Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem12 Structured version   Visualization version   GIF version

Theorem cvmlift2lem12 35282
Description: Lemma for cvmlift2 35284. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
cvmlift2.m 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
cvmlift2.a 𝐴 = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀}
cvmlift2.s 𝑆 = {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))}
Assertion
Ref Expression
cvmlift2lem12 (𝜑𝐾 ∈ ((II ×t II) Cn 𝐶))
Distinct variable groups:   𝑢,𝑓,𝑥,𝑦,𝑧,𝐹   𝑓,𝑎,𝑟,𝑡,𝑢,𝑥,𝑦,𝑧,𝜑   𝐴,𝑎,𝑡,𝑥   𝑀,𝑎,𝑟,𝑢,𝑥,𝑦,𝑧   𝑆,𝑓,𝑡,𝑢,𝑥,𝑦,𝑧   𝑓,𝐽,𝑢,𝑥,𝑦,𝑧   𝐺,𝑎,𝑓,𝑡,𝑢,𝑥,𝑦,𝑧   𝑓,𝐻,𝑢,𝑥,𝑦,𝑧   𝐶,𝑎,𝑓,𝑟,𝑡,𝑢,𝑥,𝑦,𝑧   𝑃,𝑓,𝑢,𝑥,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝐾,𝑎,𝑓,𝑟,𝑡,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑢,𝑓,𝑟)   𝐵(𝑢,𝑡,𝑓,𝑟,𝑎)   𝑃(𝑡,𝑟,𝑎)   𝑆(𝑟,𝑎)   𝐹(𝑡,𝑟,𝑎)   𝐺(𝑟)   𝐻(𝑡,𝑟,𝑎)   𝐽(𝑡,𝑟,𝑎)   𝑀(𝑡,𝑓)

Proof of Theorem cvmlift2lem12
Dummy variables 𝑏 𝑐 𝑑 𝑘 𝑠 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . 3 𝐵 = 𝐶
2 cvmlift2.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3 cvmlift2.g . . 3 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
4 cvmlift2.p . . 3 (𝜑𝑃𝐵)
5 cvmlift2.i . . 3 (𝜑 → (𝐹𝑃) = (0𝐺0))
6 cvmlift2.h . . 3 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
7 cvmlift2.k . . 3 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
81, 2, 3, 4, 5, 6, 7cvmlift2lem5 35275 . 2 (𝜑𝐾:((0[,]1) × (0[,]1))⟶𝐵)
9 iunid 5083 . . . . . . 7 𝑎 ∈ (0[,]1){𝑎} = (0[,]1)
109xpeq2i 5727 . . . . . 6 ((0[,]1) × 𝑎 ∈ (0[,]1){𝑎}) = ((0[,]1) × (0[,]1))
11 xpiundi 5770 . . . . . 6 ((0[,]1) × 𝑎 ∈ (0[,]1){𝑎}) = 𝑎 ∈ (0[,]1)((0[,]1) × {𝑎})
1210, 11eqtr3i 2770 . . . . 5 ((0[,]1) × (0[,]1)) = 𝑎 ∈ (0[,]1)((0[,]1) × {𝑎})
13 iiuni 24926 . . . . . . . . 9 (0[,]1) = II
14 iiconn 24932 . . . . . . . . . 10 II ∈ Conn
1514a1i 11 . . . . . . . . 9 (𝜑 → II ∈ Conn)
16 inss1 4258 . . . . . . . . . 10 (II ∩ (Clsd‘II)) ⊆ II
17 iicmp 24931 . . . . . . . . . . . . . . 15 II ∈ Comp
1817a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → II ∈ Comp)
19 iitop 24925 . . . . . . . . . . . . . . 15 II ∈ Top
2019a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → II ∈ Top)
2119, 19txtopi 23619 . . . . . . . . . . . . . . . 16 (II ×t II) ∈ Top
2213neiss2 23130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((II ∈ Top ∧ 𝑢 ∈ ((nei‘II)‘{𝑟})) → {𝑟} ⊆ (0[,]1))
2319, 22mpan 689 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ ((nei‘II)‘{𝑟}) → {𝑟} ⊆ (0[,]1))
24 vex 3492 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟 ∈ V
2524snss 4810 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 ∈ (0[,]1) ↔ {𝑟} ⊆ (0[,]1))
2623, 25sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 ∈ ((nei‘II)‘{𝑟}) → 𝑟 ∈ (0[,]1))
2726a1d 25 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ∈ ((nei‘II)‘{𝑟}) → (((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → 𝑟 ∈ (0[,]1)))
2827rexlimiv 3154 . . . . . . . . . . . . . . . . . . . 20 (∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → 𝑟 ∈ (0[,]1))
2928adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → 𝑟 ∈ (0[,]1))
30 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → 𝑡 ∈ (0[,]1))
3129, 30jca 511 . . . . . . . . . . . . . . . . . 18 ((𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → (𝑟 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1)))
3231ssopab2i 5569 . . . . . . . . . . . . . . . . 17 {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))}
33 cvmlift2.s . . . . . . . . . . . . . . . . 17 𝑆 = {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))}
34 df-xp 5706 . . . . . . . . . . . . . . . . 17 ((0[,]1) × (0[,]1)) = {⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))}
3532, 33, 343sstr4i 4052 . . . . . . . . . . . . . . . 16 𝑆 ⊆ ((0[,]1) × (0[,]1))
3619, 19, 13, 13txunii 23622 . . . . . . . . . . . . . . . . 17 ((0[,]1) × (0[,]1)) = (II ×t II)
3736ntropn 23078 . . . . . . . . . . . . . . . 16 (((II ×t II) ∈ Top ∧ 𝑆 ⊆ ((0[,]1) × (0[,]1))) → ((int‘(II ×t II))‘𝑆) ∈ (II ×t II))
3821, 35, 37mp2an 691 . . . . . . . . . . . . . . 15 ((int‘(II ×t II))‘𝑆) ∈ (II ×t II)
3938a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → ((int‘(II ×t II))‘𝑆) ∈ (II ×t II))
402adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
413adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
424adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝑃𝐵)
435adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → (𝐹𝑃) = (0𝐺0))
44 eqid 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))}) = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
45 simprr 772 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝑏 ∈ (0[,]1))
46 simprl 770 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝑎 ∈ (0[,]1))
471, 40, 41, 42, 43, 6, 7, 44, 45, 46cvmlift2lem10 35280 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
4821a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → (II ×t II) ∈ Top)
4935a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑆 ⊆ ((0[,]1) × (0[,]1)))
5019a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → II ∈ Top)
51 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑢 ∈ II)
52 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑣 ∈ II)
53 txopn 23631 . . . . . . . . . . . . . . . . . . . . . . . 24 (((II ∈ Top ∧ II ∈ Top) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → (𝑢 × 𝑣) ∈ (II ×t II))
5450, 50, 51, 52, 53syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → (𝑢 × 𝑣) ∈ (II ×t II))
55 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑟𝑢𝑡𝑣) → 𝑡𝑣)
56 elunii 4936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑡𝑣𝑣 ∈ II) → 𝑡 II)
5756, 13eleqtrrdi 2855 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑡𝑣𝑣 ∈ II) → 𝑡 ∈ (0[,]1))
5855, 52, 57syl2anr 596 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑡 ∈ (0[,]1))
5919a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → II ∈ Top)
6051adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑢 ∈ II)
61 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑟𝑢)
62 opnneip 23148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((II ∈ Top ∧ 𝑢 ∈ II ∧ 𝑟𝑢) → 𝑢 ∈ ((nei‘II)‘{𝑟}))
6359, 60, 61, 62syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑢 ∈ ((nei‘II)‘{𝑟}))
6440ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
6541ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
6642ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑃𝐵)
6743ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → (𝐹𝑃) = (0𝐺0))
68 cvmlift2.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
6952adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑣 ∈ II)
70 simplr2 1216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑎𝑣)
71 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑡𝑣)
72 sneq 4658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 = 𝑤 → {𝑐} = {𝑤})
7372xpeq2d 5730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑤 → (𝑢 × {𝑐}) = (𝑢 × {𝑤}))
7473reseq2d 6009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑤 → (𝐾 ↾ (𝑢 × {𝑐})) = (𝐾 ↾ (𝑢 × {𝑤})))
7573oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑤 → ((II ×t II) ↾t (𝑢 × {𝑐})) = ((II ×t II) ↾t (𝑢 × {𝑤})))
7675oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑤 → (((II ×t II) ↾t (𝑢 × {𝑐})) Cn 𝐶) = (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
7774, 76eleq12d 2838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = 𝑤 → ((𝐾 ↾ (𝑢 × {𝑐})) ∈ (((II ×t II) ↾t (𝑢 × {𝑐})) Cn 𝐶) ↔ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶)))
7877cbvrexvw 3244 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑐𝑣 (𝐾 ↾ (𝑢 × {𝑐})) ∈ (((II ×t II) ↾t (𝑢 × {𝑐})) Cn 𝐶) ↔ ∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
79 simplr3 1217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))
8078, 79biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → (∃𝑐𝑣 (𝐾 ↾ (𝑢 × {𝑐})) ∈ (((II ×t II) ↾t (𝑢 × {𝑐})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))
811, 64, 65, 66, 67, 6, 7, 68, 60, 69, 70, 71, 80cvmlift2lem11 35281 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → ((𝑢 × {𝑎}) ⊆ 𝑀 → (𝑢 × {𝑡}) ⊆ 𝑀))
821, 64, 65, 66, 67, 6, 7, 68, 60, 69, 71, 70, 80cvmlift2lem11 35281 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → ((𝑢 × {𝑡}) ⊆ 𝑀 → (𝑢 × {𝑎}) ⊆ 𝑀))
8381, 82impbid 212 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → ((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
84 rspe 3255 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑢 ∈ ((nei‘II)‘{𝑟}) ∧ ((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
8563, 83, 84syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
8658, 85jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
