Step | Hyp | Ref
| Expression |
1 | | vex 3436 |
. . . 4
⊢ 𝑥 ∈ V |
2 | | vex 3436 |
. . . 4
⊢ 𝑟 ∈ V |
3 | | fvex 6787 |
. . . . 5
⊢ (𝐻‘(card‘𝑥)) ∈ V |
4 | | fvex 6787 |
. . . . 5
⊢ (𝐷‘∩ {𝑧
∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥}) ∈ V |
5 | 3, 4 | ifex 4509 |
. . . 4
⊢ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥})) ∈ V |
6 | | pwfseqlem4.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
7 | 6 | ovmpt4g 7420 |
. . . 4
⊢ ((𝑥 ∈ V ∧ 𝑟 ∈ V ∧ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥})) ∈ V) → (𝑥𝐹𝑟) = if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
8 | 1, 2, 5, 7 | mp3an 1460 |
. . 3
⊢ (𝑥𝐹𝑟) = if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥})) |
9 | | pwfseqlem4.ps |
. . . . . . . 8
⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) |
10 | 9 | simprbi 497 |
. . . . . . 7
⊢ (𝜓 → ω ≼ 𝑥) |
11 | 10 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → ω ≼ 𝑥) |
12 | | domnsym 8886 |
. . . . . 6
⊢ (ω
≼ 𝑥 → ¬
𝑥 ≺
ω) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑥 ≺ ω) |
14 | | isfinite 9410 |
. . . . 5
⊢ (𝑥 ∈ Fin ↔ 𝑥 ≺
ω) |
15 | 13, 14 | sylnibr 329 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑥 ∈ Fin) |
16 | 15 | iffalsed 4470 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥})) = (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥})) |
17 | 8, 16 | eqtrid 2790 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑟) = (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥})) |
18 | | pwfseqlem4.g |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
19 | | pwfseqlem4.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ⊆ 𝐴) |
20 | | pwfseqlem4.h |
. . . . . . 7
⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) |
21 | | pwfseqlem4.k |
. . . . . . 7
⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) |
22 | | pwfseqlem4.d |
. . . . . . 7
⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) |
23 | 18, 19, 20, 9, 21, 22 | pwfseqlem1 10414 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → 𝐷 ∈ (∪
𝑛 ∈ ω (𝐴 ↑m 𝑛) ∖ ∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛))) |
24 | | eldif 3897 |
. . . . . 6
⊢ (𝐷 ∈ (∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) ∖ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) ↔ (𝐷 ∈ ∪
𝑛 ∈ ω (𝐴 ↑m 𝑛) ∧ ¬ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛))) |
25 | 23, 24 | sylib 217 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓) → (𝐷 ∈ ∪
𝑛 ∈ ω (𝐴 ↑m 𝑛) ∧ ¬ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛))) |
26 | 25 | simpld 495 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → 𝐷 ∈ ∪
𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
27 | | eliun 4928 |
. . . 4
⊢ (𝐷 ∈ ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) ↔ ∃𝑛 ∈ ω 𝐷 ∈ (𝐴 ↑m 𝑛)) |
