MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  karden Structured version   Visualization version   GIF version

Theorem karden 9324
Description: If we allow the Axiom of Regularity, we can avoid the Axiom of Choice by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank. This theorem proves the equinumerosity relationship for this definition (compare carden 9973). The hypotheses correspond to the definition of kard of [Enderton] p. 222 (which we don't define separately since currently we do not use it elsewhere). This theorem along with kardex 9323 justify the definition of kard. The restriction to the least rank prevents the proper class that would result from {𝑥𝑥𝐴}. (Contributed by NM, 18-Dec-2003.) (Revised by AV, 12-Jul-2022.)
Hypotheses
Ref Expression
karden.a 𝐴 ∈ V
karden.c 𝐶 = {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
karden.d 𝐷 = {𝑥 ∣ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
Assertion
Ref Expression
karden (𝐶 = 𝐷𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem karden
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 karden.a . . . . . . 7 𝐴 ∈ V
2 breq1 5069 . . . . . . 7 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
31enref 8542 . . . . . . 7 𝐴𝐴
41, 2, 3ceqsexv2d 3542 . . . . . 6 𝑤 𝑤𝐴
5 abn0 4336 . . . . . 6 ({𝑤𝑤𝐴} ≠ ∅ ↔ ∃𝑤 𝑤𝐴)
64, 5mpbir 233 . . . . 5 {𝑤𝑤𝐴} ≠ ∅
7 scott0 9315 . . . . . 6 ({𝑤𝑤𝐴} = ∅ ↔ {𝑧 ∈ {𝑤𝑤𝐴} ∣ ∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} = ∅)
87necon3bii 3068 . . . . 5 ({𝑤𝑤𝐴} ≠ ∅ ↔ {𝑧 ∈ {𝑤𝑤𝐴} ∣ ∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} ≠ ∅)
96, 8mpbi 232 . . . 4 {𝑧 ∈ {𝑤𝑤𝐴} ∣ ∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} ≠ ∅
10 rabn0 4339 . . . 4 ({𝑧 ∈ {𝑤𝑤𝐴} ∣ ∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} ≠ ∅ ↔ ∃𝑧 ∈ {𝑤𝑤𝐴}∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦))
119, 10mpbi 232 . . 3 𝑧 ∈ {𝑤𝑤𝐴}∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)
12 vex 3497 . . . . . . . 8 𝑧 ∈ V
13 breq1 5069 . . . . . . . 8 (𝑤 = 𝑧 → (𝑤𝐴𝑧𝐴))
1412, 13elab 3667 . . . . . . 7 (𝑧 ∈ {𝑤𝑤𝐴} ↔ 𝑧𝐴)
15 breq1 5069 . . . . . . . 8 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
1615ralab 3684 . . . . . . 7 (∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦)))
1714, 16anbi12i 628 . . . . . 6 ((𝑧 ∈ {𝑤𝑤𝐴} ∧ ∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)) ↔ (𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))))
18 simpl 485 . . . . . . . . 9 ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧𝐴)
1918a1i 11 . . . . . . . 8 (𝐶 = 𝐷 → ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧𝐴))
20 karden.c . . . . . . . . . . . 12 𝐶 = {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
21 karden.d . . . . . . . . . . . 12 𝐷 = {𝑥 ∣ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
2220, 21eqeq12i 2836 . . . . . . . . . . 11 (𝐶 = 𝐷 ↔ {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = {𝑥 ∣ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))})
23 abbi 2888 . . . . . . . . . . 11 (∀𝑥((𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) ↔ {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = {𝑥 ∣ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))})
2422, 23bitr4i 280 . . . . . . . . . 10 (𝐶 = 𝐷 ↔ ∀𝑥((𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))))
25 breq1 5069 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
26 fveq2 6670 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (rank‘𝑥) = (rank‘𝑧))
2726sseq1d 3998 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑧) ⊆ (rank‘𝑦)))
2827imbi2d 343 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))))
2928albidv 1921 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))))
3025, 29anbi12d 632 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦)))))
31 breq1 5069 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
3227imbi2d 343 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))))
3332albidv 1921 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))))
3431, 33anbi12d 632 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑧𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦)))))
3530, 34bibi12d 348 . . . . . . . . . . 11 (𝑥 = 𝑧 → (((𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) ↔ ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) ↔ (𝑧𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))))))
3635spvv 2003 . . . . . . . . . 10 (∀𝑥((𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) → ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) ↔ (𝑧𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦)))))
3724, 36sylbi 219 . . . . . . . . 9 (𝐶 = 𝐷 → ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) ↔ (𝑧𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦)))))
38 simpl 485 . . . . . . . . 9 ((𝑧𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧𝐵)
3937, 38syl6bi 255 . . . . . . . 8 (𝐶 = 𝐷 → ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧𝐵))
4019, 39jcad 515 . . . . . . 7 (𝐶 = 𝐷 → ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → (𝑧𝐴𝑧𝐵)))
41 ensym 8558 . . . . . . . 8 (𝑧𝐴𝐴𝑧)
42 entr 8561 . . . . . . . 8 ((𝐴𝑧𝑧𝐵) → 𝐴𝐵)
4341, 42sylan 582 . . . . . . 7 ((𝑧𝐴𝑧𝐵) → 𝐴𝐵)
4440, 43syl6 35 . . . . . 6 (𝐶 = 𝐷 → ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝐴𝐵))
4517, 44syl5bi 244 . . . . 5 (𝐶 = 𝐷 → ((𝑧 ∈ {𝑤𝑤𝐴} ∧ ∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)) → 𝐴𝐵))
4645expd 418 . . . 4 (𝐶 = 𝐷 → (𝑧 ∈ {𝑤𝑤𝐴} → (∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) → 𝐴𝐵)))
4746rexlimdv 3283 . . 3 (𝐶 = 𝐷 → (∃𝑧 ∈ {𝑤𝑤𝐴}∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) → 𝐴𝐵))
4811, 47mpi 20 . 2 (𝐶 = 𝐷𝐴𝐵)
49 enen2 8658 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
50 enen2 8658 . . . . . . 7 (𝐴𝐵 → (𝑦𝐴𝑦𝐵))
5150imbi1d 344 . . . . . 6 (𝐴𝐵 → ((𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))))
5251albidv 1921 . . . . 5 (𝐴𝐵 → (∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))))
5349, 52anbi12d 632 . . . 4 (𝐴𝐵 → ((𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))))
5453abbidv 2885 . . 3 (𝐴𝐵 → {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = {𝑥 ∣ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))})
5554, 20, 213eqtr4g 2881 . 2 (𝐴𝐵𝐶 = 𝐷)
5648, 55impbii 211 1 (𝐶 = 𝐷𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  wss 3936  c0 4291   class class class wbr 5066  cfv 6355  cen 8506  rankcrnk 9192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-r1 9193  df-rank 9194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator