MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem3 Structured version   Visualization version   GIF version

Theorem pwfseqlem3 10071
Description: Lemma for pwfseq 10075. Using the construction 𝐷 from pwfseqlem1 10069, produce a function 𝐹 that maps any well-ordered infinite set to an element outside the set. (Contributed by Mario Carneiro, 31-May-2015.)
Hypotheses
Ref Expression
pwfseqlem4.g (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
pwfseqlem4.x (𝜑𝑋𝐴)
pwfseqlem4.h (𝜑𝐻:ω–1-1-onto𝑋)
pwfseqlem4.ps (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
pwfseqlem4.k ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)
pwfseqlem4.d 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
pwfseqlem4.f 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
Assertion
Ref Expression
pwfseqlem3 ((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥))
Distinct variable groups:   𝑛,𝑟,𝑤,𝑥,𝑧   𝐷,𝑛,𝑧   𝑤,𝐺   𝑤,𝐾   𝐻,𝑟,𝑥,𝑧   𝜑,𝑛,𝑟,𝑥,𝑧   𝜓,𝑛,𝑧   𝐴,𝑛,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝜓(𝑥,𝑤,𝑟)   𝐴(𝑤)   𝐷(𝑥,𝑤,𝑟)   𝐹(𝑥,𝑧,𝑤,𝑛,𝑟)   𝐺(𝑥,𝑧,𝑛,𝑟)   𝐻(𝑤,𝑛)   𝐾(𝑥,𝑧,𝑛,𝑟)   𝑋(𝑥,𝑧,𝑤,𝑛,𝑟)

Proof of Theorem pwfseqlem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3444 . . . 4 𝑥 ∈ V
2 vex 3444 . . . 4 𝑟 ∈ V
3 fvex 6658 . . . . 5 (𝐻‘(card‘𝑥)) ∈ V
4 fvex 6658 . . . . 5 (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ V
53, 4ifex 4473 . . . 4 if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})) ∈ V
6 pwfseqlem4.f . . . . 5 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
76ovmpt4g 7276 . . . 4 ((𝑥 ∈ V ∧ 𝑟 ∈ V ∧ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})) ∈ V) → (𝑥𝐹𝑟) = if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
81, 2, 5, 7mp3an 1458 . . 3 (𝑥𝐹𝑟) = if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}))
9 pwfseqlem4.ps . . . . . . . 8 (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
109simprbi 500 . . . . . . 7 (𝜓 → ω ≼ 𝑥)
1110adantl 485 . . . . . 6 ((𝜑𝜓) → ω ≼ 𝑥)
12 domnsym 8627 . . . . . 6 (ω ≼ 𝑥 → ¬ 𝑥 ≺ ω)
1311, 12syl 17 . . . . 5 ((𝜑𝜓) → ¬ 𝑥 ≺ ω)
14 isfinite 9099 . . . . 5 (𝑥 ∈ Fin ↔ 𝑥 ≺ ω)
1513, 14sylnibr 332 . . . 4 ((𝜑𝜓) → ¬ 𝑥 ∈ Fin)
1615iffalsed 4436 . . 3 ((𝜑𝜓) → if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})) = (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}))
178, 16syl5eq 2845 . 2 ((𝜑𝜓) → (𝑥𝐹𝑟) = (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}))
18 pwfseqlem4.g . . . . . . 7 (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
19 pwfseqlem4.x . . . . . . 7 (𝜑𝑋𝐴)
20 pwfseqlem4.h . . . . . . 7 (𝜑𝐻:ω–1-1-onto𝑋)
21 pwfseqlem4.k . . . . . . 7 ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)
22 pwfseqlem4.d . . . . . . 7 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
2318, 19, 20, 9, 21, 22pwfseqlem1 10069 . . . . . 6 ((𝜑𝜓) → 𝐷 ∈ ( 𝑛 ∈ ω (𝐴m 𝑛) ∖ 𝑛 ∈ ω (𝑥m 𝑛)))
24 eldif 3891 . . . . . 6 (𝐷 ∈ ( 𝑛 ∈ ω (𝐴m 𝑛) ∖ 𝑛 ∈ ω (𝑥m 𝑛)) ↔ (𝐷 𝑛 ∈ ω (𝐴m 𝑛) ∧ ¬ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)))
2523, 24sylib 221 . . . . 5 ((𝜑𝜓) → (𝐷 𝑛 ∈ ω (𝐴m 𝑛) ∧ ¬ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)))
2625simpld 498 . . . 4 ((𝜑𝜓) → 𝐷 𝑛 ∈ ω (𝐴m 𝑛))
27 eliun 4885 . . . 4 (𝐷 𝑛 ∈ ω (𝐴m 𝑛) ↔ ∃𝑛 ∈ ω 𝐷 ∈ (𝐴m 𝑛))
2826, 27sylib 221 . . 3 ((𝜑𝜓) → ∃𝑛 ∈ ω 𝐷 ∈ (𝐴m 𝑛))
29 elmapi 8411 . . . . . 6 (𝐷 ∈ (𝐴m 𝑛) → 𝐷:𝑛𝐴)
3029ad2antll 728 . . . . 5 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → 𝐷:𝑛𝐴)
31 ssiun2 4934 . . . . . . . . 9 (𝑛 ∈ ω → (𝑥m 𝑛) ⊆ 𝑛 ∈ ω (𝑥m 𝑛))
3231ad2antrl 727 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝑥m 𝑛) ⊆ 𝑛 ∈ ω (𝑥m 𝑛))
3325simprd 499 . . . . . . . . 9 ((𝜑𝜓) → ¬ 𝐷 𝑛 ∈ ω (𝑥m 𝑛))
3433adantr 484 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ¬ 𝐷 𝑛 ∈ ω (𝑥m 𝑛))
3532, 34ssneldd 3918 . . . . . . 7 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ¬ 𝐷 ∈ (𝑥m 𝑛))
36 vex 3444 . . . . . . . . 9 𝑛 ∈ V
371, 36elmap 8418 . . . . . . . 8 (𝐷 ∈ (𝑥m 𝑛) ↔ 𝐷:𝑛𝑥)
38 ffn 6487 . . . . . . . . 9 (𝐷:𝑛𝐴𝐷 Fn 𝑛)
39 ffnfv 6859 . . . . . . . . . 10 (𝐷:𝑛𝑥 ↔ (𝐷 Fn 𝑛 ∧ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
