| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssintrab | Structured version Visualization version GIF version | ||
| Description: Subclass of the intersection of a restricted class abstraction. (Contributed by NM, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| ssintrab | ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ⊆ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3396 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
| 2 | 1 | inteqi 4901 | . . 3 ⊢ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} = ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
| 3 | 2 | sseq2i 3964 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
| 4 | impexp 450 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ⊆ 𝑥) ↔ (𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ⊆ 𝑥))) | |
| 5 | 4 | albii 1820 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ⊆ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ⊆ 𝑥))) |
| 6 | ssintab 4915 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ⊆ 𝑥)) | |
| 7 | df-ral 3048 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ⊆ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ⊆ 𝑥))) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ⊆ 𝑥)) |
| 9 | 3, 8 | bitri 275 | 1 ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ⊆ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∈ wcel 2111 {cab 2709 ∀wral 3047 {crab 3395 ⊆ wss 3902 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-ss 3919 df-int 4898 |
| This theorem is referenced by: knatar 7291 harval2 9887 pwfseqlem3 10548 elrgspnlem4 33207 ldgenpisyslem3 34173 topjoin 36398 |
| Copyright terms: Public domain | W3C validator |