Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem12 Structured version   Visualization version   GIF version

Theorem cvmlift2lem12 32563
Description: Lemma for cvmlift2 32565. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
cvmlift2.m 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
cvmlift2.a 𝐴 = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀}
cvmlift2.s 𝑆 = {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))}
Assertion
Ref Expression
cvmlift2lem12 (𝜑𝐾 ∈ ((II ×t II) Cn 𝐶))
Distinct variable groups:   𝑢,𝑓,𝑥,𝑦,𝑧,𝐹   𝑓,𝑎,𝑟,𝑡,𝑢,𝑥,𝑦,𝑧,𝜑   𝐴,𝑎,𝑡,𝑥   𝑀,𝑎,𝑟,𝑢,𝑥,𝑦,𝑧   𝑆,𝑓,𝑡,𝑢,𝑥,𝑦,𝑧   𝑓,𝐽,𝑢,𝑥,𝑦,𝑧   𝐺,𝑎,𝑓,𝑡,𝑢,𝑥,𝑦,𝑧   𝑓,𝐻,𝑢,𝑥,𝑦,𝑧   𝐶,𝑎,𝑓,𝑟,𝑡,𝑢,𝑥,𝑦,𝑧   𝑃,𝑓,𝑢,𝑥,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝐾,𝑎,𝑓,𝑟,𝑡,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑢,𝑓,𝑟)   𝐵(𝑢,𝑡,𝑓,𝑟,𝑎)   𝑃(𝑡,𝑟,𝑎)   𝑆(𝑟,𝑎)   𝐹(𝑡,𝑟,𝑎)   𝐺(𝑟)   𝐻(𝑡,𝑟,𝑎)   𝐽(𝑡,𝑟,𝑎)   𝑀(𝑡,𝑓)

Proof of Theorem cvmlift2lem12
Dummy variables 𝑏 𝑐 𝑑 𝑘 𝑠 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . 3 𝐵 = 𝐶
2 cvmlift2.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3 cvmlift2.g . . 3 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
4 cvmlift2.p . . 3 (𝜑𝑃𝐵)
5 cvmlift2.i . . 3 (𝜑 → (𝐹𝑃) = (0𝐺0))
6 cvmlift2.h . . 3 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
7 cvmlift2.k . . 3 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
81, 2, 3, 4, 5, 6, 7cvmlift2lem5 32556 . 2 (𝜑𝐾:((0[,]1) × (0[,]1))⟶𝐵)
9 iunid 4986 . . . . . . 7 𝑎 ∈ (0[,]1){𝑎} = (0[,]1)
109xpeq2i 5584 . . . . . 6 ((0[,]1) × 𝑎 ∈ (0[,]1){𝑎}) = ((0[,]1) × (0[,]1))
11 xpiundi 5624 . . . . . 6 ((0[,]1) × 𝑎 ∈ (0[,]1){𝑎}) = 𝑎 ∈ (0[,]1)((0[,]1) × {𝑎})
1210, 11eqtr3i 2848 . . . . 5 ((0[,]1) × (0[,]1)) = 𝑎 ∈ (0[,]1)((0[,]1) × {𝑎})
13 cvmlift2.a . . . . . . . 8 𝐴 = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀}
14 iiuni 23491 . . . . . . . . 9 (0[,]1) = II
15 iiconn 23497 . . . . . . . . . 10 II ∈ Conn
1615a1i 11 . . . . . . . . 9 (𝜑 → II ∈ Conn)
17 inss1 4207 . . . . . . . . . 10 (II ∩ (Clsd‘II)) ⊆ II
18 iicmp 23496 . . . . . . . . . . . . . . 15 II ∈ Comp
1918a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → II ∈ Comp)
20 iitop 23490 . . . . . . . . . . . . . . 15 II ∈ Top
2120a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → II ∈ Top)
2220, 20txtopi 22200 . . . . . . . . . . . . . . . 16 (II ×t II) ∈ Top
2314neiss2 21711 . . . . . . . . . . . . . . . . . . . . . . . 24 ((II ∈ Top ∧ 𝑢 ∈ ((nei‘II)‘{𝑟})) → {𝑟} ⊆ (0[,]1))
2420, 23mpan 688 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ ((nei‘II)‘{𝑟}) → {𝑟} ⊆ (0[,]1))
25 vex 3499 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟 ∈ V
2625snss 4720 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 ∈ (0[,]1) ↔ {𝑟} ⊆ (0[,]1))
2724, 26sylibr 236 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 ∈ ((nei‘II)‘{𝑟}) → 𝑟 ∈ (0[,]1))
2827a1d 25 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ∈ ((nei‘II)‘{𝑟}) → (((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → 𝑟 ∈ (0[,]1)))
2928rexlimiv 3282 . . . . . . . . . . . . . . . . . . . 20 (∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → 𝑟 ∈ (0[,]1))
3029adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → 𝑟 ∈ (0[,]1))
31 simpl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → 𝑡 ∈ (0[,]1))
3230, 31jca 514 . . . . . . . . . . . . . . . . . 18 ((𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → (𝑟 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1)))
3332ssopab2i 5439 . . . . . . . . . . . . . . . . 17 {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))}
34 cvmlift2.s . . . . . . . . . . . . . . . . 17 𝑆 = {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))}
35 df-xp 5563 . . . . . . . . . . . . . . . . 17 ((0[,]1) × (0[,]1)) = {⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))}
3633, 34, 353sstr4i 4012 . . . . . . . . . . . . . . . 16 𝑆 ⊆ ((0[,]1) × (0[,]1))
3720, 20, 14, 14txunii 22203 . . . . . . . . . . . . . . . . 17 ((0[,]1) × (0[,]1)) = (II ×t II)
3837ntropn 21659 . . . . . . . . . . . . . . . 16 (((II ×t II) ∈ Top ∧ 𝑆 ⊆ ((0[,]1) × (0[,]1))) → ((int‘(II ×t II))‘𝑆) ∈ (II ×t II))
3922, 36, 38mp2an 690 . . . . . . . . . . . . . . 15 ((int‘(II ×t II))‘𝑆) ∈ (II ×t II)
4039a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → ((int‘(II ×t II))‘𝑆) ∈ (II ×t II))
412adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
423adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
434adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝑃𝐵)
445adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → (𝐹𝑃) = (0𝐺0))
45 eqid 2823 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))}) = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
46 simprr 771 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝑏 ∈ (0[,]1))
47 simprl 769 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝑎 ∈ (0[,]1))
481, 41, 42, 43, 44, 6, 7, 45, 46, 47cvmlift2lem10 32561 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
4922a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → (II ×t II) ∈ Top)
5036a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑆 ⊆ ((0[,]1) × (0[,]1)))
5120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → II ∈ Top)
52 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑢 ∈ II)
53 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑣 ∈ II)
54 txopn 22212 . . . . . . . . . . . . . . . . . . . . . . . 24 (((II ∈ Top ∧ II ∈ Top) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → (𝑢 × 𝑣) ∈ (II ×t II))
5551, 51, 52, 53, 54syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → (𝑢 × 𝑣) ∈ (II ×t II))
56 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑟𝑢𝑡𝑣) → 𝑡𝑣)
57 elunii 4845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑡𝑣𝑣 ∈ II) → 𝑡 II)
5857, 14eleqtrrdi 2926 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑡𝑣𝑣 ∈ II) → 𝑡 ∈ (0[,]1))
5956, 53, 58syl2anr 598 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑡 ∈ (0[,]1))
6020a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → II ∈ Top)
6152adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑢 ∈ II)
62 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑟𝑢)
63 opnneip 21729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((II ∈ Top ∧ 𝑢 ∈ II ∧ 𝑟𝑢) → 𝑢 ∈ ((nei‘II)‘{𝑟}))
6460, 61, 62, 63syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑢 ∈ ((nei‘II)‘{𝑟}))
6541ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
6642ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
6743ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑃𝐵)
6844ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → (𝐹𝑃) = (0𝐺0))
69 cvmlift2.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
7053adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑣 ∈ II)
71 simplr2 1212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑎𝑣)
72 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑡𝑣)
73 sneq 4579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 = 𝑤 → {𝑐} = {𝑤})
7473xpeq2d 5587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑤 → (𝑢 × {𝑐}) = (𝑢 × {𝑤}))
7574reseq2d 5855 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑤 → (𝐾 ↾ (𝑢 × {𝑐})) = (𝐾 ↾ (𝑢 × {𝑤})))
7674oveq2d 7174 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑤 → ((II ×t II) ↾t (𝑢 × {𝑐})) = ((II ×t II) ↾t (𝑢 × {𝑤})))
7776oveq1d 7173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑤 → (((II ×t II) ↾t (𝑢 × {𝑐})) Cn 𝐶) = (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
7875, 77eleq12d 2909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = 𝑤 → ((𝐾 ↾ (𝑢 × {𝑐})) ∈ (((II ×t II) ↾t (𝑢 × {𝑐})) Cn 𝐶) ↔ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶)))
7978cbvrexvw 3452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑐𝑣 (𝐾 ↾ (𝑢 × {𝑐})) ∈ (((II ×t II) ↾t (𝑢 × {𝑐})) Cn 𝐶) ↔ ∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
80 simplr3 1213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))
8179, 80syl5bi 244 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → (∃𝑐𝑣 (𝐾 ↾ (𝑢 × {𝑐})) ∈ (((II ×t II) ↾t (𝑢 × {𝑐})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))
821, 65, 66, 67, 68, 6, 7, 69, 61, 70, 71, 72, 81cvmlift2lem11 32562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → ((𝑢 × {𝑎}) ⊆ 𝑀 → (𝑢 × {𝑡}) ⊆ 𝑀))
831, 65, 66, 67, 68, 6, 7, 69, 61, 70, 72, 71, 81cvmlift2lem11 32562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → ((𝑢 × {𝑡}) ⊆ 𝑀 → (𝑢 × {𝑎}) ⊆ 𝑀))
8482, 83impbid 214 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → ((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
85 rspe 3306 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑢 ∈ ((nei‘II)‘{𝑟}) ∧ ((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
8664, 84, 85syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
