MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  karden Structured version   Visualization version   GIF version

Theorem karden 9795
Description: If we allow the Axiom of Regularity, we can avoid the Axiom of Choice by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank. This theorem proves the equinumerosity relationship for this definition (compare carden 10449). The hypotheses correspond to the definition of kard of [Enderton] p. 222 (which we don't define separately since currently we do not use it elsewhere). This theorem along with kardex 9794 justify the definition of kard. The restriction to the least rank prevents the proper class that would result from {𝑥𝑥𝐴}. (Contributed by NM, 18-Dec-2003.) (Revised by AV, 12-Jul-2022.)
Hypotheses
Ref Expression
karden.a 𝐴 ∈ V
karden.c 𝐶 = {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
karden.d 𝐷 = {𝑥 ∣ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
Assertion
Ref Expression
karden (𝐶 = 𝐷𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem karden
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 karden.a . . . . . . 7 𝐴 ∈ V
2 breq1 5096 . . . . . . 7 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
31enref 8914 . . . . . . 7 𝐴𝐴
41, 2, 3ceqsexv2d 3488 . . . . . 6 𝑤 𝑤𝐴
5 abn0 4334 . . . . . 6 ({𝑤𝑤𝐴} ≠ ∅ ↔ ∃𝑤 𝑤𝐴)
64, 5mpbir 231 . . . . 5 {𝑤𝑤𝐴} ≠ ∅
7 scott0 9786 . . . . . 6 ({𝑤𝑤𝐴} = ∅ ↔ {𝑧 ∈ {𝑤𝑤𝐴} ∣ ∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} = ∅)
87necon3bii 2981 . . . . 5 ({𝑤𝑤𝐴} ≠ ∅ ↔ {𝑧 ∈ {𝑤𝑤𝐴} ∣ ∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} ≠ ∅)
96, 8mpbi 230 . . . 4 {𝑧 ∈ {𝑤𝑤𝐴} ∣ ∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} ≠ ∅
10 rabn0 4338 . . . 4 ({𝑧 ∈ {𝑤𝑤𝐴} ∣ ∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)} ≠ ∅ ↔ ∃𝑧 ∈ {𝑤𝑤𝐴}∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦))
119, 10mpbi 230 . . 3 𝑧 ∈ {𝑤𝑤𝐴}∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)
12 vex 3441 . . . . . . . 8 𝑧 ∈ V
13 breq1 5096 . . . . . . . 8 (𝑤 = 𝑧 → (𝑤𝐴𝑧𝐴))
1412, 13elab 3631 . . . . . . 7 (𝑧 ∈ {𝑤𝑤𝐴} ↔ 𝑧𝐴)
15 breq1 5096 . . . . . . . 8 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
1615ralab 3648 . . . . . . 7 (∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦)))
1714, 16anbi12i 628 . . . . . 6 ((𝑧 ∈ {𝑤𝑤𝐴} ∧ ∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)) ↔ (𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))))
18 simpl 482 . . . . . . . . 9 ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧𝐴)
1918a1i 11 . . . . . . . 8 (𝐶 = 𝐷 → ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧𝐴))
20 karden.c . . . . . . . . . . . 12 𝐶 = {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
21 karden.d . . . . . . . . . . . 12 𝐷 = {𝑥 ∣ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
2220, 21eqeq12i 2751 . . . . . . . . . . 11 (𝐶 = 𝐷 ↔ {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = {𝑥 ∣ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))})
23 abbib 2802 . . . . . . . . . . 11 ({𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = {𝑥 ∣ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ↔ ∀𝑥((𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))))
2422, 23bitri 275 . . . . . . . . . 10 (𝐶 = 𝐷 ↔ ∀𝑥((𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))))
25 breq1 5096 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
26 fveq2 6828 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (rank‘𝑥) = (rank‘𝑧))
2726sseq1d 3962 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑧) ⊆ (rank‘𝑦)))
2827imbi2d 340 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))))
2928albidv 1921 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))))
3025, 29anbi12d 632 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦)))))
31 breq1 5096 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
3227imbi2d 340 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))))
3332albidv 1921 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))))
3431, 33anbi12d 632 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑧𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦)))))
3530, 34bibi12d 345 . . . . . . . . . . 11 (𝑥 = 𝑧 → (((𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) ↔ ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) ↔ (𝑧𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))))))
3635spvv 1989 . . . . . . . . . 10 (∀𝑥((𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))) → ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) ↔ (𝑧𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦)))))
3724, 36sylbi 217 . . . . . . . . 9 (𝐶 = 𝐷 → ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) ↔ (𝑧𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦)))))
38 simpl 482 . . . . . . . . 9 ((𝑧𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧𝐵)
3937, 38biimtrdi 253 . . . . . . . 8 (𝐶 = 𝐷 → ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝑧𝐵))
4019, 39jcad 512 . . . . . . 7 (𝐶 = 𝐷 → ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → (𝑧𝐴𝑧𝐵)))
41 ensym 8932 . . . . . . . 8 (𝑧𝐴𝐴𝑧)
42 entr 8935 . . . . . . . 8 ((𝐴𝑧𝑧𝐵) → 𝐴𝐵)
4341, 42sylan 580 . . . . . . 7 ((𝑧𝐴𝑧𝐵) → 𝐴𝐵)
4440, 43syl6 35 . . . . . 6 (𝐶 = 𝐷 → ((𝑧𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑧) ⊆ (rank‘𝑦))) → 𝐴𝐵))
4517, 44biimtrid 242 . . . . 5 (𝐶 = 𝐷 → ((𝑧 ∈ {𝑤𝑤𝐴} ∧ ∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦)) → 𝐴𝐵))
4645expd 415 . . . 4 (𝐶 = 𝐷 → (𝑧 ∈ {𝑤𝑤𝐴} → (∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) → 𝐴𝐵)))
4746rexlimdv 3132 . . 3 (𝐶 = 𝐷 → (∃𝑧 ∈ {𝑤𝑤𝐴}∀𝑦 ∈ {𝑤𝑤𝐴} (rank‘𝑧) ⊆ (rank‘𝑦) → 𝐴𝐵))
4811, 47mpi 20 . 2 (𝐶 = 𝐷𝐴𝐵)
49 enen2 9038 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
50 enen2 9038 . . . . . . 7 (𝐴𝐵 → (𝑦𝐴𝑦𝐵))
5150imbi1d 341 . . . . . 6 (𝐴𝐵 → ((𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))))
5251albidv 1921 . . . . 5 (𝐴𝐵 → (∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦))))
5349, 52anbi12d 632 . . . 4 (𝐴𝐵 → ((𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) ↔ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))))
5453abbidv 2799 . . 3 (𝐴𝐵 → {𝑥 ∣ (𝑥𝐴 ∧ ∀𝑦(𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = {𝑥 ∣ (𝑥𝐵 ∧ ∀𝑦(𝑦𝐵 → (rank‘𝑥) ⊆ (rank‘𝑦)))})
5554, 20, 213eqtr4g 2793 . 2 (𝐴𝐵𝐶 = 𝐷)
5648, 55impbii 209 1 (𝐶 = 𝐷𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2113  {cab 2711  wne 2929  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  wss 3898  c0 4282   class class class wbr 5093  cfv 6486  cen 8872  rankcrnk 9663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-r1 9664  df-rank 9665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator