![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > mdsldmd1i | Structured version Visualization version GIF version |
Description: Preservation of the dual modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mdslmd.1 | ⊢ 𝐴 ∈ Cℋ |
mdslmd.2 | ⊢ 𝐵 ∈ Cℋ |
mdslmd.3 | ⊢ 𝐶 ∈ Cℋ |
mdslmd.4 | ⊢ 𝐷 ∈ Cℋ |
Ref | Expression |
---|---|
mdsldmd1i | ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ (𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵))) → (𝐶 𝑀ℋ* 𝐷 ↔ (𝐶 ∩ 𝐵) 𝑀ℋ* (𝐷 ∩ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdslmd.1 | . . . . 5 ⊢ 𝐴 ∈ Cℋ | |
2 | mdslmd.2 | . . . . 5 ⊢ 𝐵 ∈ Cℋ | |
3 | mddmd 32188 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ (⊥‘𝐴) 𝑀ℋ* (⊥‘𝐵))) | |
4 | 1, 2, 3 | mp2an 690 | . . . 4 ⊢ (𝐴 𝑀ℋ 𝐵 ↔ (⊥‘𝐴) 𝑀ℋ* (⊥‘𝐵)) |
5 | dmdmd 32187 | . . . . 5 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝐵 𝑀ℋ* 𝐴 ↔ (⊥‘𝐵) 𝑀ℋ (⊥‘𝐴))) | |
6 | 2, 1, 5 | mp2an 690 | . . . 4 ⊢ (𝐵 𝑀ℋ* 𝐴 ↔ (⊥‘𝐵) 𝑀ℋ (⊥‘𝐴)) |
7 | 4, 6 | anbi12ci 627 | . . 3 ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ↔ ((⊥‘𝐵) 𝑀ℋ (⊥‘𝐴) ∧ (⊥‘𝐴) 𝑀ℋ* (⊥‘𝐵))) |
8 | mdslmd.3 | . . . . . . 7 ⊢ 𝐶 ∈ Cℋ | |
9 | mdslmd.4 | . . . . . . 7 ⊢ 𝐷 ∈ Cℋ | |
10 | 8, 9 | chincli 31347 | . . . . . 6 ⊢ (𝐶 ∩ 𝐷) ∈ Cℋ |
11 | 1, 10 | chsscon3i 31348 | . . . . 5 ⊢ (𝐴 ⊆ (𝐶 ∩ 𝐷) ↔ (⊥‘(𝐶 ∩ 𝐷)) ⊆ (⊥‘𝐴)) |
12 | 8, 9 | chdmm1i 31364 | . . . . . 6 ⊢ (⊥‘(𝐶 ∩ 𝐷)) = ((⊥‘𝐶) ∨ℋ (⊥‘𝐷)) |
13 | 12 | sseq1i 4005 | . . . . 5 ⊢ ((⊥‘(𝐶 ∩ 𝐷)) ⊆ (⊥‘𝐴) ↔ ((⊥‘𝐶) ∨ℋ (⊥‘𝐷)) ⊆ (⊥‘𝐴)) |
14 | 11, 13 | bitri 274 | . . . 4 ⊢ (𝐴 ⊆ (𝐶 ∩ 𝐷) ↔ ((⊥‘𝐶) ∨ℋ (⊥‘𝐷)) ⊆ (⊥‘𝐴)) |
15 | 8, 9 | chjcli 31344 | . . . . . 6 ⊢ (𝐶 ∨ℋ 𝐷) ∈ Cℋ |
16 | 1, 2 | chjcli 31344 | . . . . . 6 ⊢ (𝐴 ∨ℋ 𝐵) ∈ Cℋ |
17 | 15, 16 | chsscon3i 31348 | . . . . 5 ⊢ ((𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵) ↔ (⊥‘(𝐴 ∨ℋ 𝐵)) ⊆ (⊥‘(𝐶 ∨ℋ 𝐷))) |
18 | 1, 2 | chdmj1i 31368 | . . . . . . 7 ⊢ (⊥‘(𝐴 ∨ℋ 𝐵)) = ((⊥‘𝐴) ∩ (⊥‘𝐵)) |
19 | incom 4199 | . . . . . . 7 ⊢ ((⊥‘𝐴) ∩ (⊥‘𝐵)) = ((⊥‘𝐵) ∩ (⊥‘𝐴)) | |
20 | 18, 19 | eqtri 2753 | . . . . . 6 ⊢ (⊥‘(𝐴 ∨ℋ 𝐵)) = ((⊥‘𝐵) ∩ (⊥‘𝐴)) |
21 | 8, 9 | chdmj1i 31368 | . . . . . 6 ⊢ (⊥‘(𝐶 ∨ℋ 𝐷)) = ((⊥‘𝐶) ∩ (⊥‘𝐷)) |
22 | 20, 21 | sseq12i 4007 | . . . . 5 ⊢ ((⊥‘(𝐴 ∨ℋ 𝐵)) ⊆ (⊥‘(𝐶 ∨ℋ 𝐷)) ↔ ((⊥‘𝐵) ∩ (⊥‘𝐴)) ⊆ ((⊥‘𝐶) ∩ (⊥‘𝐷))) |