8786ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → ((𝑟𝑢𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
8887alrimivv 1927 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → ∀𝑟𝑡((𝑟𝑢𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
89 df-xp 5706 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 × 𝑣) = {⟨𝑟, 𝑡⟩ ∣ (𝑟𝑢𝑡𝑣)}
9089, 33sseq12i 4039 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢 × 𝑣) ⊆ 𝑆 ↔ {⟨𝑟, 𝑡⟩ ∣ (𝑟𝑢𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))})
91 ssopab2bw 5566 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({⟨𝑟, 𝑡⟩ ∣ (𝑟𝑢𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ↔ ∀𝑟𝑡((𝑟𝑢𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
9290, 91bitri 275 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑢 × 𝑣) ⊆ 𝑆 ↔ ∀𝑟𝑡((𝑟𝑢𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
9388, 92sylibr 234 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → (𝑢 × 𝑣) ⊆ 𝑆)
9436ssntr 23087 . . . . . . . . . . . . . . . . . . . . . . 23 ((((II ×t II) ∈ Top ∧ 𝑆 ⊆ ((0[,]1) × (0[,]1))) ∧ ((𝑢 × 𝑣) ∈ (II ×t II) ∧ (𝑢 × 𝑣) ⊆ 𝑆)) → (𝑢 × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆))
9548, 49, 54, 93, 94syl22anc 838 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → (𝑢 × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆))
96 simpr1 1194 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑏𝑢)
97 simpr2 1195 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑎𝑣)
98 opelxpi 5737 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑢𝑎𝑣) → ⟨𝑏, 𝑎⟩ ∈ (𝑢 × 𝑣))
9996, 97, 98syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → ⟨𝑏, 𝑎⟩ ∈ (𝑢 × 𝑣))
10095, 99sseldd 4009 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆))
101100ex 412 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → ((𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆)))
102101rexlimdvva 3219 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → (∃𝑢 ∈ II ∃𝑣 ∈ II (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆)))
10347, 102mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆))
104 vex 3492 . . . . . . . . . . . . . . . . . . 19 𝑎 ∈ V
105 opeq2 4898 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑎 → ⟨𝑏, 𝑤⟩ = ⟨𝑏, 𝑎⟩)
106105eleq1d 2829 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑎 → (⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆) ↔ ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆)))
107104, 106ralsn 4705 . . . . . . . . . . . . . . . . . 18 (∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆) ↔ ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆))
108103, 107sylibr 234 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → ∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
109108anassrs 467 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑏 ∈ (0[,]1)) → ∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
110109ralrimiva 3152 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ (0[,]1)) → ∀𝑏 ∈ (0[,]1)∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
111 dfss3 3997 . . . . . . . . . . . . . . . 16 (((0[,]1) × {𝑎}) ⊆ ((int‘(II ×t II))‘𝑆) ↔ ∀𝑢 ∈ ((0[,]1) × {𝑎})𝑢 ∈ ((int‘(II ×t II))‘𝑆))
112 eleq1 2832 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑏, 𝑤⟩ → (𝑢 ∈ ((int‘(II ×t II))‘𝑆) ↔ ⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆)))
113112ralxp 5866 . . . . . . . . . . . . . . . 16 (∀𝑢 ∈ ((0[,]1) × {𝑎})𝑢 ∈ ((int‘(II ×t II))‘𝑆) ↔ ∀𝑏 ∈ (0[,]1)∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
114111, 113bitri 275 . . . . . . . . . . . . . . 15 (((0[,]1) × {𝑎}) ⊆ ((int‘(II ×t II))‘𝑆) ↔ ∀𝑏 ∈ (0[,]1)∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
115110, 114sylibr 234 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → ((0[,]1) × {𝑎}) ⊆ ((int‘(II ×t II))‘𝑆))
116 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → 𝑎 ∈ (0[,]1))
11713, 13, 18, 20, 39, 115, 116txtube 23669 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (0[,]1)) → ∃𝑣 ∈ II (𝑎𝑣 ∧ ((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆)))
11836ntrss2 23086 . . . . . . . . . . . . . . . . . . 19 (((II ×t II) ∈ Top ∧ 𝑆 ⊆ ((0[,]1) × (0[,]1))) → ((int‘(II ×t II))‘𝑆) ⊆ 𝑆)
11921, 35, 118mp2an 691 . . . . . . . . . . . . . . . . . 18 ((int‘(II ×t II))‘𝑆) ⊆ 𝑆
120 sstr 4017 . . . . . . . . . . . . . . . . . 18 ((((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆) ∧ ((int‘(II ×t II))‘𝑆) ⊆ 𝑆) → ((0[,]1) × 𝑣) ⊆ 𝑆)
