Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem12 Structured version   Visualization version   GIF version

Theorem cvmlift2lem12 35336
Description: Lemma for cvmlift2 35338. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
cvmlift2.m 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
cvmlift2.a 𝐴 = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀}
cvmlift2.s 𝑆 = {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))}
Assertion
Ref Expression
cvmlift2lem12 (𝜑𝐾 ∈ ((II ×t II) Cn 𝐶))
Distinct variable groups:   𝑢,𝑓,𝑥,𝑦,𝑧,𝐹   𝑓,𝑎,𝑟,𝑡,𝑢,𝑥,𝑦,𝑧,𝜑   𝐴,𝑎,𝑡,𝑥   𝑀,𝑎,𝑟,𝑢,𝑥,𝑦,𝑧   𝑆,𝑓,𝑡,𝑢,𝑥,𝑦,𝑧   𝑓,𝐽,𝑢,𝑥,𝑦,𝑧   𝐺,𝑎,𝑓,𝑡,𝑢,𝑥,𝑦,𝑧   𝑓,𝐻,𝑢,𝑥,𝑦,𝑧   𝐶,𝑎,𝑓,𝑟,𝑡,𝑢,𝑥,𝑦,𝑧   𝑃,𝑓,𝑢,𝑥,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝐾,𝑎,𝑓,𝑟,𝑡,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑢,𝑓,𝑟)   𝐵(𝑢,𝑡,𝑓,𝑟,𝑎)   𝑃(𝑡,𝑟,𝑎)   𝑆(𝑟,𝑎)   𝐹(𝑡,𝑟,𝑎)   𝐺(𝑟)   𝐻(𝑡,𝑟,𝑎)   𝐽(𝑡,𝑟,𝑎)   𝑀(𝑡,𝑓)

Proof of Theorem cvmlift2lem12
Dummy variables 𝑏 𝑐 𝑑 𝑘 𝑠 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . 3 𝐵 = 𝐶
2 cvmlift2.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3 cvmlift2.g . . 3 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
4 cvmlift2.p . . 3 (𝜑𝑃𝐵)
5 cvmlift2.i . . 3 (𝜑 → (𝐹𝑃) = (0𝐺0))
6 cvmlift2.h . . 3 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
7 cvmlift2.k . . 3 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
81, 2, 3, 4, 5, 6, 7cvmlift2lem5 35329 . 2 (𝜑𝐾:((0[,]1) × (0[,]1))⟶𝐵)
9 iunid 5036 . . . . . . 7 𝑎 ∈ (0[,]1){𝑎} = (0[,]1)
109xpeq2i 5681 . . . . . 6 ((0[,]1) × 𝑎 ∈ (0[,]1){𝑎}) = ((0[,]1) × (0[,]1))
11 xpiundi 5725 . . . . . 6 ((0[,]1) × 𝑎 ∈ (0[,]1){𝑎}) = 𝑎 ∈ (0[,]1)((0[,]1) × {𝑎})
1210, 11eqtr3i 2760 . . . . 5 ((0[,]1) × (0[,]1)) = 𝑎 ∈ (0[,]1)((0[,]1) × {𝑎})
13 iiuni 24825 . . . . . . . . 9 (0[,]1) = II
14 iiconn 24831 . . . . . . . . . 10 II ∈ Conn
1514a1i 11 . . . . . . . . 9 (𝜑 → II ∈ Conn)
16 inss1 4212 . . . . . . . . . 10 (II ∩ (Clsd‘II)) ⊆ II
17 iicmp 24830 . . . . . . . . . . . . . . 15 II ∈ Comp
1817a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → II ∈ Comp)
19 iitop 24824 . . . . . . . . . . . . . . 15 II ∈ Top
2019a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → II ∈ Top)
2119, 19txtopi 23528 . . . . . . . . . . . . . . . 16 (II ×t II) ∈ Top
2213neiss2 23039 . . . . . . . . . . . . . . . . . . . . . . . 24 ((II ∈ Top ∧ 𝑢 ∈ ((nei‘II)‘{𝑟})) → {𝑟} ⊆ (0[,]1))
2319, 22mpan 690 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ ((nei‘II)‘{𝑟}) → {𝑟} ⊆ (0[,]1))
24 vex 3463 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟 ∈ V
2524snss 4761 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 ∈ (0[,]1) ↔ {𝑟} ⊆ (0[,]1))
2623, 25sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 ∈ ((nei‘II)‘{𝑟}) → 𝑟 ∈ (0[,]1))
2726a1d 25 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ∈ ((nei‘II)‘{𝑟}) → (((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → 𝑟 ∈ (0[,]1)))
2827rexlimiv 3134 . . . . . . . . . . . . . . . . . . . 20 (∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → 𝑟 ∈ (0[,]1))
2928adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → 𝑟 ∈ (0[,]1))
30 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → 𝑡 ∈ (0[,]1))
3129, 30jca 511 . . . . . . . . . . . . . . . . . 18 ((𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → (𝑟 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1)))
3231ssopab2i 5525 . . . . . . . . . . . . . . . . 17 {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))}
33 cvmlift2.s . . . . . . . . . . . . . . . . 17 𝑆 = {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))}
34 df-xp 5660 . . . . . . . . . . . . . . . . 17 ((0[,]1) × (0[,]1)) = {⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))}
3532, 33, 343sstr4i 4010 . . . . . . . . . . . . . . . 16 𝑆 ⊆ ((0[,]1) × (0[,]1))
3619, 19, 13, 13txunii 23531 . . . . . . . . . . . . . . . . 17 ((0[,]1) × (0[,]1)) = (II ×t II)
3736ntropn 22987 . . . . . . . . . . . . . . . 16 (((II ×t II) ∈ Top ∧ 𝑆 ⊆ ((0[,]1) × (0[,]1))) → ((int‘(II ×t II))‘𝑆) ∈ (II ×t II))
3821, 35, 37mp2an 692 . . . . . . . . . . . . . . 15 ((int‘(II ×t II))‘𝑆) ∈ (II ×t II)
3938a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → ((int‘(II ×t II))‘𝑆) ∈ (II ×t II))
402adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
413adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
424adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝑃𝐵)
435adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → (𝐹𝑃) = (0𝐺0))
44 eqid 2735 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))}) = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
45 simprr 772 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝑏 ∈ (0[,]1))
46 simprl 770 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝑎 ∈ (0[,]1))
471, 40, 41, 42, 43, 6, 7, 44, 45, 46cvmlift2lem10 35334 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
4821a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → (II ×t II) ∈ Top)
4935a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑆 ⊆ ((0[,]1) × (0[,]1)))
5019a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → II ∈ Top)
51 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑢 ∈ II)
52 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑣 ∈ II)
53 txopn 23540 . . . . . . . . . . . . . . . . . . . . . . . 24 (((II ∈ Top ∧ II ∈ Top) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → (𝑢 × 𝑣) ∈ (II ×t II))
5450, 50, 51, 52, 53syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → (𝑢 × 𝑣) ∈ (II ×t II))
55 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑟𝑢𝑡𝑣) → 𝑡𝑣)
56 elunii 4888 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑡𝑣𝑣 ∈ II) → 𝑡 II)
5756, 13eleqtrrdi 2845 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑡𝑣𝑣 ∈ II) → 𝑡 ∈ (0[,]1))
5855, 52, 57syl2anr 597 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑡 ∈ (0[,]1))
5919a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → II ∈ Top)
6051adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑢 ∈ II)
61 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑟𝑢)
62 opnneip 23057 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((II ∈ Top ∧ 𝑢 ∈ II ∧ 𝑟𝑢) → 𝑢 ∈ ((nei‘II)‘{𝑟}))
6359, 60, 61, 62syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑢 ∈ ((nei‘II)‘{𝑟}))
6440ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
6541ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
6642ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑃𝐵)
6743ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → (𝐹𝑃) = (0𝐺0))
68 cvmlift2.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
6952adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑣 ∈ II)
70 simplr2 1217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑎𝑣)
71 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑡𝑣)
72 sneq 4611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 = 𝑤 → {𝑐} = {𝑤})
7372xpeq2d 5684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑤 → (𝑢 × {𝑐}) = (𝑢 × {𝑤}))
7473reseq2d 5966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑤 → (𝐾 ↾ (𝑢 × {𝑐})) = (𝐾 ↾ (𝑢 × {𝑤})))
7573oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑤 → ((II ×t II) ↾t (𝑢 × {𝑐})) = ((II ×t II) ↾t (𝑢 × {𝑤})))
7675oveq1d 7420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑤 → (((II ×t II) ↾t (𝑢 × {𝑐})) Cn 𝐶) = (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
7774, 76eleq12d 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = 𝑤 → ((𝐾 ↾ (𝑢 × {𝑐})) ∈ (((II ×t II) ↾t (𝑢 × {𝑐})) Cn 𝐶) ↔ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶)))
7877cbvrexvw 3221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑐𝑣 (𝐾 ↾ (𝑢 × {𝑐})) ∈ (((II ×t II) ↾t (𝑢 × {𝑐})) Cn 𝐶) ↔ ∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
79 simplr3 1218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))
8078, 79biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → (∃𝑐𝑣 (𝐾 ↾ (𝑢 × {𝑐})) ∈ (((II ×t II) ↾t (𝑢 × {𝑐})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))
811, 64, 65, 66, 67, 6, 7, 68, 60, 69, 70, 71, 80cvmlift2lem11 35335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → ((𝑢 × {𝑎}) ⊆ 𝑀 → (𝑢 × {𝑡}) ⊆ 𝑀))
821, 64, 65, 66, 67, 6, 7, 68, 60, 69, 71, 70, 80cvmlift2lem11 35335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → ((𝑢 × {𝑡}) ⊆ 𝑀 → (𝑢 × {𝑎}) ⊆ 𝑀))
8381, 82impbid 212 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → ((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
84 rspe 3232 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑢 ∈ ((nei‘II)‘{𝑟}) ∧ ((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
8563, 83, 84syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
8658, 85jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
