HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsldmd1i Structured version   Visualization version   GIF version

Theorem mdsldmd1i 32312
Description: Preservation of the dual modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
Assertion
Ref Expression
mdsldmd1i (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → (𝐶 𝑀* 𝐷 ↔ (𝐶𝐵) 𝑀* (𝐷𝐵)))

Proof of Theorem mdsldmd1i
StepHypRef Expression
1 mdslmd.1 . . . . 5 𝐴C
2 mdslmd.2 . . . . 5 𝐵C
3 mddmd 32282 . . . . 5 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ (⊥‘𝐴) 𝑀* (⊥‘𝐵)))
41, 2, 3mp2an 692 . . . 4 (𝐴 𝑀 𝐵 ↔ (⊥‘𝐴) 𝑀* (⊥‘𝐵))
5 dmdmd 32281 . . . . 5 ((𝐵C𝐴C ) → (𝐵 𝑀* 𝐴 ↔ (⊥‘𝐵) 𝑀 (⊥‘𝐴)))
62, 1, 5mp2an 692 . . . 4 (𝐵 𝑀* 𝐴 ↔ (⊥‘𝐵) 𝑀 (⊥‘𝐴))
74, 6anbi12ci 629 . . 3 ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ↔ ((⊥‘𝐵) 𝑀 (⊥‘𝐴) ∧ (⊥‘𝐴) 𝑀* (⊥‘𝐵)))
8 mdslmd.3 . . . . . . 7 𝐶C
9 mdslmd.4 . . . . . . 7 𝐷C
108, 9chincli 31441 . . . . . 6 (𝐶𝐷) ∈ C
111, 10chsscon3i 31442 . . . . 5 (𝐴 ⊆ (𝐶𝐷) ↔ (⊥‘(𝐶𝐷)) ⊆ (⊥‘𝐴))
128, 9chdmm1i 31458 . . . . . 6 (⊥‘(𝐶𝐷)) = ((⊥‘𝐶) ∨ (⊥‘𝐷))
1312sseq1i 3987 . . . . 5 ((⊥‘(𝐶𝐷)) ⊆ (⊥‘𝐴) ↔ ((⊥‘𝐶) ∨ (⊥‘𝐷)) ⊆ (⊥‘𝐴))
1411, 13bitri 275 . . . 4 (𝐴 ⊆ (𝐶𝐷) ↔ ((⊥‘𝐶) ∨ (⊥‘𝐷)) ⊆ (⊥‘𝐴))
158, 9chjcli 31438 . . . . . 6 (𝐶 𝐷) ∈ C
161, 2chjcli 31438 . . . . . 6 (𝐴 𝐵) ∈ C
1715, 16chsscon3i 31442 . . . . 5 ((𝐶 𝐷) ⊆ (𝐴 𝐵) ↔ (⊥‘(𝐴 𝐵)) ⊆ (⊥‘(𝐶 𝐷)))
181, 2chdmj1i 31462 . . . . . . 7 (⊥‘(𝐴 𝐵)) = ((⊥‘𝐴) ∩ (⊥‘𝐵))
19 incom 4184 . . . . . . 7 ((⊥‘𝐴) ∩ (⊥‘𝐵)) = ((⊥‘𝐵) ∩ (⊥‘𝐴))
2018, 19eqtri 2758 . . . . . 6 (⊥‘(𝐴 𝐵)) = ((⊥‘𝐵) ∩ (⊥‘𝐴))
218, 9chdmj1i 31462 . . . . . 6 (⊥‘(𝐶 𝐷)) = ((⊥‘𝐶) ∩ (⊥‘𝐷))
2220, 21sseq12i 3989 . . . . 5 ((⊥‘(𝐴 𝐵)) ⊆ (⊥‘(𝐶 𝐷)) ↔ ((⊥‘𝐵) ∩ (⊥‘𝐴)) ⊆ ((⊥‘𝐶) ∩ (⊥‘𝐷)))
2317, 22bitri 275 . . . 4 ((𝐶 𝐷) ⊆ (𝐴 𝐵) ↔ ((⊥‘𝐵) ∩ (⊥‘𝐴)) ⊆ ((⊥‘𝐶) ∩ (⊥‘𝐷)))
2414, 23anbi12ci 629 . . 3 ((𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵)) ↔ (((⊥‘𝐵) ∩ (⊥‘𝐴)) ⊆ ((⊥‘𝐶) ∩ (⊥‘𝐷)) ∧ ((⊥‘𝐶) ∨ (⊥‘𝐷)) ⊆ (⊥‘𝐴)))
252choccli 31288 . . . 4 (⊥‘𝐵) ∈ C
261choccli 31288 . . . 4 (⊥‘𝐴) ∈ C
278choccli 31288 . . . 4 (⊥‘𝐶) ∈ C
289choccli 31288 . . . 4 (⊥‘𝐷) ∈ C
2925, 26, 27, 28mdslmd2i 32311 . . 3 ((((⊥‘𝐵) 𝑀 (⊥‘𝐴) ∧ (⊥‘𝐴) 𝑀* (⊥‘𝐵)) ∧ (((⊥‘𝐵) ∩ (⊥‘𝐴)) ⊆ ((⊥‘𝐶) ∩ (⊥‘𝐷)) ∧ ((⊥‘𝐶) ∨ (⊥‘𝐷)) ⊆ (⊥‘𝐴))) → ((⊥‘𝐶) 𝑀 (⊥‘𝐷) ↔ ((⊥‘𝐶) ∨ (⊥‘𝐵)) 𝑀 ((⊥‘𝐷) ∨ (⊥‘𝐵))))
