MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fd Structured version   Visualization version   GIF version

Theorem i1fd 25045
Description: A simplified set of assumptions to show that a given function is simple. (Contributed by Mario Carneiro, 26-Jun-2014.)
Hypotheses
Ref Expression
i1fd.1 (𝜑𝐹:ℝ⟶ℝ)
i1fd.2 (𝜑 → ran 𝐹 ∈ Fin)
i1fd.3 ((𝜑𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑥}) ∈ dom vol)
i1fd.4 ((𝜑𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
Assertion
Ref Expression
i1fd (𝜑𝐹 ∈ dom ∫1)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥

Proof of Theorem i1fd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 i1fd.1 . . . . . . . . 9 (𝜑𝐹:ℝ⟶ℝ)
21ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → 𝐹:ℝ⟶ℝ)
3 ffun 6671 . . . . . . . 8 (𝐹:ℝ⟶ℝ → Fun 𝐹)
4 funcnvcnv 6568 . . . . . . . 8 (Fun 𝐹 → Fun 𝐹)
5 imadif 6585 . . . . . . . 8 (Fun 𝐹 → (𝐹 “ (ℝ ∖ (ℝ ∖ 𝑥))) = ((𝐹 “ ℝ) ∖ (𝐹 “ (ℝ ∖ 𝑥))))
62, 3, 4, 54syl 19 . . . . . . 7 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (𝐹 “ (ℝ ∖ (ℝ ∖ 𝑥))) = ((𝐹 “ ℝ) ∖ (𝐹 “ (ℝ ∖ 𝑥))))
7 ioof 13364 . . . . . . . . . . . . 13 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
8 frn 6675 . . . . . . . . . . . . 13 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ)
97, 8ax-mp 5 . . . . . . . . . . . 12 ran (,) ⊆ 𝒫 ℝ
109sseli 3940 . . . . . . . . . . 11 (𝑥 ∈ ran (,) → 𝑥 ∈ 𝒫 ℝ)
1110elpwid 4569 . . . . . . . . . 10 (𝑥 ∈ ran (,) → 𝑥 ⊆ ℝ)
1211ad2antlr 725 . . . . . . . . 9 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → 𝑥 ⊆ ℝ)
13 dfss4 4218 . . . . . . . . 9 (𝑥 ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ 𝑥)) = 𝑥)
1412, 13sylib 217 . . . . . . . 8 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (ℝ ∖ (ℝ ∖ 𝑥)) = 𝑥)
1514imaeq2d 6013 . . . . . . 7 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (𝐹 “ (ℝ ∖ (ℝ ∖ 𝑥))) = (𝐹𝑥))
166, 15eqtr3d 2778 . . . . . 6 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → ((𝐹 “ ℝ) ∖ (𝐹 “ (ℝ ∖ 𝑥))) = (𝐹𝑥))
17 fimacnv 6690 . . . . . . . . 9 (𝐹:ℝ⟶ℝ → (𝐹 “ ℝ) = ℝ)
182, 17syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (𝐹 “ ℝ) = ℝ)
19 rembl 24904 . . . . . . . 8 ℝ ∈ dom vol
2018, 19eqeltrdi 2846 . . . . . . 7 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (𝐹 “ ℝ) ∈ dom vol)
211adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → 𝐹:ℝ⟶ℝ)
22 inpreima 7014 . . . . . . . . . . . . . 14 (Fun 𝐹 → (𝐹 “ (𝑦 ∩ ran 𝐹)) = ((𝐹𝑦) ∩ (𝐹 “ ran 𝐹)))
23 iunid 5020 . . . . . . . . . . . . . . . 16 𝑥 ∈ (𝑦 ∩ ran 𝐹){𝑥} = (𝑦 ∩ ran 𝐹)
2423imaeq2i 6011 . . . . . . . . . . . . . . 15 (𝐹 𝑥 ∈ (𝑦 ∩ ran 𝐹){𝑥}) = (𝐹 “ (𝑦 ∩ ran 𝐹))
25 imaiun 7192 . . . . . . . . . . . . . . 15 (𝐹 𝑥 ∈ (𝑦 ∩ ran 𝐹){𝑥}) = 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥})
2624, 25eqtr3i 2766 . . . . . . . . . . . . . 14 (𝐹 “ (𝑦 ∩ ran 𝐹)) = 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥})
27 cnvimass 6033 . . . . . . . . . . . . . . . 16 (𝐹𝑦) ⊆ dom 𝐹
28 cnvimarndm 6034 . . . . . . . . . . . . . . . 16 (𝐹 “ ran 𝐹) = dom 𝐹
2927, 28sseqtrri 3981 . . . . . . . . . . . . . . 15 (𝐹𝑦) ⊆ (𝐹 “ ran 𝐹)
30 df-ss 3927 . . . . . . . . . . . . . . 15 ((𝐹𝑦) ⊆ (𝐹 “ ran 𝐹) ↔ ((𝐹𝑦) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝑦))
3129, 30mpbi 229 . . . . . . . . . . . . . 14 ((𝐹𝑦) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝑦)