8786ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → ((𝑟𝑢𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
8887alrimivv 1928 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → ∀𝑟𝑡((𝑟𝑢𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
89 df-xp 5660 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 × 𝑣) = {⟨𝑟, 𝑡⟩ ∣ (𝑟𝑢𝑡𝑣)}
9089, 33sseq12i 3989 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢 × 𝑣) ⊆ 𝑆 ↔ {⟨𝑟, 𝑡⟩ ∣ (𝑟𝑢𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))})
91 ssopab2bw 5522 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({⟨𝑟, 𝑡⟩ ∣ (𝑟𝑢𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ↔ ∀𝑟𝑡((𝑟𝑢𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
9290, 91bitri 275 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑢 × 𝑣) ⊆ 𝑆 ↔ ∀𝑟𝑡((𝑟𝑢𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
9388, 92sylibr 234 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → (𝑢 × 𝑣) ⊆ 𝑆)
9436ssntr 22996 . . . . . . . . . . . . . . . . . . . . . . 23 ((((II ×t II) ∈ Top ∧ 𝑆 ⊆ ((0[,]1) × (0[,]1))) ∧ ((𝑢 × 𝑣) ∈ (II ×t II) ∧ (𝑢 × 𝑣) ⊆ 𝑆)) → (𝑢 × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆))
9548, 49, 54, 93, 94syl22anc 838 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → (𝑢 × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆))
96 simpr1 1195 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑏𝑢)
97 simpr2 1196 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑎𝑣)
98 opelxpi 5691 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑢𝑎𝑣) → ⟨𝑏, 𝑎⟩ ∈ (𝑢 × 𝑣))
9996, 97, 98syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → ⟨𝑏, 𝑎⟩ ∈ (𝑢 × 𝑣))
10095, 99sseldd 3959 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆))
101100ex 412 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → ((𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆)))
102101rexlimdvva 3198 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → (∃𝑢 ∈ II ∃𝑣 ∈ II (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆)))
10347, 102mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆))
104 vex 3463 . . . . . . . . . . . . . . . . . . 19 𝑎 ∈ V
105 opeq2 4850 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑎 → ⟨𝑏, 𝑤⟩ = ⟨𝑏, 𝑎⟩)
106105eleq1d 2819 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑎 → (⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆) ↔ ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆)))
107104, 106ralsn 4657 . . . . . . . . . . . . . . . . . 18 (∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆) ↔ ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆))
108103, 107sylibr 234 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → ∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
109108anassrs 467 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑏 ∈ (0[,]1)) → ∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
110109ralrimiva 3132 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ (0[,]1)) → ∀𝑏 ∈ (0[,]1)∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
111 dfss3 3947 . . . . . . . . . . . . . . . 16 (((0[,]1) × {𝑎}) ⊆ ((int‘(II ×t II))‘𝑆) ↔ ∀𝑢 ∈ ((0[,]1) × {𝑎})𝑢 ∈ ((int‘(II ×t II))‘𝑆))
112 eleq1 2822 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑏, 𝑤⟩ → (𝑢 ∈ ((int‘(II ×t II))‘𝑆) ↔ ⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆)))
113112ralxp 5821 . . . . . . . . . . . . . . . 16 (∀𝑢 ∈ ((0[,]1) × {𝑎})𝑢 ∈ ((int‘(II ×t II))‘𝑆) ↔ ∀𝑏 ∈ (0[,]1)∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
114111, 113bitri 275 . . . . . . . . . . . . . . 15 (((0[,]1) × {𝑎}) ⊆ ((int‘(II ×t II))‘𝑆) ↔ ∀𝑏 ∈ (0[,]1)∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
115110, 114sylibr 234 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → ((0[,]1) × {𝑎}) ⊆ ((int‘(II ×t II))‘𝑆))
116 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → 𝑎 ∈ (0[,]1))
11713, 13, 18, 20, 39, 115, 116txtube 23578 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (0[,]1)) → ∃𝑣 ∈ II (𝑎𝑣 ∧ ((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆)))
11836ntrss2 22995 . . . . . . . . . . . . . . . . . . 19 (((II ×t II) ∈ Top ∧ 𝑆 ⊆ ((0[,]1) × (0[,]1))) → ((int‘(II ×t II))‘𝑆) ⊆ 𝑆)
11921, 35, 118mp2an 692 . . . . . . . . . . . . . . . . . 18 ((int‘(II ×t II))‘𝑆) ⊆ 𝑆
120 sstr 3967 . . . . . . . . . . . . . . . . . 18 ((((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆) ∧ ((int‘(II ×t II))‘𝑆) ⊆ 𝑆) → ((0[,]1) × 𝑣) ⊆ 𝑆)
