HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsldmd1i Structured version   Visualization version   GIF version

Theorem mdsldmd1i 31584
Description: Preservation of the dual modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
Assertion
Ref Expression
mdsldmd1i (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → (𝐶 𝑀* 𝐷 ↔ (𝐶𝐵) 𝑀* (𝐷𝐵)))

Proof of Theorem mdsldmd1i
StepHypRef Expression
1 mdslmd.1 . . . . 5 𝐴C
2 mdslmd.2 . . . . 5 𝐵C
3 mddmd 31554 . . . . 5 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ (⊥‘𝐴) 𝑀* (⊥‘𝐵)))
41, 2, 3mp2an 691 . . . 4 (𝐴 𝑀 𝐵 ↔ (⊥‘𝐴) 𝑀* (⊥‘𝐵))
5 dmdmd 31553 . . . . 5 ((𝐵C𝐴C ) → (𝐵 𝑀* 𝐴 ↔ (⊥‘𝐵) 𝑀 (⊥‘𝐴)))
62, 1, 5mp2an 691 . . . 4 (𝐵 𝑀* 𝐴 ↔ (⊥‘𝐵) 𝑀 (⊥‘𝐴))
74, 6anbi12ci 629 . . 3 ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ↔ ((⊥‘𝐵) 𝑀 (⊥‘𝐴) ∧ (⊥‘𝐴) 𝑀* (⊥‘𝐵)))
8 mdslmd.3 . . . . . . 7 𝐶C
9 mdslmd.4 . . . . . . 7 𝐷C
108, 9chincli 30713 . . . . . 6 (𝐶𝐷) ∈ C
111, 10chsscon3i 30714 . . . . 5 (𝐴 ⊆ (𝐶𝐷) ↔ (⊥‘(𝐶𝐷)) ⊆ (⊥‘𝐴))
128, 9chdmm1i 30730 . . . . . 6 (⊥‘(𝐶𝐷)) = ((⊥‘𝐶) ∨ (⊥‘𝐷))
1312sseq1i 4011 . . . . 5 ((⊥‘(𝐶𝐷)) ⊆ (⊥‘𝐴) ↔ ((⊥‘𝐶) ∨ (⊥‘𝐷)) ⊆ (⊥‘𝐴))
1411, 13bitri 275 . . . 4 (𝐴 ⊆ (𝐶𝐷) ↔ ((⊥‘𝐶) ∨ (⊥‘𝐷)) ⊆ (⊥‘𝐴))
158, 9chjcli 30710 . . . . . 6 (𝐶 𝐷) ∈ C
161, 2chjcli 30710 . . . . . 6 (𝐴 𝐵) ∈ C
1715, 16chsscon3i 30714 . . . . 5 ((𝐶 𝐷) ⊆ (𝐴 𝐵) ↔ (⊥‘(𝐴 𝐵)) ⊆ (⊥‘(𝐶 𝐷)))
181, 2chdmj1i 30734 . . . . . . 7 (⊥‘(𝐴 𝐵)) = ((⊥‘𝐴) ∩ (⊥‘𝐵))
19 incom 4202 . . . . . . 7 ((⊥‘𝐴) ∩ (⊥‘𝐵)) = ((⊥‘𝐵) ∩ (⊥‘𝐴))
2018, 19eqtri 2761 . . . . . 6 (⊥‘(𝐴 𝐵)) = ((⊥‘𝐵) ∩ (⊥‘𝐴))
218, 9chdmj1i 30734 . . . . . 6 (⊥‘(𝐶 𝐷)) = ((⊥‘𝐶) ∩ (⊥‘𝐷))
2220, 21sseq12i 4013 . . . . 5 ((⊥‘(𝐴 𝐵)) ⊆ (⊥‘(𝐶 𝐷)) ↔ ((⊥‘𝐵) ∩ (⊥‘𝐴)) ⊆ ((⊥‘𝐶) ∩ (⊥‘𝐷)))
2317, 22bitri 275 . . . 4 ((𝐶 𝐷) ⊆ (𝐴 𝐵) ↔ ((⊥‘𝐵) ∩ (⊥‘𝐴)) ⊆ ((⊥‘𝐶) ∩ (⊥‘𝐷)))
2414, 23anbi12ci 629 . . 3 ((𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵)) ↔ (((⊥‘𝐵) ∩ (⊥‘𝐴)) ⊆ ((⊥‘𝐶) ∩ (⊥‘𝐷)) ∧ ((⊥‘𝐶) ∨ (⊥‘𝐷)) ⊆ (⊥‘𝐴)))
252choccli 30560 . . . 4 (⊥‘𝐵) ∈ C
261choccli 30560 . . . 4 (⊥‘𝐴) ∈ C
278choccli 30560 . . . 4 (⊥‘𝐶) ∈ C
289choccli 30560 . . . 4 (⊥‘𝐷) ∈ C
2925, 26, 27, 28mdslmd2i 31583 . . 3 ((((⊥‘𝐵) 𝑀 (⊥‘𝐴) ∧ (⊥‘𝐴) 𝑀* (⊥‘𝐵)) ∧ (((⊥‘𝐵) ∩ (⊥‘𝐴)) ⊆ ((⊥‘𝐶) ∩ (⊥‘𝐷)) ∧ ((⊥‘𝐶) ∨ (⊥‘𝐷)) ⊆ (⊥‘𝐴))) → ((⊥‘𝐶) 𝑀 (⊥‘𝐷) ↔ ((⊥‘𝐶) ∨ (⊥‘𝐵)) 𝑀 ((⊥‘𝐷) ∨ (⊥‘𝐵))))
307, 24, 29syl2anb 599 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → ((⊥‘𝐶) 𝑀 (⊥‘𝐷) ↔ ((⊥‘𝐶) ∨ (⊥‘𝐵)) 𝑀 ((⊥‘𝐷) ∨ (⊥‘𝐵))))
31 dmdmd 31553 . . 3 ((𝐶C𝐷C ) → (𝐶 𝑀* 𝐷 ↔ (⊥‘𝐶) 𝑀 (⊥‘𝐷)))
328, 9, 31mp2an 691 . 2 (𝐶 𝑀* 𝐷 ↔ (⊥‘𝐶) 𝑀 (⊥‘𝐷))
338, 2chincli 30713 . . . 4 (𝐶𝐵) ∈ C
349, 2chincli 30713 . . . 4 (𝐷𝐵) ∈ C
35 dmdmd 31553 . . . 4 (((𝐶𝐵) ∈ C ∧ (𝐷𝐵) ∈ C ) → ((𝐶𝐵) 𝑀* (𝐷𝐵) ↔ (⊥‘(𝐶𝐵)) 𝑀 (⊥‘(𝐷𝐵))))
3633, 34, 35mp2an 691 . . 3 ((𝐶𝐵) 𝑀* (𝐷𝐵) ↔ (⊥‘(𝐶𝐵)) 𝑀 (⊥‘(𝐷𝐵)))