121119, 120mpan2 690 . . . . . . . . . . . . . . . . 17 (((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆) → ((0[,]1) × 𝑣) ⊆ 𝑆)
122 df-xp 5706 . . . . . . . . . . . . . . . . . . 19 ((0[,]1) × 𝑣) = {⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡𝑣)}
123122, 33sseq12i 4039 . . . . . . . . . . . . . . . . . 18 (((0[,]1) × 𝑣) ⊆ 𝑆 ↔ {⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))})
124 ssopab2bw 5566 . . . . . . . . . . . . . . . . . . 19 ({⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ↔ ∀𝑟𝑡((𝑟 ∈ (0[,]1) ∧ 𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
125 r2al 3201 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ (0[,]1)∀𝑡𝑣 (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) ↔ ∀𝑟𝑡((𝑟 ∈ (0[,]1) ∧ 𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
126 ralcom 3295 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ (0[,]1)∀𝑡𝑣 (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) ↔ ∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
127124, 125, 1263bitr2i 299 . . . . . . . . . . . . . . . . . 18 ({⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ↔ ∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
128123, 127bitri 275 . . . . . . . . . . . . . . . . 17 (((0[,]1) × 𝑣) ⊆ 𝑆 ↔ ∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
129121, 128sylib 218 . . . . . . . . . . . . . . . 16 (((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆) → ∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
130 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
131130ralimi 3089 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → ∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
132 cvmlift2lem1 35270 . . . . . . . . . . . . . . . . . . . 20 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑎}) ⊆ 𝑀 → ((0[,]1) × {𝑡}) ⊆ 𝑀))
133 bicom 222 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) ↔ ((𝑢 × {𝑡}) ⊆ 𝑀 ↔ (𝑢 × {𝑎}) ⊆ 𝑀))
134133rexbii 3100 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑡}) ⊆ 𝑀 ↔ (𝑢 × {𝑎}) ⊆ 𝑀))
135134ralbii 3099 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) ↔ ∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑡}) ⊆ 𝑀 ↔ (𝑢 × {𝑎}) ⊆ 𝑀))
136 cvmlift2lem1 35270 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑡}) ⊆ 𝑀 ↔ (𝑢 × {𝑎}) ⊆ 𝑀) → (((0[,]1) × {𝑡}) ⊆ 𝑀 → ((0[,]1) × {𝑎}) ⊆ 𝑀))
137135, 136sylbi 217 . . . . . . . . . . . . . . . . . . . 20 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑡}) ⊆ 𝑀 → ((0[,]1) × {𝑎}) ⊆ 𝑀))
138132, 137impbid 212 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
139131, 138syl 17 . . . . . . . . . . . . . . . . . 18 (∀𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
140 cvmlift2.a . . . . . . . . . . . . . . . . . . . . . 22 𝐴 = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀}
141140reqabi 3467 . . . . . . . . . . . . . . . . . . . . 21 (𝑎𝐴 ↔ (𝑎 ∈ (0[,]1) ∧ ((0[,]1) × {𝑎}) ⊆ 𝑀))
142141baib 535 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (0[,]1) → (𝑎𝐴 ↔ ((0[,]1) × {𝑎}) ⊆ 𝑀))
143142ad3antlr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → (𝑎𝐴 ↔ ((0[,]1) × {𝑎}) ⊆ 𝑀))
144 elssuni 4961 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∈ II → 𝑣 II)
145144, 13sseqtrrdi 4060 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ II → 𝑣 ⊆ (0[,]1))
146145adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) → 𝑣 ⊆ (0[,]1))
147146sselda 4008 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → 𝑡 ∈ (0[,]1))
148 sneq 4658 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑡 → {𝑎} = {𝑡})
149148xpeq2d 5730 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑡 → ((0[,]1) × {𝑎}) = ((0[,]1) × {𝑡}))
150149sseq1d 4040 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑡 → (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
151150, 140elrab2 3711 . . . . . . . . . . . . . . . . . . . . 21 (𝑡𝐴 ↔ (𝑡 ∈ (0[,]1) ∧ ((0[,]1) × {𝑡}) ⊆ 𝑀))
152151baib 535 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ (0[,]1) → (𝑡𝐴 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
153147, 152syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → (𝑡𝐴 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
154143, 153bibi12d 345 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → ((𝑎𝐴𝑡𝐴) ↔ (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀)))
