MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssintrab Structured version   Visualization version   GIF version

Theorem ssintrab 4921
Description: Subclass of the intersection of a restricted class abstraction. (Contributed by NM, 30-Jan-2015.)
Assertion
Ref Expression
ssintrab (𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem ssintrab
StepHypRef Expression
1 df-rab 3396 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
21inteqi 4901 . . 3 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
32sseq2i 3964 . 2 (𝐴 {𝑥𝐵𝜑} ↔ 𝐴 {𝑥 ∣ (𝑥𝐵𝜑)})
4 impexp 450 . . . 4 (((𝑥𝐵𝜑) → 𝐴𝑥) ↔ (𝑥𝐵 → (𝜑𝐴𝑥)))
54albii 1820 . . 3 (∀𝑥((𝑥𝐵𝜑) → 𝐴𝑥) ↔ ∀𝑥(𝑥𝐵 → (𝜑𝐴𝑥)))
6 ssintab 4915 . . 3 (𝐴 {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∀𝑥((𝑥𝐵𝜑) → 𝐴𝑥))
7 df-ral 3048 . . 3 (∀𝑥𝐵 (𝜑𝐴𝑥) ↔ ∀𝑥(𝑥𝐵 → (𝜑𝐴𝑥)))
85, 6, 73bitr4i 303 . 2 (𝐴 {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥))
93, 8bitri 275 1 (𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wcel 2111  {cab 2709  wral 3047  {crab 3395  wss 3902   cint 4897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-ss 3919  df-int 4898
This theorem is referenced by:  knatar  7291  harval2  9887  pwfseqlem3  10548  elrgspnlem4  33207  ldgenpisyslem3  34173  topjoin  36398
  Copyright terms: Public domain W3C validator