8759, 86jca 514 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
8887ex 415 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → ((𝑟𝑢𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
8988alrimivv 1929 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → ∀𝑟𝑡((𝑟𝑢𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
90 df-xp 5563 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 × 𝑣) = {⟨𝑟, 𝑡⟩ ∣ (𝑟𝑢𝑡𝑣)}
9190, 34sseq12i 3999 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢 × 𝑣) ⊆ 𝑆 ↔ {⟨𝑟, 𝑡⟩ ∣ (𝑟𝑢𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))})
92 ssopab2bw 5436 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({⟨𝑟, 𝑡⟩ ∣ (𝑟𝑢𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ↔ ∀𝑟𝑡((𝑟𝑢𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
9391, 92bitri 277 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑢 × 𝑣) ⊆ 𝑆 ↔ ∀𝑟𝑡((𝑟𝑢𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
9489, 93sylibr 236 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → (𝑢 × 𝑣) ⊆ 𝑆)
9537ssntr 21668 . . . . . . . . . . . . . . . . . . . . . . 23 ((((II ×t II) ∈ Top ∧ 𝑆 ⊆ ((0[,]1) × (0[,]1))) ∧ ((𝑢 × 𝑣) ∈ (II ×t II) ∧ (𝑢 × 𝑣) ⊆ 𝑆)) → (𝑢 × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆))
9649, 50, 55, 94, 95syl22anc 836 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → (𝑢 × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆))
97 simpr1 1190 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑏𝑢)
98 simpr2 1191 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑎𝑣)
99 opelxpi 5594 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑢𝑎𝑣) → ⟨𝑏, 𝑎⟩ ∈ (𝑢 × 𝑣))
10097, 98, 99syl2anc 586 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → ⟨𝑏, 𝑎⟩ ∈ (𝑢 × 𝑣))
10196, 100sseldd 3970 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆))
102101ex 415 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → ((𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆)))
103102rexlimdvva 3296 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → (∃𝑢 ∈ II ∃𝑣 ∈ II (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆)))
10448, 103mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆))
105 vex 3499 . . . . . . . . . . . . . . . . . . 19 𝑎 ∈ V
106 opeq2 4806 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑎 → ⟨𝑏, 𝑤⟩ = ⟨𝑏, 𝑎⟩)
107106eleq1d 2899 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑎 → (⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆) ↔ ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆)))
108105, 107ralsn 4621 . . . . . . . . . . . . . . . . . 18 (∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆) ↔ ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆))
109104, 108sylibr 236 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → ∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
110109anassrs 470 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑏 ∈ (0[,]1)) → ∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
111110ralrimiva 3184 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ (0[,]1)) → ∀𝑏 ∈ (0[,]1)∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
112 dfss3 3958 . . . . . . . . . . . . . . . 16 (((0[,]1) × {𝑎}) ⊆ ((int‘(II ×t II))‘𝑆) ↔ ∀𝑢 ∈ ((0[,]1) × {𝑎})𝑢 ∈ ((int‘(II ×t II))‘𝑆))
113 eleq1 2902 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑏, 𝑤⟩ → (𝑢 ∈ ((int‘(II ×t II))‘𝑆) ↔ ⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆)))
114113ralxp 5714 . . . . . . . . . . . . . . . 16 (∀𝑢 ∈ ((0[,]1) × {𝑎})𝑢 ∈ ((int‘(II ×t II))‘𝑆) ↔ ∀𝑏 ∈ (0[,]1)∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
115112, 114bitri 277 . . . . . . . . . . . . . . 15 (((0[,]1) × {𝑎}) ⊆ ((int‘(II ×t II))‘𝑆) ↔ ∀𝑏 ∈ (0[,]1)∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
116111, 115sylibr 236 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → ((0[,]1) × {𝑎}) ⊆ ((int‘(II ×t II))‘𝑆))
117 simpr 487 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → 𝑎 ∈ (0[,]1))
11814, 14, 19, 21, 40, 116, 117txtube 22250 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (0[,]1)) → ∃𝑣 ∈ II (𝑎𝑣 ∧ ((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆)))
11937ntrss2 21667 . . . . . . . . . . . . . . . . . . 19 (((II ×t II) ∈ Top ∧ 𝑆 ⊆ ((0[,]1) × (0[,]1))) → ((int‘(II ×t II))‘𝑆) ⊆ 𝑆)
12022, 36, 119mp2an 690 . . . . . . . . . . . . . . . . . 18 ((int‘(II ×t II))‘𝑆) ⊆ 𝑆