155139, 154imbitrrid 246 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → (∀𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → (𝑎𝐴𝑡𝐴)))
156155ralimdva 3173 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) → (∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
157129, 156syl5 34 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) → (((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆) → ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
158157anim2d 611 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) → ((𝑎𝑣 ∧ ((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆)) → (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴))))
159158reximdva 3174 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (0[,]1)) → (∃𝑣 ∈ II (𝑎𝑣 ∧ ((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆)) → ∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴))))
160117, 159mpd 15 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (0[,]1)) → ∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
161160ralrimiva 3152 . . . . . . . . . . 11 (𝜑 → ∀𝑎 ∈ (0[,]1)∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
162 ssrab2 4103 . . . . . . . . . . . . 13 {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀} ⊆ (0[,]1)
163140, 162eqsstri 4043 . . . . . . . . . . . 12 𝐴 ⊆ (0[,]1)
16413isclo 23116 . . . . . . . . . . . 12 ((II ∈ Top ∧ 𝐴 ⊆ (0[,]1)) → (𝐴 ∈ (II ∩ (Clsd‘II)) ↔ ∀𝑎 ∈ (0[,]1)∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴))))
16519, 163, 164mp2an 691 . . . . . . . . . . 11 (𝐴 ∈ (II ∩ (Clsd‘II)) ↔ ∀𝑎 ∈ (0[,]1)∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
166161, 165sylibr 234 . . . . . . . . . 10 (𝜑𝐴 ∈ (II ∩ (Clsd‘II)))
16716, 166sselid 4006 . . . . . . . . 9 (𝜑𝐴 ∈ II)
168 0elunit 13529 . . . . . . . . . . . 12 0 ∈ (0[,]1)
169168a1i 11 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0[,]1))
170 relxp 5718 . . . . . . . . . . . . 13 Rel ((0[,]1) × {0})
171170a1i 11 . . . . . . . . . . . 12 (𝜑 → Rel ((0[,]1) × {0}))
172 opelxp 5736 . . . . . . . . . . . . 13 (⟨𝑟, 𝑎⟩ ∈ ((0[,]1) × {0}) ↔ (𝑟 ∈ (0[,]1) ∧ 𝑎 ∈ {0}))
173 id 22 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ (0[,]1) → 𝑟 ∈ (0[,]1))
174 opelxpi 5737 . . . . . . . . . . . . . . . . 17 ((𝑟 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → ⟨𝑟, 0⟩ ∈ ((0[,]1) × (0[,]1)))
175173, 169, 174syl2anr 596 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ (0[,]1)) → ⟨𝑟, 0⟩ ∈ ((0[,]1) × (0[,]1)))
1762adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
1773adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
1784adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 𝑃𝐵)
1795adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → (𝐹𝑃) = (0𝐺0))
180 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 𝑟 ∈ (0[,]1))
181168a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 0 ∈ (0[,]1))
1821, 176, 177, 178, 179, 6, 7, 44, 180, 181cvmlift2lem10 35280 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ (0[,]1)) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑟𝑢 ∧ 0 ∈ 𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
183 df-3an 1089 . . . . . . . . . . . . . . . . . . 19 ((𝑟𝑢 ∧ 0 ∈ 𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) ↔ ((𝑟𝑢 ∧ 0 ∈ 𝑣) ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
184 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 0 ∈ 𝑣)
1858ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝐾:((0[,]1) × (0[,]1))⟶𝐵)
186185ffnd 6748 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝐾 Fn ((0[,]1) × (0[,]1)))
187 fnov 7581 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐾 Fn ((0[,]1) × (0[,]1)) ↔ 𝐾 = (𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)))
188186, 187sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝐾 = (𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)))
189188reseq1d 6008 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝐾 ↾ (𝑢 × {0})) = ((𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)) ↾ (𝑢 × {0})))
190 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝑢 ∈ II)
191 elssuni 4961 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 ∈ II → 𝑢 II)
192191, 13sseqtrrdi 4060 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 ∈ II → 𝑢 ⊆ (0[,]1))
193190, 192syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝑢 ⊆ (0[,]1))