23 | 17, 22 | bitri 274 | . . . 4 ⊢ ((𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵) ↔ ((⊥‘𝐵) ∩ (⊥‘𝐴)) ⊆ ((⊥‘𝐶) ∩ (⊥‘𝐷))) |
24 | 14, 23 | anbi12ci 627 | . . 3 ⊢ ((𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵)) ↔ (((⊥‘𝐵) ∩ (⊥‘𝐴)) ⊆ ((⊥‘𝐶) ∩ (⊥‘𝐷)) ∧ ((⊥‘𝐶) ∨ℋ (⊥‘𝐷)) ⊆ (⊥‘𝐴))) |
25 | 2 | choccli 31194 | . . . 4 ⊢ (⊥‘𝐵) ∈ Cℋ |
26 | 1 | choccli 31194 | . . . 4 ⊢ (⊥‘𝐴) ∈ Cℋ |
27 | 8 | choccli 31194 | . . . 4 ⊢ (⊥‘𝐶) ∈ Cℋ |
28 | 9 | choccli 31194 | . . . 4 ⊢ (⊥‘𝐷) ∈ Cℋ |
29 | 25, 26, 27, 28 | mdslmd2i 32217 | . . 3 ⊢ ((((⊥‘𝐵) 𝑀ℋ (⊥‘𝐴) ∧ (⊥‘𝐴) 𝑀ℋ* (⊥‘𝐵)) ∧ (((⊥‘𝐵) ∩ (⊥‘𝐴)) ⊆ ((⊥‘𝐶) ∩ (⊥‘𝐷)) ∧ ((⊥‘𝐶) ∨ℋ (⊥‘𝐷)) ⊆ (⊥‘𝐴))) → ((⊥‘𝐶) 𝑀ℋ (⊥‘𝐷) ↔ ((⊥‘𝐶) ∨ℋ (⊥‘𝐵)) 𝑀ℋ ((⊥‘𝐷) ∨ℋ (⊥‘𝐵)))) |
30 | 7, 24, 29 | syl2anb 596 | . 2 ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ (𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵))) → ((⊥‘𝐶) 𝑀ℋ (⊥‘𝐷) ↔ ((⊥‘𝐶) ∨ℋ (⊥‘𝐵)) 𝑀ℋ ((⊥‘𝐷) ∨ℋ (⊥‘𝐵)))) |
31 | dmdmd 32187 | . . 3 ⊢ ((𝐶 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) → (𝐶 𝑀ℋ* 𝐷 ↔ (⊥‘𝐶) 𝑀ℋ (⊥‘𝐷))) | |
32 | 8, 9, 31 | mp2an 690 | . 2 ⊢ (𝐶 𝑀ℋ* 𝐷 ↔ (⊥‘𝐶) 𝑀ℋ (⊥‘𝐷)) |
33 | 8, 2 | chincli 31347 | . . . 4 ⊢ (𝐶 ∩ 𝐵) ∈ Cℋ |
34 | 9, 2 | chincli 31347 | . . . 4 ⊢ (𝐷 ∩ 𝐵) ∈ Cℋ |
35 | dmdmd 32187 | . . . 4 ⊢ (((𝐶 ∩ 𝐵) ∈ Cℋ ∧ (𝐷 ∩ 𝐵) ∈ Cℋ ) → ((𝐶 ∩ 𝐵) 𝑀ℋ* (𝐷 ∩ 𝐵) ↔ (⊥‘(𝐶 ∩ 𝐵)) 𝑀ℋ (⊥‘(𝐷 ∩ 𝐵)))) | |
36 | 33, 34, 35 | mp2an 690 | . . 3 ⊢ ((𝐶 ∩ 𝐵) 𝑀ℋ* (𝐷 ∩ 𝐵) ↔ (⊥‘(𝐶 ∩ 𝐵)) 𝑀ℋ (⊥‘(𝐷 ∩ 𝐵))) |
37 | 8, 2 | chdmm1i 31364 | . . . 4 ⊢ (⊥‘(𝐶 ∩ 𝐵)) = ((⊥‘𝐶) ∨ℋ (⊥‘𝐵)) |
38 | 9, 2 | chdmm1i 31364 | . . . 4 ⊢ (⊥‘(𝐷 ∩ 𝐵)) = ((⊥‘𝐷) ∨ℋ (⊥‘𝐵)) |
39 | 37, 38 | breq12i 5158 | . . 3 ⊢ ((⊥‘(𝐶 ∩ 𝐵)) 𝑀ℋ (⊥‘(𝐷 ∩ 𝐵)) ↔ ((⊥‘𝐶) ∨ℋ (⊥‘𝐵)) 𝑀ℋ ((⊥‘𝐷) ∨ℋ (⊥‘𝐵))) |
40 | 36, 39 | bitri 274 | . 2 ⊢ ((𝐶 ∩ 𝐵) 𝑀ℋ* (𝐷 ∩ 𝐵) ↔ ((⊥‘𝐶) ∨ℋ (⊥‘𝐵)) 𝑀ℋ ((⊥‘𝐷) ∨ℋ (⊥‘𝐵))) |
41 | 30, 32, 40 | 3bitr4g 313 | 1 ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ (𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵))) → (𝐶 𝑀ℋ* 𝐷 ↔ (𝐶 ∩ 𝐵) 𝑀ℋ* (𝐷 ∩ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ∩ cin 3943 ⊆ wss 3944 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 Cℋ cch 30816 ⊥cort 30817 ∨ℋ chj 30820 𝑀ℋ cmd 30853 𝑀ℋ* cdmd 30854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9671 ax-cc 10465 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-pre-sup 11223 ax-addf 11224 ax-mulf 11225 ax-hilex 