Step | Hyp | Ref
| Expression |
1 | | i1fd.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
2 | 1 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → 𝐹:ℝ⟶ℝ) |
3 | | ffun 6603 |
. . . . . . . 8
⊢ (𝐹:ℝ⟶ℝ →
Fun 𝐹) |
4 | | funcnvcnv 6501 |
. . . . . . . 8
⊢ (Fun
𝐹 → Fun ◡◡𝐹) |
5 | | imadif 6518 |
. . . . . . . 8
⊢ (Fun
◡◡𝐹 → (◡𝐹 “ (ℝ ∖ (ℝ ∖
𝑥))) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ (ℝ ∖ 𝑥)))) |
6 | 2, 3, 4, 5 | 4syl 19 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (◡𝐹 “ (ℝ ∖ (ℝ ∖
𝑥))) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ (ℝ ∖ 𝑥)))) |
7 | | ioof 13179 |
. . . . . . . . . . . . 13
⊢
(,):(ℝ* × ℝ*)⟶𝒫
ℝ |
8 | | frn 6607 |
. . . . . . . . . . . . 13
⊢
((,):(ℝ* × ℝ*)⟶𝒫
ℝ → ran (,) ⊆ 𝒫 ℝ) |
9 | 7, 8 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ran (,)
⊆ 𝒫 ℝ |
10 | 9 | sseli 3917 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ran (,) → 𝑥 ∈ 𝒫
ℝ) |
11 | 10 | elpwid 4544 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ran (,) → 𝑥 ⊆
ℝ) |
12 | 11 | ad2antlr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → 𝑥 ⊆ ℝ) |
13 | | dfss4 4192 |
. . . . . . . . 9
⊢ (𝑥 ⊆ ℝ ↔ (ℝ
∖ (ℝ ∖ 𝑥)) = 𝑥) |
14 | 12, 13 | sylib 217 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (ℝ ∖
(ℝ ∖ 𝑥)) =
𝑥) |
15 | 14 | imaeq2d 5969 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (◡𝐹 “ (ℝ ∖ (ℝ ∖
𝑥))) = (◡𝐹 “ 𝑥)) |
16 | 6, 15 | eqtr3d 2780 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ (ℝ ∖ 𝑥))) = (◡𝐹 “ 𝑥)) |
17 | | fimacnv 6622 |
. . . . . . . . 9
⊢ (𝐹:ℝ⟶ℝ →
(◡𝐹 “ ℝ) =
ℝ) |
18 | 2, 17 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (◡𝐹 “ ℝ) =
ℝ) |
19 | | rembl 24704 |
. . . . . . . 8
⊢ ℝ
∈ dom vol |
20 | 18, 19 | eqeltrdi 2847 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (◡𝐹 “ ℝ) ∈ dom
vol) |
21 | 1 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → 𝐹:ℝ⟶ℝ) |
22 | | inpreima 6941 |
. . . . . . . . . . . . . 14
⊢ (Fun
𝐹 → (◡𝐹 “ (𝑦 ∩ ran 𝐹)) = ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ ran 𝐹))) |
23 | | iunid 4990 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑥 ∈ (𝑦 ∩ ran 𝐹){𝑥} = (𝑦 ∩ ran 𝐹) |
24 | 23 | imaeq2i 5967 |
. . . . . . . . . . . . . . 15
⊢ (◡𝐹 “ ∪
𝑥 ∈ (𝑦 ∩ ran 𝐹){𝑥}) = (◡𝐹 “ (𝑦 ∩ ran 𝐹)) |
25 | | imaiun 7118 |
. . . . . . . . . . . . . . 15
⊢ (◡𝐹 “ ∪
𝑥 ∈ (𝑦 ∩ ran 𝐹){𝑥}) = ∪
𝑥 ∈ (𝑦 ∩ ran 𝐹)(◡𝐹 “ {𝑥}) |
26 | 24, 25 | eqtr3i 2768 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ (𝑦 ∩ ran 𝐹)) = ∪
𝑥 ∈ (𝑦 ∩ ran 𝐹)(◡𝐹 “ {𝑥}) |
27 | | cnvimass 5989 |
. . . . . . . . . . . . . . . 16
⊢ (◡𝐹 “ 𝑦) ⊆ dom 𝐹 |
28 | | cnvimarndm 5990 |