194169snssd 4834 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → {0} ⊆ (0[,]1))
195194ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → {0} ⊆ (0[,]1))
196 resmpo 7570 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢 ⊆ (0[,]1) ∧ {0} ⊆ (0[,]1)) → ((𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)) ↾ (𝑢 × {0})) = (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝑏𝐾𝑤)))
197193, 195, 196syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)) ↾ (𝑢 × {0})) = (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝑏𝐾𝑤)))
198193sselda 4008 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏𝑢) → 𝑏 ∈ (0[,]1))
199 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝜑)
2001, 2, 3, 4, 5, 6, 7cvmlift2lem8 35278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑏 ∈ (0[,]1)) → (𝑏𝐾0) = (𝐻𝑏))
201199, 200sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏 ∈ (0[,]1)) → (𝑏𝐾0) = (𝐻𝑏))
202198, 201syldan 590 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏𝑢) → (𝑏𝐾0) = (𝐻𝑏))
203 elsni 4665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ {0} → 𝑤 = 0)
204203oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ {0} → (𝑏𝐾𝑤) = (𝑏𝐾0))
205204eqeq1d 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ {0} → ((𝑏𝐾𝑤) = (𝐻𝑏) ↔ (𝑏𝐾0) = (𝐻𝑏)))
206202, 205syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏𝑢) → (𝑤 ∈ {0} → (𝑏𝐾𝑤) = (𝐻𝑏)))
2072063impia 1117 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏𝑢𝑤 ∈ {0}) → (𝑏𝐾𝑤) = (𝐻𝑏))
208207mpoeq3dva 7527 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝑏𝐾𝑤)) = (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝐻𝑏)))
209189, 197, 2083eqtrd 2784 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝐾 ↾ (𝑢 × {0})) = (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝐻𝑏)))
210 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (II ↾t 𝑢) = (II ↾t 𝑢)
211 iitopon 24924 . . . . . . . . . . . . . . . . . . . . . . . . . 26 II ∈ (TopOn‘(0[,]1))
212211a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → II ∈ (TopOn‘(0[,]1)))
213 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (II ↾t {0}) = (II ↾t {0})
214212, 212cnmpt1st 23697 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ 𝑏) ∈ ((II ×t II) Cn II))
2151, 2, 3, 4, 5, 6cvmlift2lem2 35272 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃))
216215simp1d 1142 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐻 ∈ (II Cn 𝐶))
217199, 216syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝐻 ∈ (II Cn 𝐶))
218212, 212, 214, 217cnmpt21f 23701 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝐻𝑏)) ∈ ((II ×t II) Cn 𝐶))
219210, 212, 193, 213, 212, 195, 218cnmpt2res 23706 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝐻𝑏)) ∈ (((II ↾t 𝑢) ×t (II ↾t {0})) Cn 𝐶))
220 vex 3492 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑢 ∈ V
221 snex 5451 . . . . . . . . . . . . . . . . . . . . . . . . . 26 {0} ∈ V
222 txrest 23660 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((II ∈ Top ∧ II ∈ Top) ∧ (𝑢 ∈ V ∧ {0} ∈ V)) → ((II ×t II) ↾t (𝑢 × {0})) = ((II ↾t 𝑢) ×t (II ↾t {0})))
22319, 19, 220, 221, 222mp4an 692 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((II ×t II) ↾t (𝑢 × {0})) = ((II ↾t 𝑢) ×t (II ↾t {0}))
224223oveq1i 7458 . . . . . . . . . . . . . . . . . . . . . . . 24 (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶) = (((II ↾t 𝑢) ×t (II ↾t {0})) Cn 𝐶)
225219, 224eleqtrrdi 2855 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝐻𝑏)) ∈ (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶))
226209, 225eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝐾 ↾ (𝑢 × {0})) ∈ (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶))
227 sneq 4658 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 0 → {𝑤} = {0})
228227xpeq2d 5730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 0 → (𝑢 × {𝑤}) = (𝑢 × {0}))
229228reseq2d 6009 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 0 → (𝐾 ↾ (𝑢 × {𝑤})) = (𝐾 ↾ (𝑢 × {0})))
230228oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 0 → ((II ×t II) ↾t (𝑢 × {𝑤})) = ((II ×t II) ↾t (𝑢 × {0})))
231230oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 0 → (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) = (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶))