121 sstr 3977 . . . . . . . . . . . . . . . . . 18 ((((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆) ∧ ((int‘(II ×t II))‘𝑆) ⊆ 𝑆) → ((0[,]1) × 𝑣) ⊆ 𝑆)
122120, 121mpan2 689 . . . . . . . . . . . . . . . . 17 (((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆) → ((0[,]1) × 𝑣) ⊆ 𝑆)
123 df-xp 5563 . . . . . . . . . . . . . . . . . . 19 ((0[,]1) × 𝑣) = {⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡𝑣)}
124123, 34sseq12i 3999 . . . . . . . . . . . . . . . . . 18 (((0[,]1) × 𝑣) ⊆ 𝑆 ↔ {⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))})
125 ssopab2bw 5436 . . . . . . . . . . . . . . . . . . 19 ({⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ↔ ∀𝑟𝑡((𝑟 ∈ (0[,]1) ∧ 𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
126 r2al 3203 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ (0[,]1)∀𝑡𝑣 (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) ↔ ∀𝑟𝑡((𝑟 ∈ (0[,]1) ∧ 𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
127 ralcom 3356 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ (0[,]1)∀𝑡𝑣 (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) ↔ ∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
128125, 126, 1273bitr2i 301 . . . . . . . . . . . . . . . . . 18 ({⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ↔ ∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
129124, 128bitri 277 . . . . . . . . . . . . . . . . 17 (((0[,]1) × 𝑣) ⊆ 𝑆 ↔ ∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
130122, 129sylib 220 . . . . . . . . . . . . . . . 16 (((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆) → ∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
131 simpr 487 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
132131ralimi 3162 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → ∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
133 cvmlift2lem1 32551 . . . . . . . . . . . . . . . . . . . 20 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑎}) ⊆ 𝑀 → ((0[,]1) × {𝑡}) ⊆ 𝑀))
134 bicom 224 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) ↔ ((𝑢 × {𝑡}) ⊆ 𝑀 ↔ (𝑢 × {𝑎}) ⊆ 𝑀))
135134rexbii 3249 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑡}) ⊆ 𝑀 ↔ (𝑢 × {𝑎}) ⊆ 𝑀))
136135ralbii 3167 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) ↔ ∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑡}) ⊆ 𝑀 ↔ (𝑢 × {𝑎}) ⊆ 𝑀))
137 cvmlift2lem1 32551 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑡}) ⊆ 𝑀 ↔ (𝑢 × {𝑎}) ⊆ 𝑀) → (((0[,]1) × {𝑡}) ⊆ 𝑀 → ((0[,]1) × {𝑎}) ⊆ 𝑀))
138136, 137sylbi 219 . . . . . . . . . . . . . . . . . . . 20 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑡}) ⊆ 𝑀 → ((0[,]1) × {𝑎}) ⊆ 𝑀))
139133, 138impbid 214 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
140132, 139syl 17 . . . . . . . . . . . . . . . . . 18 (∀𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
14113rabeq2i 3489 . . . . . . . . . . . . . . . . . . . . 21 (𝑎𝐴 ↔ (𝑎 ∈ (0[,]1) ∧ ((0[,]1) × {𝑎}) ⊆ 𝑀))
142141baib 538 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (0[,]1) → (𝑎𝐴 ↔ ((0[,]1) × {𝑎}) ⊆ 𝑀))
143142ad3antlr 729 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → (𝑎𝐴 ↔ ((0[,]1) × {𝑎}) ⊆ 𝑀))
144 elssuni 4870 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∈ II → 𝑣 II)
145144, 14sseqtrrdi 4020 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ II → 𝑣 ⊆ (0[,]1))
146145adantl 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) → 𝑣 ⊆ (0[,]1))
147146sselda 3969 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → 𝑡 ∈ (0[,]1))
148 sneq 4579 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑡 → {𝑎} = {𝑡})
149148xpeq2d 5587 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑡 → ((0[,]1) × {𝑎}) = ((0[,]1) × {𝑡}))
150149sseq1d 4000 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑡 → (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
151150, 13elrab2 3685 . . . . . . . . . . . . . . . . . . . . 21 (𝑡𝐴 ↔ (𝑡 ∈ (0[,]1) ∧ ((0[,]1) × {𝑡}) ⊆ 𝑀))
152151baib 538 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ (0[,]1) → (𝑡𝐴 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
153147, 152syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → (𝑡𝐴 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
154143, 153bibi12d 348 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → ((𝑎𝐴𝑡𝐴) ↔ (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀)))
155140, 154syl5ibr 248 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → (∀𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → (𝑎𝐴𝑡𝐴)))