28 | 26, 27 | sylib 217 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ∃𝑛 ∈ ω 𝐷 ∈ (𝐴 ↑m 𝑛)) |
29 | | elmapi 8637 |
. . . . . 6
⊢ (𝐷 ∈ (𝐴 ↑m 𝑛) → 𝐷:𝑛⟶𝐴) |
30 | 29 | ad2antll 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → 𝐷:𝑛⟶𝐴) |
31 | | ssiun2 4977 |
. . . . . . . . 9
⊢ (𝑛 ∈ ω → (𝑥 ↑m 𝑛) ⊆ ∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)) |
32 | 31 | ad2antrl 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → (𝑥 ↑m 𝑛) ⊆ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) |
33 | 25 | simprd 496 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → ¬ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) |
34 | 33 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → ¬ 𝐷 ∈ ∪
𝑛 ∈ ω (𝑥 ↑m 𝑛)) |
35 | 32, 34 | ssneldd 3924 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → ¬ 𝐷 ∈ (𝑥 ↑m 𝑛)) |
36 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑛 ∈ V |
37 | 1, 36 | elmap 8659 |
. . . . . . . 8
⊢ (𝐷 ∈ (𝑥 ↑m 𝑛) ↔ 𝐷:𝑛⟶𝑥) |
38 | | ffn 6600 |
. . . . . . . . 9
⊢ (𝐷:𝑛⟶𝐴 → 𝐷 Fn 𝑛) |
39 | | ffnfv 6992 |
. . . . . . . . . 10
⊢ (𝐷:𝑛⟶𝑥 ↔ (𝐷 Fn 𝑛 ∧ ∀𝑧 ∈ 𝑛 (𝐷‘𝑧) ∈ 𝑥)) |
40 | 39 | baib 536 |
. . . . . . . . 9
⊢ (𝐷 Fn 𝑛 → (𝐷:𝑛⟶𝑥 ↔ ∀𝑧 ∈ 𝑛 (𝐷‘𝑧) ∈ 𝑥)) |
41 | 30, 38, 40 | 3syl 18 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → (𝐷:𝑛⟶𝑥 ↔ ∀𝑧 ∈ 𝑛 (𝐷‘𝑧) ∈ 𝑥)) |
42 | 37, 41 | bitrid 282 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → (𝐷 ∈ (𝑥 ↑m 𝑛) ↔ ∀𝑧 ∈ 𝑛 (𝐷‘𝑧) ∈ 𝑥)) |
43 | 35, 42 | mtbid 324 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → ¬ ∀𝑧 ∈ 𝑛 (𝐷‘𝑧) ∈ 𝑥) |
44 | | nnon 7718 |
. . . . . . . . 9
⊢ (𝑛 ∈ ω → 𝑛 ∈ On) |
45 | 44 | ad2antrl 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → 𝑛 ∈ On) |
46 | | ssrab2 4013 |
. . . . . . . . . 10
⊢ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥} ⊆ ω |
47 | | omsson 7716 |
. . . . . . . . . 10
⊢ ω
⊆ On |
48 | 46, 47 | sstri 3930 |
. . . . . . . . 9
⊢ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥} ⊆ On |
49 | | ordom 7722 |
. . . . . . . . . . . . 13
⊢ Ord
ω |
50 | | simprl 768 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → 𝑛 ∈ ω) |
51 | | ordelss 6282 |
. . . . . . . . . . . . 13
⊢ ((Ord
ω ∧ 𝑛 ∈
ω) → 𝑛 ⊆
ω) |
52 | 49, 50, 51 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → 𝑛 ⊆ ω) |
53 | | rexnal 3169 |
. . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
𝑛 ¬ (𝐷‘𝑧) ∈ 𝑥 ↔ ¬ ∀𝑧 ∈ 𝑛 (𝐷‘𝑧) ∈ 𝑥) |
54 | 43, 53 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → ∃𝑧 ∈ 𝑛 ¬ (𝐷‘𝑧) ∈ 𝑥) |
55 | | ssrexv 3988 |
. . . . . . . . . . . 12
⊢ (𝑛 ⊆ ω →
(∃𝑧 ∈ 𝑛 ¬ (𝐷‘𝑧) ∈ 𝑥 → ∃𝑧 ∈ ω ¬ (𝐷‘𝑧) ∈ 𝑥)) |
56 | 52, 54, 55 | sylc 65 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → ∃𝑧 ∈ ω ¬ (𝐷‘𝑧) ∈ 𝑥) |
57 | | rabn0 4319 |
. . . . . . . . . . 11
⊢ ({𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥} ≠ ∅ ↔ ∃𝑧 ∈ ω ¬ (𝐷‘𝑧) ∈ 𝑥) |
58 | 56, 57 | sylibr 233 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → {𝑧 ∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥} ≠ ∅) |