121119, 120mpan2 691 . . . . . . . . . . . . . . . . 17 (((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆) → ((0[,]1) × 𝑣) ⊆ 𝑆)
122 df-xp 5660 . . . . . . . . . . . . . . . . . . 19 ((0[,]1) × 𝑣) = {⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡𝑣)}
123122, 33sseq12i 3989 . . . . . . . . . . . . . . . . . 18 (((0[,]1) × 𝑣) ⊆ 𝑆 ↔ {⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))})
124 ssopab2bw 5522 . . . . . . . . . . . . . . . . . . 19 ({⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ↔ ∀𝑟𝑡((𝑟 ∈ (0[,]1) ∧ 𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
125 r2al 3180 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ (0[,]1)∀𝑡𝑣 (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) ↔ ∀𝑟𝑡((𝑟 ∈ (0[,]1) ∧ 𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
126 ralcom 3270 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ (0[,]1)∀𝑡𝑣 (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) ↔ ∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
127124, 125, 1263bitr2i 299 . . . . . . . . . . . . . . . . . 18 ({⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ↔ ∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
128123, 127bitri 275 . . . . . . . . . . . . . . . . 17 (((0[,]1) × 𝑣) ⊆ 𝑆 ↔ ∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
129121, 128sylib 218 . . . . . . . . . . . . . . . 16 (((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆) → ∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
130 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
131130ralimi 3073 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → ∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
132 cvmlift2lem1 35324 . . . . . . . . . . . . . . . . . . . 20 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑎}) ⊆ 𝑀 → ((0[,]1) × {𝑡}) ⊆ 𝑀))
133 bicom 222 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) ↔ ((𝑢 × {𝑡}) ⊆ 𝑀 ↔ (𝑢 × {𝑎}) ⊆ 𝑀))
134133rexbii 3083 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑡}) ⊆ 𝑀 ↔ (𝑢 × {𝑎}) ⊆ 𝑀))
135134ralbii 3082 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) ↔ ∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑡}) ⊆ 𝑀 ↔ (𝑢 × {𝑎}) ⊆ 𝑀))
136 cvmlift2lem1 35324 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑡}) ⊆ 𝑀 ↔ (𝑢 × {𝑎}) ⊆ 𝑀) → (((0[,]1) × {𝑡}) ⊆ 𝑀 → ((0[,]1) × {𝑎}) ⊆ 𝑀))
137135, 136sylbi 217 . . . . . . . . . . . . . . . . . . . 20 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑡}) ⊆ 𝑀 → ((0[,]1) × {𝑎}) ⊆ 𝑀))
138132, 137impbid 212 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
139131, 138syl 17 . . . . . . . . . . . . . . . . . 18 (∀𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
140 cvmlift2.a . . . . . . . . . . . . . . . . . . . . . 22 𝐴 = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀}
141140reqabi 3439 . . . . . . . . . . . . . . . . . . . . 21 (𝑎𝐴 ↔ (𝑎 ∈ (0[,]1) ∧ ((0[,]1) × {𝑎}) ⊆ 𝑀))
142141baib 535 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (0[,]1) → (𝑎𝐴 ↔ ((0[,]1) × {𝑎}) ⊆ 𝑀))
143142ad3antlr 731 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → (𝑎𝐴 ↔ ((0[,]1) × {𝑎}) ⊆ 𝑀))
144 elssuni 4913 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∈ II → 𝑣 II)
145144, 13sseqtrrdi 4000 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ II → 𝑣 ⊆ (0[,]1))
146145adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) → 𝑣 ⊆ (0[,]1))
147146sselda 3958 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → 𝑡 ∈ (0[,]1))
148 sneq 4611 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑡 → {𝑎} = {𝑡})
149148xpeq2d 5684 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑡 → ((0[,]1) × {𝑎}) = ((0[,]1) × {𝑡}))
150149sseq1d 3990 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑡 → (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
151150, 140elrab2 3674 . . . . . . . . . . . . . . . . . . . . 21 (𝑡𝐴 ↔ (𝑡 ∈ (0[,]1) ∧ ((0[,]1) × {𝑡}) ⊆ 𝑀))
152151baib 535 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ (0[,]1) → (𝑡𝐴 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
153147, 152syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → (𝑡𝐴 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
154143, 153bibi12d 345 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → ((𝑎𝐴𝑡𝐴) ↔ (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀)))
155139, 154imbitrrid 246 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → (∀𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → (𝑎𝐴𝑡𝐴)))