232229, 231eleq12d 2838 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 0 → ((𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) ↔ (𝐾 ↾ (𝑢 × {0})) ∈ (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶)))
233232rspcev 3635 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {0})) ∈ (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶)) → ∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
234184, 226, 233syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
235 opelxpi 5737 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟𝑢 ∧ 0 ∈ 𝑣) → ⟨𝑟, 0⟩ ∈ (𝑢 × 𝑣))
236235adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ⟨𝑟, 0⟩ ∈ (𝑢 × 𝑣))
237 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝑣 ∈ II)
238237, 145syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝑣 ⊆ (0[,]1))
239 xpss12 5715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑢 ⊆ (0[,]1) ∧ 𝑣 ⊆ (0[,]1)) → (𝑢 × 𝑣) ⊆ ((0[,]1) × (0[,]1)))
240193, 238, 239syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑢 × 𝑣) ⊆ ((0[,]1) × (0[,]1)))
24136restuni 23191 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((II ×t II) ∈ Top ∧ (𝑢 × 𝑣) ⊆ ((0[,]1) × (0[,]1))) → (𝑢 × 𝑣) = ((II ×t II) ↾t (𝑢 × 𝑣)))
24221, 240, 241sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑢 × 𝑣) = ((II ×t II) ↾t (𝑢 × 𝑣)))
243236, 242eleqtrd 2846 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ⟨𝑟, 0⟩ ∈ ((II ×t II) ↾t (𝑢 × 𝑣)))
244 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((II ×t II) ↾t (𝑢 × 𝑣)) = ((II ×t II) ↾t (𝑢 × 𝑣))
245244cncnpi 23307 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶) ∧ ⟨𝑟, 0⟩ ∈ ((II ×t II) ↾t (𝑢 × 𝑣))) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩))
246245expcom 413 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝑟, 0⟩ ∈ ((II ×t II) ↾t (𝑢 × 𝑣)) → ((𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩)))
247243, 246syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩)))
24821a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (II ×t II) ∈ Top)
24919a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → II ∈ Top)
250249, 249, 190, 237, 53syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑢 × 𝑣) ∈ (II ×t II))
251 isopn3i 23111 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((II ×t II) ∈ Top ∧ (𝑢 × 𝑣) ∈ (II ×t II)) → ((int‘(II ×t II))‘(𝑢 × 𝑣)) = (𝑢 × 𝑣))
25221, 250, 251sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((int‘(II ×t II))‘(𝑢 × 𝑣)) = (𝑢 × 𝑣))
253236, 252eleqtrrd 2847 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ⟨𝑟, 0⟩ ∈ ((int‘(II ×t II))‘(𝑢 × 𝑣)))
25436, 1cnprest 23318 . . . . . . . . . . . . . . . . . . . . . . 23 ((((II ×t II) ∈ Top ∧ (𝑢 × 𝑣) ⊆ ((0[,]1) × (0[,]1))) ∧ (⟨𝑟, 0⟩ ∈ ((int‘(II ×t II))‘(𝑢 × 𝑣)) ∧ 𝐾:((0[,]1) × (0[,]1))⟶𝐵)) → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩) ↔ (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩)))
255248, 240, 253, 185, 254syl22anc 838 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩) ↔ (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩)))
256247, 255sylibrd 259 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
257234, 256embantd 59 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
258257expimpd 453 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → (((𝑟𝑢 ∧ 0 ∈ 𝑣) ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
259183, 258biimtrid 242 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → ((𝑟𝑢 ∧ 0 ∈ 𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
260259rexlimdvva 3219 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ (0[,]1)) → (∃𝑢 ∈ II ∃𝑣 ∈ II (𝑟𝑢 ∧ 0 ∈ 𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
261182, 260mpd 15 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ (0[,]1)) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩))
262 fveq2 6920 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨𝑟, 0⟩ → (((II ×t II) CnP 𝐶)‘𝑧) = (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩))
263262eleq2d 2830 . . . . . . . . . . . . . . . . 17 (𝑧 = ⟨𝑟, 0⟩ → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧) ↔ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
264263, 68elrab2 3711 . . . . . . . . . . . . . . . 16 (⟨𝑟, 0⟩ ∈ 𝑀 ↔ (⟨𝑟, 0⟩ ∈ ((0[,]1) × (0[,]1)) ∧ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
265175, 261, 264sylanbrc 582 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ (0[,]1)) → ⟨𝑟, 0⟩ ∈ 𝑀)
266 elsni 4665 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ {0} → 𝑎 = 0)