156155ralimdva 3179 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) → (∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
157130, 156syl5 34 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) → (((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆) → ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
158157anim2d 613 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) → ((𝑎𝑣 ∧ ((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆)) → (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴))))
159158reximdva 3276 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (0[,]1)) → (∃𝑣 ∈ II (𝑎𝑣 ∧ ((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆)) → ∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴))))
160118, 159mpd 15 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (0[,]1)) → ∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
161160ralrimiva 3184 . . . . . . . . . . 11 (𝜑 → ∀𝑎 ∈ (0[,]1)∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
162 ssrab2 4058 . . . . . . . . . . . . 13 {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀} ⊆ (0[,]1)
16313, 162eqsstri 4003 . . . . . . . . . . . 12 𝐴 ⊆ (0[,]1)
16414isclo 21697 . . . . . . . . . . . 12 ((II ∈ Top ∧ 𝐴 ⊆ (0[,]1)) → (𝐴 ∈ (II ∩ (Clsd‘II)) ↔ ∀𝑎 ∈ (0[,]1)∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴))))
16520, 163, 164mp2an 690 . . . . . . . . . . 11 (𝐴 ∈ (II ∩ (Clsd‘II)) ↔ ∀𝑎 ∈ (0[,]1)∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
166161, 165sylibr 236 . . . . . . . . . 10 (𝜑𝐴 ∈ (II ∩ (Clsd‘II)))
16717, 166sseldi 3967 . . . . . . . . 9 (𝜑𝐴 ∈ II)
168 0elunit 12858 . . . . . . . . . . . 12 0 ∈ (0[,]1)
169168a1i 11 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0[,]1))
170 relxp 5575 . . . . . . . . . . . . 13 Rel ((0[,]1) × {0})
171170a1i 11 . . . . . . . . . . . 12 (𝜑 → Rel ((0[,]1) × {0}))
172 opelxp 5593 . . . . . . . . . . . . 13 (⟨𝑟, 𝑎⟩ ∈ ((0[,]1) × {0}) ↔ (𝑟 ∈ (0[,]1) ∧ 𝑎 ∈ {0}))
173 id 22 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ (0[,]1) → 𝑟 ∈ (0[,]1))
174 opelxpi 5594 . . . . . . . . . . . . . . . . 17 ((𝑟 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → ⟨𝑟, 0⟩ ∈ ((0[,]1) × (0[,]1)))
175173, 169, 174syl2anr 598 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ (0[,]1)) → ⟨𝑟, 0⟩ ∈ ((0[,]1) × (0[,]1)))
1762adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
1773adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
1784adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 𝑃𝐵)
1795adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → (𝐹𝑃) = (0𝐺0))
180 simpr 487 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 𝑟 ∈ (0[,]1))
181168a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 0 ∈ (0[,]1))
1821, 176, 177, 178, 179, 6, 7, 45, 180, 181cvmlift2lem10 32561 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ (0[,]1)) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑟𝑢 ∧ 0 ∈ 𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
183 df-3an 1085 . . . . . . . . . . . . . . . . . . 19 ((𝑟𝑢 ∧ 0 ∈ 𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) ↔ ((𝑟𝑢 ∧ 0 ∈ 𝑣) ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
184 simprr 771 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 0 ∈ 𝑣)
1858ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝐾:((0[,]1) × (0[,]1))⟶𝐵)
186185ffnd 6517 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝐾 Fn ((0[,]1) × (0[,]1)))
187 fnov 7284 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐾 Fn ((0[,]1) × (0[,]1)) ↔ 𝐾 = (𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)))
188186, 187sylib 220 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝐾 = (𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)))
189188reseq1d 5854 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝐾 ↾ (𝑢 × {0})) = ((𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)) ↾ (𝑢 × {0})))
190 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝑢 ∈ II)
191 elssuni 4870 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 ∈ II → 𝑢 II)
192191, 14sseqtrrdi 4020 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 ∈ II → 𝑢 ⊆ (0[,]1))
193190, 192syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝑢 ⊆ (0[,]1))
194169snssd 4744 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → {0} ⊆ (0[,]1))