59 | | onint 7640 |
. . . . . . . . . 10
⊢ (({𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥} ⊆ On ∧ {𝑧 ∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥} ≠ ∅) → ∩ {𝑧
∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥}) |
60 | 48, 58, 59 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → ∩
{𝑧 ∈ ω ∣
¬ (𝐷‘𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥}) |
61 | 48, 60 | sselid 3919 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → ∩
{𝑧 ∈ ω ∣
¬ (𝐷‘𝑧) ∈ 𝑥} ∈ On) |
62 | | ontri1 6300 |
. . . . . . . 8
⊢ ((𝑛 ∈ On ∧ ∩ {𝑧
∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥} ∈ On) → (𝑛 ⊆ ∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥} ↔ ¬ ∩
{𝑧 ∈ ω ∣
¬ (𝐷‘𝑧) ∈ 𝑥} ∈ 𝑛)) |
63 | 45, 61, 62 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → (𝑛 ⊆ ∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥} ↔ ¬ ∩
{𝑧 ∈ ω ∣
¬ (𝐷‘𝑧) ∈ 𝑥} ∈ 𝑛)) |
64 | | ssintrab 4902 |
. . . . . . . 8
⊢ (𝑛 ⊆ ∩ {𝑧
∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥} ↔ ∀𝑧 ∈ ω (¬ (𝐷‘𝑧) ∈ 𝑥 → 𝑛 ⊆ 𝑧)) |
65 | | nnon 7718 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ω → 𝑧 ∈ On) |
66 | | ontri1 6300 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ On ∧ 𝑧 ∈ On) → (𝑛 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑛)) |
67 | 44, 65, 66 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ω ∧ 𝑧 ∈ ω) → (𝑛 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑛)) |
68 | 67 | imbi2d 341 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ω ∧ 𝑧 ∈ ω) → ((¬
(𝐷‘𝑧) ∈ 𝑥 → 𝑛 ⊆ 𝑧) ↔ (¬ (𝐷‘𝑧) ∈ 𝑥 → ¬ 𝑧 ∈ 𝑛))) |
69 | | con34b 316 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝑛 → (𝐷‘𝑧) ∈ 𝑥) ↔ (¬ (𝐷‘𝑧) ∈ 𝑥 → ¬ 𝑧 ∈ 𝑛)) |
70 | 68, 69 | bitr4di 289 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ω ∧ 𝑧 ∈ ω) → ((¬
(𝐷‘𝑧) ∈ 𝑥 → 𝑛 ⊆ 𝑧) ↔ (𝑧 ∈ 𝑛 → (𝐷‘𝑧) ∈ 𝑥))) |
71 | 70 | pm5.74da 801 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ω → ((𝑧 ∈ ω → (¬
(𝐷‘𝑧) ∈ 𝑥 → 𝑛 ⊆ 𝑧)) ↔ (𝑧 ∈ ω → (𝑧 ∈ 𝑛 → (𝐷‘𝑧) ∈ 𝑥)))) |
72 | | bi2.04 389 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ω → (𝑧 ∈ 𝑛 → (𝐷‘𝑧) ∈ 𝑥)) ↔ (𝑧 ∈ 𝑛 → (𝑧 ∈ ω → (𝐷‘𝑧) ∈ 𝑥))) |
73 | 71, 72 | bitrdi 287 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ω → ((𝑧 ∈ ω → (¬
(𝐷‘𝑧) ∈ 𝑥 → 𝑛 ⊆ 𝑧)) ↔ (𝑧 ∈ 𝑛 → (𝑧 ∈ ω → (𝐷‘𝑧) ∈ 𝑥)))) |
74 | | elnn 7723 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝑛 ∧ 𝑛 ∈ ω) → 𝑧 ∈ ω) |
75 | | pm2.27 42 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ω → ((𝑧 ∈ ω → (𝐷‘𝑧) ∈ 𝑥) → (𝐷‘𝑧) ∈ 𝑥)) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝑛 ∧ 𝑛 ∈ ω) → ((𝑧 ∈ ω → (𝐷‘𝑧) ∈ 𝑥) → (𝐷‘𝑧) ∈ 𝑥)) |
77 | 76 | expcom 414 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ω → (𝑧 ∈ 𝑛 → ((𝑧 ∈ ω → (𝐷‘𝑧) ∈ 𝑥) → (𝐷‘𝑧) ∈ 𝑥))) |