307, 24, 29syl2anb 598 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → ((⊥‘𝐶) 𝑀 (⊥‘𝐷) ↔ ((⊥‘𝐶) ∨ (⊥‘𝐵)) 𝑀 ((⊥‘𝐷) ∨ (⊥‘𝐵))))
31 dmdmd 32281 . . 3 ((𝐶C𝐷C ) → (𝐶 𝑀* 𝐷 ↔ (⊥‘𝐶) 𝑀 (⊥‘𝐷)))
328, 9, 31mp2an 692 . 2 (𝐶 𝑀* 𝐷 ↔ (⊥‘𝐶) 𝑀 (⊥‘𝐷))
338, 2chincli 31441 . . . 4 (𝐶𝐵) ∈ C
349, 2chincli 31441 . . . 4 (𝐷𝐵) ∈ C
35 dmdmd 32281 . . . 4 (((𝐶𝐵) ∈ C ∧ (𝐷𝐵) ∈ C ) → ((𝐶𝐵) 𝑀* (𝐷𝐵) ↔ (⊥‘(𝐶𝐵)) 𝑀 (⊥‘(𝐷𝐵))))
3633, 34, 35mp2an 692 . . 3 ((𝐶𝐵) 𝑀* (𝐷𝐵) ↔ (⊥‘(𝐶𝐵)) 𝑀 (⊥‘(𝐷𝐵)))
378, 2chdmm1i 31458 . . . 4 (⊥‘(𝐶𝐵)) = ((⊥‘𝐶) ∨ (⊥‘𝐵))
389, 2chdmm1i 31458 . . . 4 (⊥‘(𝐷𝐵)) = ((⊥‘𝐷) ∨ (⊥‘𝐵))
3937, 38breq12i 5128 . . 3 ((⊥‘(𝐶𝐵)) 𝑀 (⊥‘(𝐷𝐵)) ↔ ((⊥‘𝐶) ∨ (⊥‘𝐵)) 𝑀 ((⊥‘𝐷) ∨ (⊥‘𝐵)))
4036, 39bitri 275 . 2 ((𝐶𝐵) 𝑀* (𝐷𝐵) ↔ ((⊥‘𝐶) ∨ (⊥‘𝐵)) 𝑀 ((⊥‘𝐷) ∨ (⊥‘𝐵)))
4130, 32, 403bitr4g 314 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → (𝐶 𝑀* 𝐷 ↔ (𝐶𝐵) 𝑀* (𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  cin 3925  wss 3926   class class class wbr 5119  cfv 6531  (class class class)co 7405   C cch 30910  cort 30911   chj 30914   𝑀 cmd 30947   𝑀* cdmd 30948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209  ax-hilex 30980  ax-hfvadd 30981  ax-hvcom 30982  ax-hvass 30983  ax-hv0cl 30984  ax-hvaddid 30985  ax-hfvmul 30986  ax-hvmulid 30987  ax-hvmulass 30988  ax-hvdistr1 30989  ax-hvdistr2 30990  ax-hvmul0 30991  ax-hfi 31060  ax-his1 31063  ax-his2 31064  ax-his3 31065  ax-his4 31066  ax-hcompl 31183
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-cn 23165  df-cnp 23166  df-lm 23167  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cfil 25207  df-cau 25208  df-cmet 25209  df-grpo 30474  df-gid 30475  df-ginv 30476  df-gdiv 30477  df-ablo 30526  df-vc 30540  df-nv 30573  df-va 30576  df-ba 30577  df-sm 30578  df-0v 30579  df-vs 30580  df-nmcv 30581  df-ims 30582  df-dip 30682  df-ssp 30703  df-ph 30794  df-cbn 30844  df-hnorm 30949  df-hba 30950  df-hvsub 30952  df-hlim 30953  df-hcau 30954  df-sh 31188  df-ch 31202  df-oc 31233  df-ch0 31234  df-shs 31289  df-chj 31291  df-md 32261  df-dmd 32262
This theorem is referenced by:  dmdcompli  32411
  Copyright terms: Public domain W3C validator