3222, 26, 313eqtr3g 2799 . . . . . . . . . . . . 13 (Fun 𝐹 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥}) = (𝐹𝑦))
3321, 3, 323syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥}) = (𝐹𝑦))
34 i1fd.2 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐹 ∈ Fin)
3534adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ran 𝐹 ∈ Fin)
36 inss2 4189 . . . . . . . . . . . . . 14 (𝑦 ∩ ran 𝐹) ⊆ ran 𝐹
37 ssfi 9117 . . . . . . . . . . . . . 14 ((ran 𝐹 ∈ Fin ∧ (𝑦 ∩ ran 𝐹) ⊆ ran 𝐹) → (𝑦 ∩ ran 𝐹) ∈ Fin)
3835, 36, 37sylancl 586 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (𝑦 ∩ ran 𝐹) ∈ Fin)
39 simpll 765 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → 𝜑)
40 elinel1 4155 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ (𝑦 ∩ ran 𝐹) → 0 ∈ 𝑦)
4140con3i 154 . . . . . . . . . . . . . . . . . . 19 (¬ 0 ∈ 𝑦 → ¬ 0 ∈ (𝑦 ∩ ran 𝐹))
4241adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ¬ 0 ∈ (𝑦 ∩ ran 𝐹))
43 disjsn 4672 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ ¬ 0 ∈ (𝑦 ∩ ran 𝐹))
4442, 43sylibr 233 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ((𝑦 ∩ ran 𝐹) ∩ {0}) = ∅)
45 reldisj 4411 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∩ ran 𝐹) ⊆ ran 𝐹 → (((𝑦 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ (𝑦 ∩ ran 𝐹) ⊆ (ran 𝐹 ∖ {0})))
4636, 45ax-mp 5 . . . . . . . . . . . . . . . . 17 (((𝑦 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ (𝑦 ∩ ran 𝐹) ⊆ (ran 𝐹 ∖ {0}))
4744, 46sylib 217 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (𝑦 ∩ ran 𝐹) ⊆ (ran 𝐹 ∖ {0}))
4847sselda 3944 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → 𝑥 ∈ (ran 𝐹 ∖ {0}))
49 i1fd.3 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑥}) ∈ dom vol)
5039, 48, 49syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (𝐹 “ {𝑥}) ∈ dom vol)
5150ralrimiva 3143 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ∀𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥}) ∈ dom vol)
52 finiunmbl 24908 . . . . . . . . . . . . 13 (((𝑦 ∩ ran 𝐹) ∈ Fin ∧ ∀𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥}) ∈ dom vol) → 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥}) ∈ dom vol)
5338, 51, 52syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥}) ∈ dom vol)
5433, 53eqeltrrd 2839 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (𝐹𝑦) ∈ dom vol)
5554ex 413 . . . . . . . . . 10 (𝜑 → (¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol))
5655alrimiv 1930 . . . . . . . . 9 (𝜑 → ∀𝑦(¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol))
5756ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → ∀𝑦(¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol))
58 elndif 4088 . . . . . . . . 9 (0 ∈ 𝑥 → ¬ 0 ∈ (ℝ ∖ 𝑥))
5958adantl 482 . . . . . . . 8 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → ¬ 0 ∈ (ℝ ∖ 𝑥))
60 reex 11142 . . . . . . . . . 10 ℝ ∈ V
6160difexi 5285 . . . . . . . . 9 (ℝ ∖ 𝑥) ∈ V
62 eleq2 2826 . . . . . . . . . . 11 (𝑦 = (ℝ ∖ 𝑥) → (0 ∈ 𝑦 ↔ 0 ∈ (ℝ ∖ 𝑥)))
6362notbid 317 . . . . . . . . . 10 (𝑦 = (ℝ ∖ 𝑥) → (¬ 0 ∈ 𝑦 ↔ ¬ 0 ∈ (ℝ ∖ 𝑥)))
64 imaeq2 6009 . . . . . . . . . . 11 (𝑦 = (ℝ ∖ 𝑥) → (𝐹𝑦) = (𝐹 “ (ℝ ∖ 𝑥)))
6564eleq1d 2822 . . . . . . . . . 10 (𝑦 = (ℝ ∖ 𝑥) → ((𝐹𝑦) ∈ dom vol ↔ (𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol))