30886 ax-hfvadd 30887 ax-hvcom 30888 ax-hvass 30889 ax-hv0cl 30890 ax-hvaddid 30891 ax-hfvmul 30892 ax-hvmulid 30893 ax-hvmulass 30894 ax-hvdistr1 30895 ax-hvdistr2 30896 ax-hvmul0 30897 ax-hfi 30966 ax-his1 30969 ax-his2 30970 ax-his3 30971 ax-his4 30972 ax-hcompl 31089 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-omul 8492 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9393 df-fi 9441 df-sup 9472 df-inf 9473 df-oi 9540 df-card 9969 df-acn 9972 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-q 12971 df-rp 13015 df-xneg 13132 df-xadd 13133 df-xmul 13134 df-ioo 13368 df-ico 13370 df-icc 13371 df-fz 13525 df-fzo 13668 df-fl 13798 df-seq 14008 df-exp 14068 df-hash 14331 df-cj 15087 df-re 15088 df-im 15089 df-sqrt 15223 df-abs 15224 df-clim 15473 df-rlim 15474 df-sum 15674 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17189 df-ress 17218 df-plusg 17254 df-mulr 17255 df-starv 17256 df-sca 17257 df-vsca 17258 df-ip 17259 df-tset 17260 df-ple 17261 df-ds 17263 df-unif 17264 df-hom 17265 df-cco 17266 df-rest 17412 df-topn 17413 df-0g 17431 df-gsum 17432 df-topgen 17433 df-pt 17434 df-prds 17437 df-xrs 17492 df-qtop 17497 df-imas 17498 df-xps 17500 df-mre 17574 df-mrc 17575 df-acs 17577 df-mgm 18608 df-sgrp 18687 df-mnd 18703 df-submnd 18749 df-mulg 19037 df-cntz 19285 df-cmn 19754 df-psmet 21293 df-xmet 21294 df-met 21295 df-bl 21296 df-mopn 21297 df-fbas 21298 df-fg 21299 df-cnfld 21302 df-top 22845 df-topon 22862 df-topsp 22884 df-bases 22898 df-cld 22972 df-ntr 22973 df-cls 22974 df-nei 23051 df-cn 23180 df-cnp 23181 df-lm 23182 df-haus 23268 df-tx 23515 df-hmeo 23708 df-fil 23799 df-fm 23891 df-flim 23892 df-flf 23893 df-xms 24275 df-ms 24276 df-tms 24277 df-cfil 25232 df-cau 25233 df-cmet 25234 df-grpo 30380 df-gid 30381 df-ginv 30382 df-gdiv 30383 df-ablo 30432 df-vc 30446 df-nv 30479 df-va 30482 df-ba 30483 df-sm 30484 df-0v 30485 df-vs 30486 df-nmcv 30487 df-ims 30488 df-dip 30588 df-ssp 30609 df-ph 30700 df-cbn 30750 df-hnorm 30855 df-hba 30856 df-hvsub 30858 df-hlim 30859 df-hcau 30860 df-sh 31094 df-ch 31108 df-oc 31139 df-ch0 31140 df-shs 31195 df-chj 31197 df-md 32167 df-dmd 32168 |
This theorem is referenced by: dmdcompli 32317 |
Copyright terms: Public domain | W3C validator |