4039baib 539 . . . . . . . . 9 (𝐷 Fn 𝑛 → (𝐷:𝑛𝑥 ↔ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
4130, 38, 403syl 18 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝐷:𝑛𝑥 ↔ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
4237, 41syl5bb 286 . . . . . . 7 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝐷 ∈ (𝑥m 𝑛) ↔ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
4335, 42mtbid 327 . . . . . 6 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ¬ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥)
44 nnon 7566 . . . . . . . . 9 (𝑛 ∈ ω → 𝑛 ∈ On)
4544ad2antrl 727 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → 𝑛 ∈ On)
46 ssrab2 4007 . . . . . . . . . 10 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ⊆ ω
47 omsson 7564 . . . . . . . . . 10 ω ⊆ On
4846, 47sstri 3924 . . . . . . . . 9 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ⊆ On
49 ordom 7569 . . . . . . . . . . . . 13 Ord ω
50 simprl 770 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → 𝑛 ∈ ω)
51 ordelss 6175 . . . . . . . . . . . . 13 ((Ord ω ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω)
5249, 50, 51sylancr 590 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → 𝑛 ⊆ ω)
53 rexnal 3201 . . . . . . . . . . . . 13 (∃𝑧𝑛 ¬ (𝐷𝑧) ∈ 𝑥 ↔ ¬ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥)
5443, 53sylibr 237 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ∃𝑧𝑛 ¬ (𝐷𝑧) ∈ 𝑥)
55 ssrexv 3982 . . . . . . . . . . . 12 (𝑛 ⊆ ω → (∃𝑧𝑛 ¬ (𝐷𝑧) ∈ 𝑥 → ∃𝑧 ∈ ω ¬ (𝐷𝑧) ∈ 𝑥))
5652, 54, 55sylc 65 . . . . . . . . . . 11 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ∃𝑧 ∈ ω ¬ (𝐷𝑧) ∈ 𝑥)
57 rabn0 4293 . . . . . . . . . . 11 ({𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ≠ ∅ ↔ ∃𝑧 ∈ ω ¬ (𝐷𝑧) ∈ 𝑥)
5856, 57sylibr 237 . . . . . . . . . 10 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ≠ ∅)
59 onint 7490 . . . . . . . . . 10 (({𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ⊆ On ∧ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ≠ ∅) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})
6048, 58, 59sylancr 590 . . . . . . . . 9 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})
6148, 60sseldi 3913 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ On)
62 ontri1 6193 . . . . . . . 8 ((𝑛 ∈ On ∧ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ On) → (𝑛 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ↔ ¬ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ 𝑛))
6345, 61, 62syl2anc 587 . . . . . . 7 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝑛 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ↔ ¬ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ 𝑛))
64 ssintrab 4861 . . . . . . . 8 (𝑛 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ↔ ∀𝑧 ∈ ω (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧))
65 nnon 7566 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ω → 𝑧 ∈ On)
66 ontri1 6193 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ On ∧ 𝑧 ∈ On) → (𝑛𝑧 ↔ ¬ 𝑧𝑛))
6744, 65, 66syl2an 598 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ω ∧ 𝑧 ∈ ω) → (𝑛𝑧 ↔ ¬ 𝑧𝑛))
6867imbi2d 344 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ 𝑧 ∈ ω) → ((¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧) ↔ (¬ (𝐷𝑧) ∈ 𝑥 → ¬ 𝑧𝑛)))
69 con34b 319 . . . . . . . . . . . . . 14 ((𝑧𝑛 → (𝐷𝑧) ∈ 𝑥) ↔ (¬ (𝐷𝑧) ∈ 𝑥 → ¬ 𝑧𝑛))
7068, 69syl6bbr 292 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ 𝑧 ∈ ω) → ((¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧) ↔ (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)))
7170pm5.74da 803 . . . . . . . . . . . 12 (𝑛 ∈ ω → ((𝑧 ∈ ω → (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧)) ↔ (𝑧 ∈ ω → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥))))
72 bi2.04 392 . . . . . . . . . . . 12 ((𝑧 ∈ ω → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)) ↔ (𝑧𝑛 → (𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥)))