6663, 65imbi12d 344 . . . . . . . . 9 (𝑦 = (ℝ ∖ 𝑥) → ((¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol) ↔ (¬ 0 ∈ (ℝ ∖ 𝑥) → (𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol)))
6761, 66spcv 3564 . . . . . . . 8 (∀𝑦(¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol) → (¬ 0 ∈ (ℝ ∖ 𝑥) → (𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol))
6857, 59, 67sylc 65 . . . . . . 7 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol)
69 difmbl 24907 . . . . . . 7 (((𝐹 “ ℝ) ∈ dom vol ∧ (𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol) → ((𝐹 “ ℝ) ∖ (𝐹 “ (ℝ ∖ 𝑥))) ∈ dom vol)
7020, 68, 69syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → ((𝐹 “ ℝ) ∖ (𝐹 “ (ℝ ∖ 𝑥))) ∈ dom vol)
7116, 70eqeltrrd 2839 . . . . 5 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (𝐹𝑥) ∈ dom vol)
72 eleq2 2826 . . . . . . . . . . 11 (𝑦 = 𝑥 → (0 ∈ 𝑦 ↔ 0 ∈ 𝑥))
7372notbid 317 . . . . . . . . . 10 (𝑦 = 𝑥 → (¬ 0 ∈ 𝑦 ↔ ¬ 0 ∈ 𝑥))
74 imaeq2 6009 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
7574eleq1d 2822 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝐹𝑦) ∈ dom vol ↔ (𝐹𝑥) ∈ dom vol))
7673, 75imbi12d 344 . . . . . . . . 9 (𝑦 = 𝑥 → ((¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol) ↔ (¬ 0 ∈ 𝑥 → (𝐹𝑥) ∈ dom vol)))
7776spvv 2000 . . . . . . . 8 (∀𝑦(¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol) → (¬ 0 ∈ 𝑥 → (𝐹𝑥) ∈ dom vol))
7856, 77syl 17 . . . . . . 7 (𝜑 → (¬ 0 ∈ 𝑥 → (𝐹𝑥) ∈ dom vol))
7978imp 407 . . . . . 6 ((𝜑 ∧ ¬ 0 ∈ 𝑥) → (𝐹𝑥) ∈ dom vol)
8079adantlr 713 . . . . 5 (((𝜑𝑥 ∈ ran (,)) ∧ ¬ 0 ∈ 𝑥) → (𝐹𝑥) ∈ dom vol)
8171, 80pm2.61dan 811 . . . 4 ((𝜑𝑥 ∈ ran (,)) → (𝐹𝑥) ∈ dom vol)
8281ralrimiva 3143 . . 3 (𝜑 → ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol)
83 ismbf 24992 . . . 4 (𝐹:ℝ⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
841, 83syl 17 . . 3 (𝜑 → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
8582, 84mpbird 256 . 2 (𝜑𝐹 ∈ MblFn)
86 mblvol 24894 . . . . . . . 8 ((𝐹𝑦) ∈ dom vol → (vol‘(𝐹𝑦)) = (vol*‘(𝐹𝑦)))
8754, 86syl 17 . . . . . . 7 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol‘(𝐹𝑦)) = (vol*‘(𝐹𝑦)))
88 mblss 24895 . . . . . . . . 9 ((𝐹𝑦) ∈ dom vol → (𝐹𝑦) ⊆ ℝ)
8954, 88syl 17 . . . . . . . 8 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (𝐹𝑦) ⊆ ℝ)
90 mblvol 24894 . . . . . . . . . . 11 ((𝐹 “ {𝑥}) ∈ dom vol → (vol‘(𝐹 “ {𝑥})) = (vol*‘(𝐹 “ {𝑥})))
9150, 90syl 17 . . . . . . . . . 10 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (vol‘(𝐹 “ {𝑥})) = (vol*‘(𝐹 “ {𝑥})))
92 i1fd.4 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
9339, 48, 92syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
9491, 93eqeltrrd 2839 . . . . . . . . 9 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (vol*‘(𝐹 “ {𝑥})) ∈ ℝ)
9538, 94fsumrecl 15619 . . . . . . . 8 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(𝐹 “ {𝑥})) ∈ ℝ)
9633fveq2d 6846 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol*‘ 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥})) = (vol*‘(𝐹𝑦)))
97 mblss 24895 . . . . . . . . . . . . 13 ((𝐹 “ {𝑥}) ∈ dom vol → (𝐹 “ {𝑥}) ⊆ ℝ)
9850, 97syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (𝐹 “ {𝑥}) ⊆ ℝ)
9998, 94jca 512 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → ((𝐹 “ {𝑥}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑥})) ∈ ℝ))