78 | 77 | a2d 29 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ω → ((𝑧 ∈ 𝑛 → (𝑧 ∈ ω → (𝐷‘𝑧) ∈ 𝑥)) → (𝑧 ∈ 𝑛 → (𝐷‘𝑧) ∈ 𝑥))) |
79 | 73, 78 | sylbid 239 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ω → ((𝑧 ∈ ω → (¬
(𝐷‘𝑧) ∈ 𝑥 → 𝑛 ⊆ 𝑧)) → (𝑧 ∈ 𝑛 → (𝐷‘𝑧) ∈ 𝑥))) |
80 | 79 | ad2antrl 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → ((𝑧 ∈ ω → (¬ (𝐷‘𝑧) ∈ 𝑥 → 𝑛 ⊆ 𝑧)) → (𝑧 ∈ 𝑛 → (𝐷‘𝑧) ∈ 𝑥))) |
81 | 80 | ralimdv2 3107 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → (∀𝑧 ∈ ω (¬ (𝐷‘𝑧) ∈ 𝑥 → 𝑛 ⊆ 𝑧) → ∀𝑧 ∈ 𝑛 (𝐷‘𝑧) ∈ 𝑥)) |
82 | 64, 81 | syl5bi 241 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → (𝑛 ⊆ ∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥} → ∀𝑧 ∈ 𝑛 (𝐷‘𝑧) ∈ 𝑥)) |
83 | 63, 82 | sylbird 259 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → (¬ ∩ {𝑧
∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥} ∈ 𝑛 → ∀𝑧 ∈ 𝑛 (𝐷‘𝑧) ∈ 𝑥)) |
84 | 43, 83 | mt3d 148 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → ∩
{𝑧 ∈ ω ∣
¬ (𝐷‘𝑧) ∈ 𝑥} ∈ 𝑛) |
85 | 30, 84 | ffvelrnd 6962 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}) ∈ 𝐴) |
86 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑦 = ∩
{𝑧 ∈ ω ∣
¬ (𝐷‘𝑧) ∈ 𝑥} → (𝐷‘𝑦) = (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥})) |
87 | 86 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑦 = ∩
{𝑧 ∈ ω ∣
¬ (𝐷‘𝑧) ∈ 𝑥} → ((𝐷‘𝑦) ∈ 𝑥 ↔ (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}) ∈ 𝑥)) |
88 | 87 | notbid 318 |
. . . . . . 7
⊢ (𝑦 = ∩
{𝑧 ∈ ω ∣
¬ (𝐷‘𝑧) ∈ 𝑥} → (¬ (𝐷‘𝑦) ∈ 𝑥 ↔ ¬ (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}) ∈ 𝑥)) |
89 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑦 → (𝐷‘𝑧) = (𝐷‘𝑦)) |
90 | 89 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → ((𝐷‘𝑧) ∈ 𝑥 ↔ (𝐷‘𝑦) ∈ 𝑥)) |
91 | 90 | notbid 318 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (¬ (𝐷‘𝑧) ∈ 𝑥 ↔ ¬ (𝐷‘𝑦) ∈ 𝑥)) |
92 | 91 | cbvrabv 3426 |
. . . . . . 7
⊢ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥} = {𝑦 ∈ ω ∣ ¬ (𝐷‘𝑦) ∈ 𝑥} |
93 | 88, 92 | elrab2 3627 |
. . . . . 6
⊢ (∩ {𝑧
∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥} ↔ (∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥} ∈ ω ∧ ¬ (𝐷‘∩ {𝑧
∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥}) ∈ 𝑥)) |
94 | 93 | simprbi 497 |
. . . . 5
⊢ (∩ {𝑧
∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥} → ¬ (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}) ∈ 𝑥) |
95 | 60, 94 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → ¬ (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}) ∈ 𝑥) |
96 | 85, 95 | eldifd 3898 |
. . 3
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴 ↑m 𝑛))) → (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}) ∈ (𝐴 ∖ 𝑥)) |
97 | 28, 96 | rexlimddv 3220 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}) ∈ (𝐴 ∖ 𝑥)) |
98 | 17, 97 | eqeltrd 2839 |
1
⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑟) ∈ (𝐴 ∖ 𝑥)) |