267266opeq2d 4904 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {0} → ⟨𝑟, 𝑎⟩ = ⟨𝑟, 0⟩)
268267eleq1d 2829 . . . . . . . . . . . . . . 15 (𝑎 ∈ {0} → (⟨𝑟, 𝑎⟩ ∈ 𝑀 ↔ ⟨𝑟, 0⟩ ∈ 𝑀))
269265, 268syl5ibrcom 247 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (0[,]1)) → (𝑎 ∈ {0} → ⟨𝑟, 𝑎⟩ ∈ 𝑀))
270269expimpd 453 . . . . . . . . . . . . 13 (𝜑 → ((𝑟 ∈ (0[,]1) ∧ 𝑎 ∈ {0}) → ⟨𝑟, 𝑎⟩ ∈ 𝑀))
271172, 270biimtrid 242 . . . . . . . . . . . 12 (𝜑 → (⟨𝑟, 𝑎⟩ ∈ ((0[,]1) × {0}) → ⟨𝑟, 𝑎⟩ ∈ 𝑀))
272171, 271relssdv 5812 . . . . . . . . . . 11 (𝜑 → ((0[,]1) × {0}) ⊆ 𝑀)
273 sneq 4658 . . . . . . . . . . . . . 14 (𝑎 = 0 → {𝑎} = {0})
274273xpeq2d 5730 . . . . . . . . . . . . 13 (𝑎 = 0 → ((0[,]1) × {𝑎}) = ((0[,]1) × {0}))
275274sseq1d 4040 . . . . . . . . . . . 12 (𝑎 = 0 → (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {0}) ⊆ 𝑀))
276275, 140elrab2 3711 . . . . . . . . . . 11 (0 ∈ 𝐴 ↔ (0 ∈ (0[,]1) ∧ ((0[,]1) × {0}) ⊆ 𝑀))
277169, 272, 276sylanbrc 582 . . . . . . . . . 10 (𝜑 → 0 ∈ 𝐴)
278277ne0d 4365 . . . . . . . . 9 (𝜑𝐴 ≠ ∅)
279 inss2 4259 . . . . . . . . . 10 (II ∩ (Clsd‘II)) ⊆ (Clsd‘II)
280279, 166sselid 4006 . . . . . . . . 9 (𝜑𝐴 ∈ (Clsd‘II))
28113, 15, 167, 278, 280connclo 23444 . . . . . . . 8 (𝜑𝐴 = (0[,]1))
282281, 140eqtr3di 2795 . . . . . . 7 (𝜑 → (0[,]1) = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀})
283 rabid2 3478 . . . . . . 7 ((0[,]1) = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀} ↔ ∀𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀)
284282, 283sylib 218 . . . . . 6 (𝜑 → ∀𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀)
285 iunss 5068 . . . . . 6 ( 𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ∀𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀)
286284, 285sylibr 234 . . . . 5 (𝜑 𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀)
28712, 286eqsstrid 4057 . . . 4 (𝜑 → ((0[,]1) × (0[,]1)) ⊆ 𝑀)
288287, 68sseqtrdi 4059 . . 3 (𝜑 → ((0[,]1) × (0[,]1)) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)})
289 ssrab 4096 . . . 4 (((0[,]1) × (0[,]1)) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} ↔ (((0[,]1) × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)) ∧ ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)))
290289simprbi 496 . . 3 (((0[,]1) × (0[,]1)) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} → ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
291288, 290syl 17 . 2 (𝜑 → ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
292 txtopon 23620 . . . 4 ((II ∈ (TopOn‘(0[,]1)) ∧ II ∈ (TopOn‘(0[,]1))) → (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))))
293211, 211, 292mp2an 691 . . 3 (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1)))
294 cvmtop1 35228 . . . . 5 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
2952, 294syl 17 . . . 4 (𝜑𝐶 ∈ Top)
2961toptopon 22944 . . . 4 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
297295, 296sylib 218 . . 3 (𝜑𝐶 ∈ (TopOn‘𝐵))
298 cncnp 23309 . . 3 (((II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))) ∧ 𝐶 ∈ (TopOn‘𝐵)) → (𝐾 ∈ ((II ×t II) Cn 𝐶) ↔ (𝐾:((0[,]1) × (0[,]1))⟶𝐵 ∧ ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))))
299293, 297, 298sylancr 586 . 2 (𝜑 → (𝐾 ∈ ((II ×t II) Cn 𝐶) ↔ (𝐾:((0[,]1) × (0[,]1))⟶𝐵 ∧ ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))))
3008, 291, 299mpbir2and 712 1 (𝜑𝐾 ∈ ((II ×t II) Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1535   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648  cop 4654   cuni 4931   ciun 5015  {copab 5228  cmpt 5249   × cxp 5698  ccnv 5699  cres 5702  cima 5703  ccom 5704  Rel wrel 5705   Fn wfn 6568  wf 6569  cfv 6573  crio 7403  (class class class)co 7448  cmpo 7450  0cc0 11184  1c1 11185  [,]cicc 13410  t crest 17480  Topctop 22920  TopOnctopon 22937  Clsdccld 23045  intcnt 23046  neicnei 23126   Cn ccn 23253   CnP ccnp 23254  Compccmp 23415  Conncconn 23440   ×t ctx 23589  Homeochmeo 23782  IIcii 24920   CovMap ccvm 35223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-cmp 23416  df-conn 23441  df-lly 23495  df-nlly 23496  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-ii 24922  df-cncf 24923  df-htpy 25021  df-phtpy 25022  df-phtpc 25043  df-pconn 35189  df-sconn 35190  df-cvm 35224
This theorem is referenced by:  cvmlift2lem13  35283
  Copyright terms: Public domain W3C validator