156155ralimdva 3152 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) → (∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
157129, 156syl5 34 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) → (((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆) → ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
158157anim2d 612 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) → ((𝑎𝑣 ∧ ((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆)) → (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴))))
159158reximdva 3153 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (0[,]1)) → (∃𝑣 ∈ II (𝑎𝑣 ∧ ((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆)) → ∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴))))
160117, 159mpd 15 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (0[,]1)) → ∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
161160ralrimiva 3132 . . . . . . . . . . 11 (𝜑 → ∀𝑎 ∈ (0[,]1)∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
162 ssrab2 4055 . . . . . . . . . . . . 13 {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀} ⊆ (0[,]1)
163140, 162eqsstri 4005 . . . . . . . . . . . 12 𝐴 ⊆ (0[,]1)
16413isclo 23025 . . . . . . . . . . . 12 ((II ∈ Top ∧ 𝐴 ⊆ (0[,]1)) → (𝐴 ∈ (II ∩ (Clsd‘II)) ↔ ∀𝑎 ∈ (0[,]1)∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴))))
16519, 163, 164mp2an 692 . . . . . . . . . . 11 (𝐴 ∈ (II ∩ (Clsd‘II)) ↔ ∀𝑎 ∈ (0[,]1)∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
166161, 165sylibr 234 . . . . . . . . . 10 (𝜑𝐴 ∈ (II ∩ (Clsd‘II)))
16716, 166sselid 3956 . . . . . . . . 9 (𝜑𝐴 ∈ II)
168 0elunit 13486 . . . . . . . . . . . 12 0 ∈ (0[,]1)
169168a1i 11 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0[,]1))
170 relxp 5672 . . . . . . . . . . . . 13 Rel ((0[,]1) × {0})
171170a1i 11 . . . . . . . . . . . 12 (𝜑 → Rel ((0[,]1) × {0}))
172 opelxp 5690 . . . . . . . . . . . . 13 (⟨𝑟, 𝑎⟩ ∈ ((0[,]1) × {0}) ↔ (𝑟 ∈ (0[,]1) ∧ 𝑎 ∈ {0}))
173 id 22 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ (0[,]1) → 𝑟 ∈ (0[,]1))
174 opelxpi 5691 . . . . . . . . . . . . . . . . 17 ((𝑟 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → ⟨𝑟, 0⟩ ∈ ((0[,]1) × (0[,]1)))
175173, 169, 174syl2anr 597 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ (0[,]1)) → ⟨𝑟, 0⟩ ∈ ((0[,]1) × (0[,]1)))
1762adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
1773adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
1784adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 𝑃𝐵)
1795adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → (𝐹𝑃) = (0𝐺0))
180 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 𝑟 ∈ (0[,]1))
181168a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 0 ∈ (0[,]1))
1821, 176, 177, 178, 179, 6, 7, 44, 180, 181cvmlift2lem10 35334 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ (0[,]1)) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑟𝑢 ∧ 0 ∈ 𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
183 df-3an 1088 . . . . . . . . . . . . . . . . . . 19 ((𝑟𝑢 ∧ 0 ∈ 𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) ↔ ((𝑟𝑢 ∧ 0 ∈ 𝑣) ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
184 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 0 ∈ 𝑣)
1858ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝐾:((0[,]1) × (0[,]1))⟶𝐵)
186185ffnd 6707 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝐾 Fn ((0[,]1) × (0[,]1)))
187 fnov 7538 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐾 Fn ((0[,]1) × (0[,]1)) ↔ 𝐾 = (𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)))
188186, 187sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝐾 = (𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)))
189188reseq1d 5965 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝐾 ↾ (𝑢 × {0})) = ((𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)) ↾ (𝑢 × {0})))
190 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝑢 ∈ II)
191 elssuni 4913 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 ∈ II → 𝑢 II)
192191, 13sseqtrrdi 4000 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 ∈ II → 𝑢 ⊆ (0[,]1))
193190, 192syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝑢 ⊆ (0[,]1))
194169snssd 4785 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → {0} ⊆ (0[,]1))