. . . . . . . . . . . . . . . 16
⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 |
29 | 27, 28 | sseqtrri 3958 |
. . . . . . . . . . . . . . 15
⊢ (◡𝐹 “ 𝑦) ⊆ (◡𝐹 “ ran 𝐹) |
30 | | df-ss 3904 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝐹 “ 𝑦) ⊆ (◡𝐹 “ ran 𝐹) ↔ ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ ran 𝐹)) = (◡𝐹 “ 𝑦)) |
31 | 29, 30 | mpbi 229 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ ran 𝐹)) = (◡𝐹 “ 𝑦) |
32 | 22, 26, 31 | 3eqtr3g 2801 |
. . . . . . . . . . . . 13
⊢ (Fun
𝐹 → ∪ 𝑥 ∈ (𝑦 ∩ ran 𝐹)(◡𝐹 “ {𝑥}) = (◡𝐹 “ 𝑦)) |
33 | 21, 3, 32 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ∪ 𝑥 ∈ (𝑦 ∩ ran 𝐹)(◡𝐹 “ {𝑥}) = (◡𝐹 “ 𝑦)) |
34 | | i1fd.2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ran 𝐹 ∈ Fin) |
35 | 34 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ran 𝐹 ∈ Fin) |
36 | | inss2 4163 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∩ ran 𝐹) ⊆ ran 𝐹 |
37 | | ssfi 8956 |
. . . . . . . . . . . . . 14
⊢ ((ran
𝐹 ∈ Fin ∧ (𝑦 ∩ ran 𝐹) ⊆ ran 𝐹) → (𝑦 ∩ ran 𝐹) ∈ Fin) |
38 | 35, 36, 37 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (𝑦 ∩ ran 𝐹) ∈ Fin) |
39 | | simpll 764 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → 𝜑) |
40 | | elinel1 4129 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
(𝑦 ∩ ran 𝐹) → 0 ∈ 𝑦) |
41 | 40 | con3i 154 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬ 0
∈ 𝑦 → ¬ 0
∈ (𝑦 ∩ ran 𝐹)) |
42 | 41 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ¬ 0 ∈ (𝑦 ∩ ran 𝐹)) |
43 | | disjsn 4647 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ ¬ 0 ∈
(𝑦 ∩ ran 𝐹)) |
44 | 42, 43 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ((𝑦 ∩ ran 𝐹) ∩ {0}) = ∅) |
45 | | reldisj 4385 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∩ ran 𝐹) ⊆ ran 𝐹 → (((𝑦 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ (𝑦 ∩ ran 𝐹) ⊆ (ran 𝐹 ∖ {0}))) |
46 | 36, 45 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ (𝑦 ∩ ran 𝐹) ⊆ (ran 𝐹 ∖ {0})) |
47 | 44, 46 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (𝑦 ∩ ran 𝐹) ⊆ (ran 𝐹 ∖ {0})) |
48 | 47 | sselda 3921 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → 𝑥 ∈ (ran 𝐹 ∖ {0})) |
49 | | i1fd.3 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑥}) ∈ dom vol) |
50 | 39, 48, 49 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (◡𝐹 “ {𝑥}) ∈ dom vol) |
51 | 50 | ralrimiva 3103 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ∀𝑥 ∈ (𝑦 ∩ ran 𝐹)(◡𝐹 “ {𝑥}) ∈ dom vol) |
52 | | finiunmbl 24708 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∩ ran 𝐹) ∈ Fin ∧ ∀𝑥 ∈ (𝑦 ∩ ran 𝐹)(◡𝐹 “ {𝑥}) ∈ dom vol) → ∪ 𝑥 ∈ (𝑦 ∩ ran 𝐹)(◡𝐹 “ {𝑥}) ∈ dom vol) |