10099ralrimiva 3143 . . . . . . . . . 10 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ∀𝑥 ∈ (𝑦 ∩ ran 𝐹)((𝐹 “ {𝑥}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑥})) ∈ ℝ))
101 ovolfiniun 24865 . . . . . . . . . 10 (((𝑦 ∩ ran 𝐹) ∈ Fin ∧ ∀𝑥 ∈ (𝑦 ∩ ran 𝐹)((𝐹 “ {𝑥}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑥})) ∈ ℝ)) → (vol*‘ 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥})) ≤ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(𝐹 “ {𝑥})))
10238, 100, 101syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol*‘ 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥})) ≤ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(𝐹 “ {𝑥})))
10396, 102eqbrtrrd 5129 . . . . . . . 8 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol*‘(𝐹𝑦)) ≤ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(𝐹 “ {𝑥})))
104 ovollecl 24847 . . . . . . . 8 (((𝐹𝑦) ⊆ ℝ ∧ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(𝐹 “ {𝑥})) ∈ ℝ ∧ (vol*‘(𝐹𝑦)) ≤ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(𝐹 “ {𝑥}))) → (vol*‘(𝐹𝑦)) ∈ ℝ)
10589, 95, 103, 104syl3anc 1371 . . . . . . 7 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol*‘(𝐹𝑦)) ∈ ℝ)
10687, 105eqeltrd 2838 . . . . . 6 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol‘(𝐹𝑦)) ∈ ℝ)
107106ex 413 . . . . 5 (𝜑 → (¬ 0 ∈ 𝑦 → (vol‘(𝐹𝑦)) ∈ ℝ))
108107alrimiv 1930 . . . 4 (𝜑 → ∀𝑦(¬ 0 ∈ 𝑦 → (vol‘(𝐹𝑦)) ∈ ℝ))
109 neldifsn 4752 . . . 4 ¬ 0 ∈ (ℝ ∖ {0})
11060difexi 5285 . . . . 5 (ℝ ∖ {0}) ∈ V
111 eleq2 2826 . . . . . . 7 (𝑦 = (ℝ ∖ {0}) → (0 ∈ 𝑦 ↔ 0 ∈ (ℝ ∖ {0})))
112111notbid 317 . . . . . 6 (𝑦 = (ℝ ∖ {0}) → (¬ 0 ∈ 𝑦 ↔ ¬ 0 ∈ (ℝ ∖ {0})))
113 imaeq2 6009 . . . . . . . 8 (𝑦 = (ℝ ∖ {0}) → (𝐹𝑦) = (𝐹 “ (ℝ ∖ {0})))
114113fveq2d 6846 . . . . . . 7 (𝑦 = (ℝ ∖ {0}) → (vol‘(𝐹𝑦)) = (vol‘(𝐹 “ (ℝ ∖ {0}))))
115114eleq1d 2822 . . . . . 6 (𝑦 = (ℝ ∖ {0}) → ((vol‘(𝐹𝑦)) ∈ ℝ ↔ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))
116112, 115imbi12d 344 . . . . 5 (𝑦 = (ℝ ∖ {0}) → ((¬ 0 ∈ 𝑦 → (vol‘(𝐹𝑦)) ∈ ℝ) ↔ (¬ 0 ∈ (ℝ ∖ {0}) → (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
117110, 116spcv 3564 . . . 4 (∀𝑦(¬ 0 ∈ 𝑦 → (vol‘(𝐹𝑦)) ∈ ℝ) → (¬ 0 ∈ (ℝ ∖ {0}) → (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))
118108, 109, 117mpisyl 21 . . 3 (𝜑 → (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)
1191, 34, 1183jca 1128 . 2 (𝜑 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))
120 isi1f 25038 . 2 (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
12185, 119, 120sylanbrc 583 1 (𝜑𝐹 ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087  wal 1539   = wceq 1541  wcel 2106  wral 3064  cdif 3907  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586   ciun 4954   class class class wbr 5105   × cxp 5631  ccnv 5632  dom cdm 5633  ran crn 5634  cima 5636  Fun wfun 6490  wf 6492  cfv 6496  Fincfn 8883  cr 11050  0cc0 11051  *cxr 11188  cle 11190  (,)cioo 13264  Σcsu 15570  vol*covol 24826  volcvol 24827  MblFncmbf 24978  1citg1 24979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xadd 13034  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-xmet 20789  df-met 20790  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984
This theorem is referenced by:  i1f0  25051  i1f1  25054  i1fadd  25059  i1fmul  25060  i1fmulc  25068  i1fres  25070  mbfi1fseqlem4  25083  itg2addnclem2  36130  ftc1anclem3  36153
  Copyright terms: Public domain W3C validator