((𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) → ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) ↔ (𝑧 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))))) |
37 | 24, 36 | sylbi 216 |
. . . . . . . . 9
⊢ (𝐶 = 𝐷 → ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) ↔ (𝑧 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))))) |
38 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑧 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧 ≈ 𝐵) |
39 | 37, 38 | syl6bi 252 |
. . . . . . . 8
⊢ (𝐶 = 𝐷 → ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧 ≈ 𝐵)) |
40 | 19, 39 | jcad 513 |
. . . . . . 7
⊢ (𝐶 = 𝐷 → ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → (𝑧 ≈ 𝐴 ∧ 𝑧 ≈ 𝐵))) |
41 | | ensym 8789 |
. . . . . . . 8
⊢ (𝑧 ≈ 𝐴 → 𝐴 ≈ 𝑧) |
42 | | entr 8792 |
. . . . . . . 8
⊢ ((𝐴 ≈ 𝑧 ∧ 𝑧 ≈ 𝐵) → 𝐴 ≈ 𝐵) |
43 | 41, 42 | sylan 580 |
. . . . . . 7
⊢ ((𝑧 ≈ 𝐴 ∧ 𝑧 ≈ 𝐵) → 𝐴 ≈ 𝐵) |
44 | 40, 43 | syl6 35 |
. . . . . 6
⊢ (𝐶 = 𝐷 → ((𝑧 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝐴 ≈ 𝐵)) |
45 | 17, 44 | syl5bi 241 |
. . . . 5
⊢ (𝐶 = 𝐷 → ((𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} ∧ ∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)) → 𝐴 ≈ 𝐵)) |
46 | 45 | expd 416 |
. . . 4
⊢ (𝐶 = 𝐷 → (𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} → (∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) → 𝐴 ≈ 𝐵))) |
47 | 46 | rexlimdv 3212 |
. . 3
⊢ (𝐶 = 𝐷 → (∃𝑧 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴}∀𝑦 ∈ {𝑤 ∣ 𝑤 ≈ 𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) → 𝐴 ≈ 𝐵)) |
48 | 11, 47 | mpi 20 |
. 2
⊢ (𝐶 = 𝐷 → 𝐴 ≈ 𝐵) |
49 | | enen2 8905 |
. . . . 5
⊢ (𝐴 ≈ 𝐵 → (𝑥 ≈ 𝐴 ↔ 𝑥 ≈ 𝐵)) |
50 | | enen2 8905 |
. . . . . . 7
⊢ (𝐴 ≈ 𝐵 → (𝑦 ≈ 𝐴 ↔ 𝑦 ≈ 𝐵)) |
51 | 50 | imbi1d 342 |
. . . . . 6
⊢ (𝐴 ≈ 𝐵 → ((𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) |
52 | 51 | albidv 1923 |
. . . . 5
⊢ (𝐴 ≈ 𝐵 → (∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) |
53 | 49, 52 | anbi12d 631 |
. . . 4
⊢ (𝐴 ≈ 𝐵 → ((𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))))) |
54 | 53 | abbidv 2807 |
. . 3
⊢ (𝐴 ≈ 𝐵 → {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = {𝑥 ∣ (𝑥 ≈ 𝐵 ∧ ∀𝑦(𝑦 ≈ 𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))}) |
55 | 54, 20, 21 | 3eqtr4g 2803 |
. 2
⊢ (𝐴 ≈ 𝐵 → 𝐶 = 𝐷) |
56 | 48, 55 | impbii 208 |
1
⊢ (𝐶 = 𝐷 ↔ 𝐴 ≈ 𝐵) |