53 | 38, 51, 52 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ∪ 𝑥 ∈ (𝑦 ∩ ran 𝐹)(◡𝐹 “ {𝑥}) ∈ dom vol) |
54 | 33, 53 | eqeltrrd 2840 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (◡𝐹 “ 𝑦) ∈ dom vol) |
55 | 54 | ex 413 |
. . . . . . . . . 10
⊢ (𝜑 → (¬ 0 ∈ 𝑦 → (◡𝐹 “ 𝑦) ∈ dom vol)) |
56 | 55 | alrimiv 1930 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑦(¬ 0 ∈ 𝑦 → (◡𝐹 “ 𝑦) ∈ dom vol)) |
57 | 56 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → ∀𝑦(¬ 0 ∈ 𝑦 → (◡𝐹 “ 𝑦) ∈ dom vol)) |
58 | | elndif 4063 |
. . . . . . . . 9
⊢ (0 ∈
𝑥 → ¬ 0 ∈
(ℝ ∖ 𝑥)) |
59 | 58 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → ¬ 0 ∈ (ℝ
∖ 𝑥)) |
60 | | reex 10962 |
. . . . . . . . . 10
⊢ ℝ
∈ V |
61 | 60 | difexi 5252 |
. . . . . . . . 9
⊢ (ℝ
∖ 𝑥) ∈
V |
62 | | eleq2 2827 |
. . . . . . . . . . 11
⊢ (𝑦 = (ℝ ∖ 𝑥) → (0 ∈ 𝑦 ↔ 0 ∈ (ℝ
∖ 𝑥))) |
63 | 62 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑦 = (ℝ ∖ 𝑥) → (¬ 0 ∈ 𝑦 ↔ ¬ 0 ∈ (ℝ
∖ 𝑥))) |
64 | | imaeq2 5965 |
. . . . . . . . . . 11
⊢ (𝑦 = (ℝ ∖ 𝑥) → (◡𝐹 “ 𝑦) = (◡𝐹 “ (ℝ ∖ 𝑥))) |
65 | 64 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑦 = (ℝ ∖ 𝑥) → ((◡𝐹 “ 𝑦) ∈ dom vol ↔ (◡𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol)) |
66 | 63, 65 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑦 = (ℝ ∖ 𝑥) → ((¬ 0 ∈ 𝑦 → (◡𝐹 “ 𝑦) ∈ dom vol) ↔ (¬ 0 ∈
(ℝ ∖ 𝑥) →
(◡𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol))) |
67 | 61, 66 | spcv 3544 |
. . . . . . . 8
⊢
(∀𝑦(¬ 0
∈ 𝑦 → (◡𝐹 “ 𝑦) ∈ dom vol) → (¬ 0 ∈
(ℝ ∖ 𝑥) →
(◡𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol)) |
68 | 57, 59, 67 | sylc 65 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (◡𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol) |
69 | | difmbl 24707 |
. . . . . . 7
⊢ (((◡𝐹 “ ℝ) ∈ dom vol ∧
(◡𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol) → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ (ℝ ∖ 𝑥))) ∈ dom vol) |
70 | 20, 68, 69 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ (ℝ ∖ 𝑥))) ∈ dom vol) |
71 | 16, 70 | eqeltrrd 2840 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (◡𝐹 “ 𝑥) ∈ dom vol) |
72 | | eleq2 2827 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (0 ∈ 𝑦 ↔ 0 ∈ 𝑥)) |
73 | 72 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (¬ 0 ∈ 𝑦 ↔ ¬ 0 ∈ 𝑥)) |
74 | | imaeq2 5965 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (◡𝐹 “ 𝑦) = (◡𝐹 “ 𝑥)) |
75 | 74 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → ((◡𝐹 “ 𝑦) ∈ dom vol ↔ (◡𝐹 “ 𝑥) ∈ dom vol)) |