195194ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → {0} ⊆ (0[,]1))
196 resmpo 7527 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢 ⊆ (0[,]1) ∧ {0} ⊆ (0[,]1)) → ((𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)) ↾ (𝑢 × {0})) = (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝑏𝐾𝑤)))
197193, 195, 196syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)) ↾ (𝑢 × {0})) = (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝑏𝐾𝑤)))
198193sselda 3958 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏𝑢) → 𝑏 ∈ (0[,]1))
199 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝜑)
2001, 2, 3, 4, 5, 6, 7cvmlift2lem8 35332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑏 ∈ (0[,]1)) → (𝑏𝐾0) = (𝐻𝑏))
201199, 200sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏 ∈ (0[,]1)) → (𝑏𝐾0) = (𝐻𝑏))
202198, 201syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏𝑢) → (𝑏𝐾0) = (𝐻𝑏))
203 elsni 4618 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ {0} → 𝑤 = 0)
204203oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ {0} → (𝑏𝐾𝑤) = (𝑏𝐾0))
205204eqeq1d 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ {0} → ((𝑏𝐾𝑤) = (𝐻𝑏) ↔ (𝑏𝐾0) = (𝐻𝑏)))
206202, 205syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏𝑢) → (𝑤 ∈ {0} → (𝑏𝐾𝑤) = (𝐻𝑏)))
2072063impia 1117 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏𝑢𝑤 ∈ {0}) → (𝑏𝐾𝑤) = (𝐻𝑏))
208207mpoeq3dva 7484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝑏𝐾𝑤)) = (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝐻𝑏)))
209189, 197, 2083eqtrd 2774 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝐾 ↾ (𝑢 × {0})) = (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝐻𝑏)))
210 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . 25 (II ↾t 𝑢) = (II ↾t 𝑢)
211 iitopon 24823 . . . . . . . . . . . . . . . . . . . . . . . . . 26 II ∈ (TopOn‘(0[,]1))
212211a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → II ∈ (TopOn‘(0[,]1)))
213 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . 25 (II ↾t {0}) = (II ↾t {0})
214212, 212cnmpt1st 23606 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ 𝑏) ∈ ((II ×t II) Cn II))
2151, 2, 3, 4, 5, 6cvmlift2lem2 35326 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃))
216215simp1d 1142 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐻 ∈ (II Cn 𝐶))
217199, 216syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝐻 ∈ (II Cn 𝐶))
218212, 212, 214, 217cnmpt21f 23610 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝐻𝑏)) ∈ ((II ×t II) Cn 𝐶))
219210, 212, 193, 213, 212, 195, 218cnmpt2res 23615 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝐻𝑏)) ∈ (((II ↾t 𝑢) ×t (II ↾t {0})) Cn 𝐶))
220 vex 3463 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑢 ∈ V
221 snex 5406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 {0} ∈ V
222 txrest 23569 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((II ∈ Top ∧ II ∈ Top) ∧ (𝑢 ∈ V ∧ {0} ∈ V)) → ((II ×t II) ↾t (𝑢 × {0})) = ((II ↾t 𝑢) ×t (II ↾t {0})))
22319, 19, 220, 221, 222mp4an 693 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((II ×t II) ↾t (𝑢 × {0})) = ((II ↾t 𝑢) ×t (II ↾t {0}))
224223oveq1i 7415 . . . . . . . . . . . . . . . . . . . . . . . 24 (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶) = (((II ↾t 𝑢) ×t (II ↾t {0})) Cn 𝐶)
225219, 224eleqtrrdi 2845 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝐻𝑏)) ∈ (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶))
226209, 225eqeltrd 2834 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝐾 ↾ (𝑢 × {0})) ∈ (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶))
227 sneq 4611 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 0 → {𝑤} = {0})
228227xpeq2d 5684 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 0 → (𝑢 × {𝑤}) = (𝑢 × {0}))
229228reseq2d 5966 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 0 → (𝐾 ↾ (𝑢 × {𝑤})) = (𝐾 ↾ (𝑢 × {0})))
230228oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 0 → ((II ×t II) ↾t (𝑢 × {𝑤})) = ((II ×t II) ↾t (𝑢 × {0})))
231230oveq1d 7420 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 0 → (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) = (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶))
232229, 231eleq12d 2828 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 0 → ((𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) ↔ (𝐾 ↾ (𝑢 × {0})) ∈ (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶)))