378, 2chdmm1i 30730 . . . 4 (⊥‘(𝐶𝐵)) = ((⊥‘𝐶) ∨ (⊥‘𝐵))
389, 2chdmm1i 30730 . . . 4 (⊥‘(𝐷𝐵)) = ((⊥‘𝐷) ∨ (⊥‘𝐵))
3937, 38breq12i 5158 . . 3 ((⊥‘(𝐶𝐵)) 𝑀 (⊥‘(𝐷𝐵)) ↔ ((⊥‘𝐶) ∨ (⊥‘𝐵)) 𝑀 ((⊥‘𝐷) ∨ (⊥‘𝐵)))
4036, 39bitri 275 . 2 ((𝐶𝐵) 𝑀* (𝐷𝐵) ↔ ((⊥‘𝐶) ∨ (⊥‘𝐵)) 𝑀 ((⊥‘𝐷) ∨ (⊥‘𝐵)))
4130, 32, 403bitr4g 314 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → (𝐶 𝑀* 𝐷 ↔ (𝐶𝐵) 𝑀* (𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107  cin 3948  wss 3949   class class class wbr 5149  cfv 6544  (class class class)co 7409   C cch 30182  cort 30183   chj 30186   𝑀 cmd 30219   𝑀* cdmd 30220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cc 10430  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-addf 11189  ax-mulf 11190  ax-hilex 30252  ax-hfvadd 30253  ax-hvcom 30254  ax-hvass 30255  ax-hv0cl 30256  ax-hvaddid 30257  ax-hfvmul 30258  ax-hvmulid 30259  ax-hvmulass 30260  ax-hvdistr1 30261  ax-hvdistr2 30262  ax-hvmul0 30263  ax-hfi 30332  ax-his1 30335  ax-his2 30336  ax-his3 30337  ax-his4 30338  ax-hcompl 30455
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-omul 8471  df-er 8703  df-map 8822  df-pm 8823  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-fi 9406  df-sup 9437  df-inf 9438  df-oi 9505  df-card 9934  df-acn 9937  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-ioo 13328  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-rlim 15433  df-sum 15633  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17368  df-topn 17369  df-0g 17387  df-gsum 17388  df-topgen 17389  df-pt 17390  df-prds 17393  df-xrs 17448  df-qtop 17453  df-imas 17454  df-xps 17456  df-mre 17530  df-mrc 17531  df-acs 17533  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672  df-mulg 18951  df-cntz 19181  df-cmn 19650  df-psmet 20936  df-xmet 20937  df-met 20938  df-bl 20939  df-mopn 20940  df-fbas 20941  df-fg 20942  df-cnfld 20945  df-top 22396  df-topon 22413  df-topsp 22435  df-bases 22449  df-cld 22523  df-ntr 22524  df-cls 22525  df-nei 22602  df-cn 22731  df-cnp 22732  df-lm 22733  df-haus 22819  df-tx 23066  df-hmeo 23259  df-fil 23350  df-fm 23442  df-flim 23443  df-flf 23444  df-xms 23826  df-ms 23827  df-tms 23828  df-cfil 24772  df-cau 24773  df-cmet 24774  df-grpo 29746  df-gid 29747  df-ginv 29748  df-gdiv 29749  df-ablo 29798  df-vc 29812  df-nv 29845  df-va 29848  df-ba 29849  df-sm 29850  df-0v 29851  df-vs 29852  df-nmcv 29853  df-ims 29854  df-dip 29954  df-ssp 29975  df-ph 30066  df-cbn 30116  df-hnorm 30221  df-hba 30222  df-hvsub 30224  df-hlim 30225  df-hcau 30226  df-sh 30460  df-ch 30474  df-oc 30505  df-ch0 30506  df-shs 30561  df-chj 30563  df-md 31533  df-dmd 31534
This theorem is referenced by:  dmdcompli  31683
  Copyright terms: Public domain W3C validator