195194ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → {0} ⊆ (0[,]1))
196 resmpo 7274 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢 ⊆ (0[,]1) ∧ {0} ⊆ (0[,]1)) → ((𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)) ↾ (𝑢 × {0})) = (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝑏𝐾𝑤)))
197193, 195, 196syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)) ↾ (𝑢 × {0})) = (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝑏𝐾𝑤)))
198193sselda 3969 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏𝑢) → 𝑏 ∈ (0[,]1))
199 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝜑)
2001, 2, 3, 4, 5, 6, 7cvmlift2lem8 32559 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑏 ∈ (0[,]1)) → (𝑏𝐾0) = (𝐻𝑏))
201199, 200sylan 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏 ∈ (0[,]1)) → (𝑏𝐾0) = (𝐻𝑏))
202198, 201syldan 593 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏𝑢) → (𝑏𝐾0) = (𝐻𝑏))
203 elsni 4586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ {0} → 𝑤 = 0)
204203oveq2d 7174 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ {0} → (𝑏𝐾𝑤) = (𝑏𝐾0))
205204eqeq1d 2825 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ {0} → ((𝑏𝐾𝑤) = (𝐻𝑏) ↔ (𝑏𝐾0) = (𝐻𝑏)))
206202, 205syl5ibrcom 249 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏𝑢) → (𝑤 ∈ {0} → (𝑏𝐾𝑤) = (𝐻𝑏)))
2072063impia 1113 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏𝑢𝑤 ∈ {0}) → (𝑏𝐾𝑤) = (𝐻𝑏))
208207mpoeq3dva 7233 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝑏𝐾𝑤)) = (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝐻𝑏)))
209189, 197, 2083eqtrd 2862 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝐾 ↾ (𝑢 × {0})) = (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝐻𝑏)))
210 eqid 2823 . . . . . . . . . . . . . . . . . . . . . . . . 25 (II ↾t 𝑢) = (II ↾t 𝑢)
211 iitopon 23489 . . . . . . . . . . . . . . . . . . . . . . . . . 26 II ∈ (TopOn‘(0[,]1))
212211a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → II ∈ (TopOn‘(0[,]1)))
213 eqid 2823 . . . . . . . . . . . . . . . . . . . . . . . . 25 (II ↾t {0}) = (II ↾t {0})
214212, 212cnmpt1st 22278 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ 𝑏) ∈ ((II ×t II) Cn II))
2151, 2, 3, 4, 5, 6cvmlift2lem2 32553 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃))
216215simp1d 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐻 ∈ (II Cn 𝐶))
217199, 216syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝐻 ∈ (II Cn 𝐶))
218212, 212, 214, 217cnmpt21f 22282 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝐻𝑏)) ∈ ((II ×t II) Cn 𝐶))
219210, 212, 193, 213, 212, 195, 218cnmpt2res 22287 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝐻𝑏)) ∈ (((II ↾t 𝑢) ×t (II ↾t {0})) Cn 𝐶))
220 vex 3499 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑢 ∈ V
221 snex 5334 . . . . . . . . . . . . . . . . . . . . . . . . . 26 {0} ∈ V
222 txrest 22241 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((II ∈ Top ∧ II ∈ Top) ∧ (𝑢 ∈ V ∧ {0} ∈ V)) → ((II ×t II) ↾t (𝑢 × {0})) = ((II ↾t 𝑢) ×t (II ↾t {0})))
22320, 20, 220, 221, 222mp4an 691 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((II ×t II) ↾t (𝑢 × {0})) = ((II ↾t 𝑢) ×t (II ↾t {0}))
224223oveq1i 7168 . . . . . . . . . . . . . . . . . . . . . . . 24 (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶) = (((II ↾t 𝑢) ×t (II ↾t {0})) Cn 𝐶)
225219, 224eleqtrrdi 2926 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝐻𝑏)) ∈ (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶))
226209, 225eqeltrd 2915 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝐾 ↾ (𝑢 × {0})) ∈ (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶))
227 sneq 4579 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 0 → {𝑤} = {0})
228227xpeq2d 5587 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 0 → (𝑢 × {𝑤}) = (𝑢 × {0}))
229228reseq2d 5855 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 0 → (𝐾 ↾ (𝑢 × {𝑤})) = (𝐾 ↾ (𝑢 × {0})))
230228oveq2d 7174 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 0 → ((II ×t II) ↾t (𝑢 × {𝑤})) = ((II ×t II) ↾t (𝑢 × {0})))
231230oveq1d 7173 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 0 → (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) = (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶))
232229, 231eleq12d 2909 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 0 → ((𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) ↔ (𝐾 ↾ (𝑢 × {0})) ∈ (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶)))