233232rspcev 3601 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {0})) ∈ (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶)) → ∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
234184, 226, 233syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
235 opelxpi 5691 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟𝑢 ∧ 0 ∈ 𝑣) → ⟨𝑟, 0⟩ ∈ (𝑢 × 𝑣))
236235adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ⟨𝑟, 0⟩ ∈ (𝑢 × 𝑣))
237 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝑣 ∈ II)
238237, 145syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝑣 ⊆ (0[,]1))
239 xpss12 5669 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑢 ⊆ (0[,]1) ∧ 𝑣 ⊆ (0[,]1)) → (𝑢 × 𝑣) ⊆ ((0[,]1) × (0[,]1)))
240193, 238, 239syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑢 × 𝑣) ⊆ ((0[,]1) × (0[,]1)))
24136restuni 23100 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((II ×t II) ∈ Top ∧ (𝑢 × 𝑣) ⊆ ((0[,]1) × (0[,]1))) → (𝑢 × 𝑣) = ((II ×t II) ↾t (𝑢 × 𝑣)))
24221, 240, 241sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑢 × 𝑣) = ((II ×t II) ↾t (𝑢 × 𝑣)))
243236, 242eleqtrd 2836 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ⟨𝑟, 0⟩ ∈ ((II ×t II) ↾t (𝑢 × 𝑣)))
244 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((II ×t II) ↾t (𝑢 × 𝑣)) = ((II ×t II) ↾t (𝑢 × 𝑣))
245244cncnpi 23216 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶) ∧ ⟨𝑟, 0⟩ ∈ ((II ×t II) ↾t (𝑢 × 𝑣))) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩))
246245expcom 413 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝑟, 0⟩ ∈ ((II ×t II) ↾t (𝑢 × 𝑣)) → ((𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩)))
247243, 246syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩)))
24821a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (II ×t II) ∈ Top)
24919a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → II ∈ Top)
250249, 249, 190, 237, 53syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑢 × 𝑣) ∈ (II ×t II))
251 isopn3i 23020 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((II ×t II) ∈ Top ∧ (𝑢 × 𝑣) ∈ (II ×t II)) → ((int‘(II ×t II))‘(𝑢 × 𝑣)) = (𝑢 × 𝑣))
25221, 250, 251sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((int‘(II ×t II))‘(𝑢 × 𝑣)) = (𝑢 × 𝑣))
253236, 252eleqtrrd 2837 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ⟨𝑟, 0⟩ ∈ ((int‘(II ×t II))‘(𝑢 × 𝑣)))
25436, 1cnprest 23227 . . . . . . . . . . . . . . . . . . . . . . 23 ((((II ×t II) ∈ Top ∧ (𝑢 × 𝑣) ⊆ ((0[,]1) × (0[,]1))) ∧ (⟨𝑟, 0⟩ ∈ ((int‘(II ×t II))‘(𝑢 × 𝑣)) ∧ 𝐾:((0[,]1) × (0[,]1))⟶𝐵)) → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩) ↔ (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩)))
255248, 240, 253, 185, 254syl22anc 838 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩) ↔ (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩)))
256247, 255sylibrd 259 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
257234, 256embantd 59 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
258257expimpd 453 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → (((𝑟𝑢 ∧ 0 ∈ 𝑣) ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
259183, 258biimtrid 242 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → ((𝑟𝑢 ∧ 0 ∈ 𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
260259rexlimdvva 3198 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ (0[,]1)) → (∃𝑢 ∈ II ∃𝑣 ∈ II (𝑟𝑢 ∧ 0 ∈ 𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
261182, 260mpd 15 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ (0[,]1)) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩))
262 fveq2 6876 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨𝑟, 0⟩ → (((II ×t II) CnP 𝐶)‘𝑧) = (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩))
263262eleq2d 2820 . . . . . . . . . . . . . . . . 17 (𝑧 = ⟨𝑟, 0⟩ → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧) ↔ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
264263, 68elrab2 3674 . . . . . . . . . . . . . . . 16 (⟨𝑟, 0⟩ ∈ 𝑀 ↔ (⟨𝑟, 0⟩ ∈ ((0[,]1) × (0[,]1)) ∧ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
265175, 261, 264sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ (0[,]1)) → ⟨𝑟, 0⟩ ∈ 𝑀)
266 elsni 4618 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ {0} → 𝑎 = 0)
267266opeq2d 4856 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {0} → ⟨𝑟, 𝑎⟩ = ⟨𝑟, 0⟩)