7371, 72syl6bb 290 . . . . . . . . . . 11 (𝑛 ∈ ω → ((𝑧 ∈ ω → (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧)) ↔ (𝑧𝑛 → (𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥))))
74 elnn 7570 . . . . . . . . . . . . . 14 ((𝑧𝑛𝑛 ∈ ω) → 𝑧 ∈ ω)
75 pm2.27 42 . . . . . . . . . . . . . 14 (𝑧 ∈ ω → ((𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥) → (𝐷𝑧) ∈ 𝑥))
7674, 75syl 17 . . . . . . . . . . . . 13 ((𝑧𝑛𝑛 ∈ ω) → ((𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥) → (𝐷𝑧) ∈ 𝑥))
7776expcom 417 . . . . . . . . . . . 12 (𝑛 ∈ ω → (𝑧𝑛 → ((𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥) → (𝐷𝑧) ∈ 𝑥)))
7877a2d 29 . . . . . . . . . . 11 (𝑛 ∈ ω → ((𝑧𝑛 → (𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥)) → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)))
7973, 78sylbid 243 . . . . . . . . . 10 (𝑛 ∈ ω → ((𝑧 ∈ ω → (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧)) → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)))
8079ad2antrl 727 . . . . . . . . 9 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ((𝑧 ∈ ω → (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧)) → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)))
8180ralimdv2 3143 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (∀𝑧 ∈ ω (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧) → ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
8264, 81syl5bi 245 . . . . . . 7 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝑛 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
8363, 82sylbird 263 . . . . . 6 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (¬ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ 𝑛 → ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
8443, 83mt3d 150 . . . . 5 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ 𝑛)
8530, 84ffvelrnd 6829 . . . 4 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝐴)
86 fveq2 6645 . . . . . . . . 9 (𝑦 = {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → (𝐷𝑦) = (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}))
8786eleq1d 2874 . . . . . . . 8 (𝑦 = {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → ((𝐷𝑦) ∈ 𝑥 ↔ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥))
8887notbid 321 . . . . . . 7 (𝑦 = {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → (¬ (𝐷𝑦) ∈ 𝑥 ↔ ¬ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥))
89 fveq2 6645 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝐷𝑧) = (𝐷𝑦))
9089eleq1d 2874 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝐷𝑧) ∈ 𝑥 ↔ (𝐷𝑦) ∈ 𝑥))
9190notbid 321 . . . . . . . 8 (𝑧 = 𝑦 → (¬ (𝐷𝑧) ∈ 𝑥 ↔ ¬ (𝐷𝑦) ∈ 𝑥))
9291cbvrabv 3439 . . . . . . 7 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} = {𝑦 ∈ ω ∣ ¬ (𝐷𝑦) ∈ 𝑥}
9388, 92elrab2 3631 . . . . . 6 ( {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ↔ ( {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ ω ∧ ¬ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥))
9493simprbi 500 . . . . 5 ( {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → ¬ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥)
9560, 94syl 17 . . . 4 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ¬ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥)
9685, 95eldifd 3892 . . 3 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ (𝐴𝑥))
9728, 96rexlimddv 3250 . 2 ((𝜑𝜓) → (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ (𝐴𝑥))
9817, 97eqeltrd 2890 1 ((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  cdif 3878  wss 3881  c0 4243  ifcif 4425  𝒫 cpw 4497   cint 4838   ciun 4881   class class class wbr 5030   We wwe 5477   × cxp 5517  ccnv 5518  ran crn 5520  Ord word 6158  Oncon0 6159   Fn wfn 6319  wf 6320  1-1wf1 6321  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cmpo 7137  ωcom 7560  m cmap 8389  cdom 8490  csdm 8491  Fincfn 8492  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496
This theorem is referenced by:  pwfseqlem4a  10072  pwfseqlem4  10073
  Copyright terms: Public domain W3C validator