233232rspcev 3625 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {0})) ∈ (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶)) → ∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
234184, 226, 233syl2anc 586 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
235 opelxpi 5594 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟𝑢 ∧ 0 ∈ 𝑣) → ⟨𝑟, 0⟩ ∈ (𝑢 × 𝑣))
236235adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ⟨𝑟, 0⟩ ∈ (𝑢 × 𝑣))
237 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝑣 ∈ II)
238237, 145syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝑣 ⊆ (0[,]1))
239 xpss12 5572 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑢 ⊆ (0[,]1) ∧ 𝑣 ⊆ (0[,]1)) → (𝑢 × 𝑣) ⊆ ((0[,]1) × (0[,]1)))
240193, 238, 239syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑢 × 𝑣) ⊆ ((0[,]1) × (0[,]1)))
24137restuni 21772 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((II ×t II) ∈ Top ∧ (𝑢 × 𝑣) ⊆ ((0[,]1) × (0[,]1))) → (𝑢 × 𝑣) = ((II ×t II) ↾t (𝑢 × 𝑣)))
24222, 240, 241sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑢 × 𝑣) = ((II ×t II) ↾t (𝑢 × 𝑣)))
243236, 242eleqtrd 2917 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ⟨𝑟, 0⟩ ∈ ((II ×t II) ↾t (𝑢 × 𝑣)))
244 eqid 2823 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((II ×t II) ↾t (𝑢 × 𝑣)) = ((II ×t II) ↾t (𝑢 × 𝑣))
245244cncnpi 21888 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶) ∧ ⟨𝑟, 0⟩ ∈ ((II ×t II) ↾t (𝑢 × 𝑣))) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩))
246245expcom 416 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝑟, 0⟩ ∈ ((II ×t II) ↾t (𝑢 × 𝑣)) → ((𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩)))
247243, 246syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩)))
24822a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (II ×t II) ∈ Top)
24920a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → II ∈ Top)
250249, 249, 190, 237, 54syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑢 × 𝑣) ∈ (II ×t II))
251 isopn3i 21692 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((II ×t II) ∈ Top ∧ (𝑢 × 𝑣) ∈ (II ×t II)) → ((int‘(II ×t II))‘(𝑢 × 𝑣)) = (𝑢 × 𝑣))
25222, 250, 251sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((int‘(II ×t II))‘(𝑢 × 𝑣)) = (𝑢 × 𝑣))
253236, 252eleqtrrd 2918 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ⟨𝑟, 0⟩ ∈ ((int‘(II ×t II))‘(𝑢 × 𝑣)))
25437, 1cnprest 21899 . . . . . . . . . . . . . . . . . . . . . . 23 ((((II ×t II) ∈ Top ∧ (𝑢 × 𝑣) ⊆ ((0[,]1) × (0[,]1))) ∧ (⟨𝑟, 0⟩ ∈ ((int‘(II ×t II))‘(𝑢 × 𝑣)) ∧ 𝐾:((0[,]1) × (0[,]1))⟶𝐵)) → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩) ↔ (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩)))
255248, 240, 253, 185, 254syl22anc 836 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩) ↔ (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩)))
256247, 255sylibrd 261 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
257234, 256embantd 59 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
258257expimpd 456 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → (((𝑟𝑢 ∧ 0 ∈ 𝑣) ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
259183, 258syl5bi 244 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → ((𝑟𝑢 ∧ 0 ∈ 𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
260259rexlimdvva 3296 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ (0[,]1)) → (∃𝑢 ∈ II ∃𝑣 ∈ II (𝑟𝑢 ∧ 0 ∈ 𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
261182, 260mpd 15 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ (0[,]1)) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩))
262 fveq2 6672 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨𝑟, 0⟩ → (((II ×t II) CnP 𝐶)‘𝑧) = (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩))
263262eleq2d 2900 . . . . . . . . . . . . . . . . 17 (𝑧 = ⟨𝑟, 0⟩ → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧) ↔ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
264263, 69elrab2 3685 . . . . . . . . . . . . . . . 16 (⟨𝑟, 0⟩ ∈ 𝑀 ↔ (⟨𝑟, 0⟩ ∈ ((0[,]1) × (0[,]1)) ∧ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
265175, 261, 264sylanbrc 585 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ (0[,]1)) → ⟨𝑟, 0⟩ ∈ 𝑀)
266 elsni 4586 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ {0} → 𝑎 = 0)