268267eleq1d 2819 . . . . . . . . . . . . . . 15 (𝑎 ∈ {0} → (⟨𝑟, 𝑎⟩ ∈ 𝑀 ↔ ⟨𝑟, 0⟩ ∈ 𝑀))
269265, 268syl5ibrcom 247 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (0[,]1)) → (𝑎 ∈ {0} → ⟨𝑟, 𝑎⟩ ∈ 𝑀))
270269expimpd 453 . . . . . . . . . . . . 13 (𝜑 → ((𝑟 ∈ (0[,]1) ∧ 𝑎 ∈ {0}) → ⟨𝑟, 𝑎⟩ ∈ 𝑀))
271172, 270biimtrid 242 . . . . . . . . . . . 12 (𝜑 → (⟨𝑟, 𝑎⟩ ∈ ((0[,]1) × {0}) → ⟨𝑟, 𝑎⟩ ∈ 𝑀))
272171, 271relssdv 5767 . . . . . . . . . . 11 (𝜑 → ((0[,]1) × {0}) ⊆ 𝑀)
273 sneq 4611 . . . . . . . . . . . . . 14 (𝑎 = 0 → {𝑎} = {0})
274273xpeq2d 5684 . . . . . . . . . . . . 13 (𝑎 = 0 → ((0[,]1) × {𝑎}) = ((0[,]1) × {0}))
275274sseq1d 3990 . . . . . . . . . . . 12 (𝑎 = 0 → (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {0}) ⊆ 𝑀))
276275, 140elrab2 3674 . . . . . . . . . . 11 (0 ∈ 𝐴 ↔ (0 ∈ (0[,]1) ∧ ((0[,]1) × {0}) ⊆ 𝑀))
277169, 272, 276sylanbrc 583 . . . . . . . . . 10 (𝜑 → 0 ∈ 𝐴)
278277ne0d 4317 . . . . . . . . 9 (𝜑𝐴 ≠ ∅)
279 inss2 4213 . . . . . . . . . 10 (II ∩ (Clsd‘II)) ⊆ (Clsd‘II)
280279, 166sselid 3956 . . . . . . . . 9 (𝜑𝐴 ∈ (Clsd‘II))
28113, 15, 167, 278, 280connclo 23353 . . . . . . . 8 (𝜑𝐴 = (0[,]1))
282281, 140eqtr3di 2785 . . . . . . 7 (𝜑 → (0[,]1) = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀})
283 rabid2 3449 . . . . . . 7 ((0[,]1) = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀} ↔ ∀𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀)
284282, 283sylib 218 . . . . . 6 (𝜑 → ∀𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀)
285 iunss 5021 . . . . . 6 ( 𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ∀𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀)
286284, 285sylibr 234 . . . . 5 (𝜑 𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀)
28712, 286eqsstrid 3997 . . . 4 (𝜑 → ((0[,]1) × (0[,]1)) ⊆ 𝑀)
288287, 68sseqtrdi 3999 . . 3 (𝜑 → ((0[,]1) × (0[,]1)) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)})
289 ssrab 4048 . . . 4 (((0[,]1) × (0[,]1)) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} ↔ (((0[,]1) × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)) ∧ ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)))
290289simprbi 496 . . 3 (((0[,]1) × (0[,]1)) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} → ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
291288, 290syl 17 . 2 (𝜑 → ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
292 txtopon 23529 . . . 4 ((II ∈ (TopOn‘(0[,]1)) ∧ II ∈ (TopOn‘(0[,]1))) → (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))))
293211, 211, 292mp2an 692 . . 3 (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1)))
294 cvmtop1 35282 . . . . 5 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
2952, 294syl 17 . . . 4 (𝜑𝐶 ∈ Top)
2961toptopon 22855 . . . 4 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
297295, 296sylib 218 . . 3 (𝜑𝐶 ∈ (TopOn‘𝐵))
298 cncnp 23218 . . 3 (((II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))) ∧ 𝐶 ∈ (TopOn‘𝐵)) → (𝐾 ∈ ((II ×t II) Cn 𝐶) ↔ (𝐾:((0[,]1) × (0[,]1))⟶𝐵 ∧ ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))))
299293, 297, 298sylancr 587 . 2 (𝜑 → (𝐾 ∈ ((II ×t II) Cn 𝐶) ↔ (𝐾:((0[,]1) × (0[,]1))⟶𝐵 ∧ ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))))
3008, 291, 299mpbir2and 713 1 (𝜑𝐾 ∈ ((II ×t II) Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  cdif 3923  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601  cop 4607   cuni 4883   ciun 4967  {copab 5181  cmpt 5201   × cxp 5652  ccnv 5653  cres 5656  cima 5657  ccom 5658  Rel wrel 5659   Fn wfn 6526  wf 6527  cfv 6531  crio 7361  (class class class)co 7405  cmpo 7407  0cc0 11129  1c1 11130  [,]cicc 13365  t crest 17434  Topctop 22831  TopOnctopon 22848  Clsdccld 22954  intcnt 22955  neicnei 23035   Cn ccn 23162   CnP ccnp 23163  Compccmp 23324  Conncconn 23349   ×t ctx 23498  Homeochmeo 23691  IIcii 24819   CovMap ccvm 35277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-ec 8721  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-cn 23165  df-cnp 23166  df-cmp 23325  df-conn 23350  df-lly 23404  df-nlly 23405  df-tx 23500  df-hmeo 23693  df-xms 24259  df-ms 24260  df-tms 24261  df-ii 24821  df-cncf 24822  df-htpy 24920  df-phtpy 24921  df-phtpc 24942  df-pconn 35243  df-sconn 35244  df-cvm 35278
This theorem is referenced by:  cvmlift2lem13  35337
  Copyright terms: Public domain W3C validator