76 | 73, 75 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((¬ 0 ∈ 𝑦 → (◡𝐹 “ 𝑦) ∈ dom vol) ↔ (¬ 0 ∈
𝑥 → (◡𝐹 “ 𝑥) ∈ dom vol))) |
77 | 76 | spvv 2000 |
. . . . . . . 8
⊢
(∀𝑦(¬ 0
∈ 𝑦 → (◡𝐹 “ 𝑦) ∈ dom vol) → (¬ 0 ∈
𝑥 → (◡𝐹 “ 𝑥) ∈ dom vol)) |
78 | 56, 77 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (¬ 0 ∈ 𝑥 → (◡𝐹 “ 𝑥) ∈ dom vol)) |
79 | 78 | imp 407 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑥) → (◡𝐹 “ 𝑥) ∈ dom vol) |
80 | 79 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ran (,)) ∧ ¬ 0 ∈ 𝑥) → (◡𝐹 “ 𝑥) ∈ dom vol) |
81 | 71, 80 | pm2.61dan 810 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡𝐹 “ 𝑥) ∈ dom vol) |
82 | 81 | ralrimiva 3103 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol) |
83 | | ismbf 24792 |
. . . 4
⊢ (𝐹:ℝ⟶ℝ →
(𝐹 ∈ MblFn ↔
∀𝑥 ∈ ran
(,)(◡𝐹 “ 𝑥) ∈ dom vol)) |
84 | 1, 83 | syl 17 |
. . 3
⊢ (𝜑 → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) |
85 | 82, 84 | mpbird 256 |
. 2
⊢ (𝜑 → 𝐹 ∈ MblFn) |
86 | | mblvol 24694 |
. . . . . . . 8
⊢ ((◡𝐹 “ 𝑦) ∈ dom vol → (vol‘(◡𝐹 “ 𝑦)) = (vol*‘(◡𝐹 “ 𝑦))) |
87 | 54, 86 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol‘(◡𝐹 “ 𝑦)) = (vol*‘(◡𝐹 “ 𝑦))) |
88 | | mblss 24695 |
. . . . . . . . 9
⊢ ((◡𝐹 “ 𝑦) ∈ dom vol → (◡𝐹 “ 𝑦) ⊆ ℝ) |
89 | 54, 88 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (◡𝐹 “ 𝑦) ⊆ ℝ) |
90 | | mblvol 24694 |
. . . . . . . . . . 11
⊢ ((◡𝐹 “ {𝑥}) ∈ dom vol → (vol‘(◡𝐹 “ {𝑥})) = (vol*‘(◡𝐹 “ {𝑥}))) |
91 | 50, 90 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (vol‘(◡𝐹 “ {𝑥})) = (vol*‘(◡𝐹 “ {𝑥}))) |
92 | | i1fd.4 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑥})) ∈ ℝ) |
93 | 39, 48, 92 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (vol‘(◡𝐹 “ {𝑥})) ∈ ℝ) |
94 | 91, 93 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (vol*‘(◡𝐹 “ {𝑥})) ∈ ℝ) |
95 | 38, 94 | fsumrecl 15446 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(◡𝐹 “ {𝑥})) ∈ ℝ) |
96 | 33 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol*‘∪ 𝑥 ∈ (𝑦 ∩ ran 𝐹)(◡𝐹 “ {𝑥})) = (vol*‘(◡𝐹 “ 𝑦))) |
97 | | mblss 24695 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹 “ {𝑥}) ∈ dom vol → (◡𝐹 “ {𝑥}) ⊆ ℝ) |
98 | 50, 97 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (◡𝐹 “ {𝑥}) ⊆ ℝ) |
99 | 98, 94 | jca 512 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → ((◡𝐹 “ {𝑥}) ⊆ ℝ ∧ (vol*‘(◡𝐹 “ {𝑥})) ∈ ℝ)) |
100 | 99 | ralrimiva 3103 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ∀𝑥 ∈ (𝑦 ∩ ran 𝐹)((◡𝐹 “ {𝑥}) ⊆ ℝ ∧ (vol*‘(◡𝐹 “ {𝑥})) ∈ ℝ)) |
101 | | ovolfiniun 24665 |
. . . . . . . . . 10