267266opeq2d 4812 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {0} → ⟨𝑟, 𝑎⟩ = ⟨𝑟, 0⟩)
268267eleq1d 2899 . . . . . . . . . . . . . . 15 (𝑎 ∈ {0} → (⟨𝑟, 𝑎⟩ ∈ 𝑀 ↔ ⟨𝑟, 0⟩ ∈ 𝑀))
269265, 268syl5ibrcom 249 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (0[,]1)) → (𝑎 ∈ {0} → ⟨𝑟, 𝑎⟩ ∈ 𝑀))
270269expimpd 456 . . . . . . . . . . . . 13 (𝜑 → ((𝑟 ∈ (0[,]1) ∧ 𝑎 ∈ {0}) → ⟨𝑟, 𝑎⟩ ∈ 𝑀))
271172, 270syl5bi 244 . . . . . . . . . . . 12 (𝜑 → (⟨𝑟, 𝑎⟩ ∈ ((0[,]1) × {0}) → ⟨𝑟, 𝑎⟩ ∈ 𝑀))
272171, 271relssdv 5663 . . . . . . . . . . 11 (𝜑 → ((0[,]1) × {0}) ⊆ 𝑀)
273 sneq 4579 . . . . . . . . . . . . . 14 (𝑎 = 0 → {𝑎} = {0})
274273xpeq2d 5587 . . . . . . . . . . . . 13 (𝑎 = 0 → ((0[,]1) × {𝑎}) = ((0[,]1) × {0}))
275274sseq1d 4000 . . . . . . . . . . . 12 (𝑎 = 0 → (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {0}) ⊆ 𝑀))
276275, 13elrab2 3685 . . . . . . . . . . 11 (0 ∈ 𝐴 ↔ (0 ∈ (0[,]1) ∧ ((0[,]1) × {0}) ⊆ 𝑀))
277169, 272, 276sylanbrc 585 . . . . . . . . . 10 (𝜑 → 0 ∈ 𝐴)
278277ne0d 4303 . . . . . . . . 9 (𝜑𝐴 ≠ ∅)
279 inss2 4208 . . . . . . . . . 10 (II ∩ (Clsd‘II)) ⊆ (Clsd‘II)
280279, 166sseldi 3967 . . . . . . . . 9 (𝜑𝐴 ∈ (Clsd‘II))
28114, 16, 167, 278, 280connclo 22025 . . . . . . . 8 (𝜑𝐴 = (0[,]1))
28213, 281syl5reqr 2873 . . . . . . 7 (𝜑 → (0[,]1) = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀})
283 rabid2 3383 . . . . . . 7 ((0[,]1) = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀} ↔ ∀𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀)
284282, 283sylib 220 . . . . . 6 (𝜑 → ∀𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀)
285 iunss 4971 . . . . . 6 ( 𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ∀𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀)
286284, 285sylibr 236 . . . . 5 (𝜑 𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀)
28712, 286eqsstrid 4017 . . . 4 (𝜑 → ((0[,]1) × (0[,]1)) ⊆ 𝑀)
288287, 69sseqtrdi 4019 . . 3 (𝜑 → ((0[,]1) × (0[,]1)) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)})
289 ssrab 4051 . . . 4 (((0[,]1) × (0[,]1)) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} ↔ (((0[,]1) × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)) ∧ ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)))
290289simprbi 499 . . 3 (((0[,]1) × (0[,]1)) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} → ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
291288, 290syl 17 . 2 (𝜑 → ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
292 txtopon 22201 . . . 4 ((II ∈ (TopOn‘(0[,]1)) ∧ II ∈ (TopOn‘(0[,]1))) → (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))))
293211, 211, 292mp2an 690 . . 3 (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1)))
294 cvmtop1 32509 . . . . 5 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
2952, 294syl 17 . . . 4 (𝜑𝐶 ∈ Top)
2961toptopon 21527 . . . 4 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
297295, 296sylib 220 . . 3 (𝜑𝐶 ∈ (TopOn‘𝐵))
298 cncnp 21890 . . 3 (((II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))) ∧ 𝐶 ∈ (TopOn‘𝐵)) → (𝐾 ∈ ((II ×t II) Cn 𝐶) ↔ (𝐾:((0[,]1) × (0[,]1))⟶𝐵 ∧ ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))))
299293, 297, 298sylancr 589 . 2 (𝜑 → (𝐾 ∈ ((II ×t II) Cn 𝐶) ↔ (𝐾:((0[,]1) × (0[,]1))⟶𝐵 ∧ ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))))
3008, 291, 299mpbir2and 711 1 (𝜑𝐾 ∈ ((II ×t II) Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  cdif 3935  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569  cop 4575   cuni 4840   ciun 4921  {copab 5130  cmpt 5148   × cxp 5555  ccnv 5556  cres 5559  cima 5560  ccom 5561  Rel wrel 5562   Fn wfn 6352  wf 6353  cfv 6357  crio 7115  (class class class)co 7158  cmpo 7160  0cc0 10539  1c1 10540  [,]cicc 12744  t crest 16696  Topctop 21503  TopOnctopon 21520  Clsdccld 21626  intcnt 21627  neicnei 21707   Cn ccn 21834   CnP ccnp 21835  Compccmp 21996  Conncconn 22021   ×t ctx 22170  Homeochmeo 22363  IIcii 23485   CovMap ccvm 32504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-ec 8293  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-cn 21837  df-cnp 21838  df-cmp 21997  df-conn 22022  df-lly 22076  df-nlly 22077  df-tx 22172  df-hmeo 22365  df-xms 22932  df-ms 22933  df-tms 22934  df-ii 23487  df-htpy 23576  df-phtpy 23577  df-phtpc 23598  df-pconn 32470  df-sconn 32471  df-cvm 32505
This theorem is referenced by:  cvmlift2lem13  32564
  Copyright terms: Public domain W3C validator