⊢ (((𝑦 ∩ ran 𝐹) ∈ Fin ∧ ∀𝑥 ∈ (𝑦 ∩ ran 𝐹)((◡𝐹 “ {𝑥}) ⊆ ℝ ∧ (vol*‘(◡𝐹 “ {𝑥})) ∈ ℝ)) →
(vol*‘∪ 𝑥 ∈ (𝑦 ∩ ran 𝐹)(◡𝐹 “ {𝑥})) ≤ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(◡𝐹 “ {𝑥}))) |
102 | 38, 100, 101 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol*‘∪ 𝑥 ∈ (𝑦 ∩ ran 𝐹)(◡𝐹 “ {𝑥})) ≤ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(◡𝐹 “ {𝑥}))) |
103 | 96, 102 | eqbrtrrd 5098 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol*‘(◡𝐹 “ 𝑦)) ≤ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(◡𝐹 “ {𝑥}))) |
104 | | ovollecl 24647 |
. . . . . . . 8
⊢ (((◡𝐹 “ 𝑦) ⊆ ℝ ∧ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(◡𝐹 “ {𝑥})) ∈ ℝ ∧ (vol*‘(◡𝐹 “ 𝑦)) ≤ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(◡𝐹 “ {𝑥}))) → (vol*‘(◡𝐹 “ 𝑦)) ∈ ℝ) |
105 | 89, 95, 103, 104 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol*‘(◡𝐹 “ 𝑦)) ∈ ℝ) |
106 | 87, 105 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol‘(◡𝐹 “ 𝑦)) ∈ ℝ) |
107 | 106 | ex 413 |
. . . . 5
⊢ (𝜑 → (¬ 0 ∈ 𝑦 → (vol‘(◡𝐹 “ 𝑦)) ∈ ℝ)) |
108 | 107 | alrimiv 1930 |
. . . 4
⊢ (𝜑 → ∀𝑦(¬ 0 ∈ 𝑦 → (vol‘(◡𝐹 “ 𝑦)) ∈ ℝ)) |
109 | | neldifsn 4725 |
. . . 4
⊢ ¬ 0
∈ (ℝ ∖ {0}) |
110 | 60 | difexi 5252 |
. . . . 5
⊢ (ℝ
∖ {0}) ∈ V |
111 | | eleq2 2827 |
. . . . . . 7
⊢ (𝑦 = (ℝ ∖ {0}) →
(0 ∈ 𝑦 ↔ 0 ∈
(ℝ ∖ {0}))) |
112 | 111 | notbid 318 |
. . . . . 6
⊢ (𝑦 = (ℝ ∖ {0}) →
(¬ 0 ∈ 𝑦 ↔
¬ 0 ∈ (ℝ ∖ {0}))) |
113 | | imaeq2 5965 |
. . . . . . . 8
⊢ (𝑦 = (ℝ ∖ {0}) →
(◡𝐹 “ 𝑦) = (◡𝐹 “ (ℝ ∖
{0}))) |
114 | 113 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑦 = (ℝ ∖ {0}) →
(vol‘(◡𝐹 “ 𝑦)) = (vol‘(◡𝐹 “ (ℝ ∖
{0})))) |
115 | 114 | eleq1d 2823 |
. . . . . 6
⊢ (𝑦 = (ℝ ∖ {0}) →
((vol‘(◡𝐹 “ 𝑦)) ∈ ℝ ↔ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈
ℝ)) |
116 | 112, 115 | imbi12d 345 |
. . . . 5
⊢ (𝑦 = (ℝ ∖ {0}) →
((¬ 0 ∈ 𝑦 →
(vol‘(◡𝐹 “ 𝑦)) ∈ ℝ) ↔ (¬ 0 ∈
(ℝ ∖ {0}) → (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈
ℝ))) |
117 | 110, 116 | spcv 3544 |
. . . 4
⊢
(∀𝑦(¬ 0
∈ 𝑦 →
(vol‘(◡𝐹 “ 𝑦)) ∈ ℝ) → (¬ 0 ∈
(ℝ ∖ {0}) → (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈
ℝ)) |
118 | 108, 109,
117 | mpisyl 21 |
. . 3
⊢ (𝜑 → (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈
ℝ) |
119 | 1, 34, 118 | 3jca 1127 |
. 2
⊢ (𝜑 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧
(vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈
ℝ)) |
120 | | isi1f 24838 |
. 2
⊢ (𝐹 ∈ dom ∫1
↔ (𝐹 ∈ MblFn
∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧
(vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈
ℝ))) |
121 | 85, 119, 120 | sylanbrc 583 |
1
⊢ (𝜑 → 𝐹 ∈ dom
∫1) |