MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem3 Structured version   Visualization version   GIF version

Theorem pwfseqlem3 10729
Description: Lemma for pwfseq 10733. Using the construction 𝐷 from pwfseqlem1 10727, produce a function 𝐹 that maps any well-ordered infinite set to an element outside the set. (Contributed by Mario Carneiro, 31-May-2015.)
Hypotheses
Ref Expression
pwfseqlem4.g (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
pwfseqlem4.x (𝜑𝑋𝐴)
pwfseqlem4.h (𝜑𝐻:ω–1-1-onto𝑋)
pwfseqlem4.ps (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
pwfseqlem4.k ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)
pwfseqlem4.d 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
pwfseqlem4.f 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
Assertion
Ref Expression
pwfseqlem3 ((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥))
Distinct variable groups:   𝑛,𝑟,𝑤,𝑥,𝑧   𝐷,𝑛,𝑧   𝑤,𝐺   𝑤,𝐾   𝐻,𝑟,𝑥,𝑧   𝜑,𝑛,𝑟,𝑥,𝑧   𝜓,𝑛,𝑧   𝐴,𝑛,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝜓(𝑥,𝑤,𝑟)   𝐴(𝑤)   𝐷(𝑥,𝑤,𝑟)   𝐹(𝑥,𝑧,𝑤,𝑛,𝑟)   𝐺(𝑥,𝑧,𝑛,𝑟)   𝐻(𝑤,𝑛)   𝐾(𝑥,𝑧,𝑛,𝑟)   𝑋(𝑥,𝑧,𝑤,𝑛,𝑟)

Proof of Theorem pwfseqlem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . 4 𝑥 ∈ V
2 vex 3492 . . . 4 𝑟 ∈ V
3 fvex 6933 . . . . 5 (𝐻‘(card‘𝑥)) ∈ V
4 fvex 6933 . . . . 5 (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ V
53, 4ifex 4598 . . . 4 if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})) ∈ V
6 pwfseqlem4.f . . . . 5 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
76ovmpt4g 7597 . . . 4 ((𝑥 ∈ V ∧ 𝑟 ∈ V ∧ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})) ∈ V) → (𝑥𝐹𝑟) = if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
81, 2, 5, 7mp3an 1461 . . 3 (𝑥𝐹𝑟) = if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}))
9 pwfseqlem4.ps . . . . . . . 8 (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
109simprbi 496 . . . . . . 7 (𝜓 → ω ≼ 𝑥)
1110adantl 481 . . . . . 6 ((𝜑𝜓) → ω ≼ 𝑥)
12 domnsym 9165 . . . . . 6 (ω ≼ 𝑥 → ¬ 𝑥 ≺ ω)
1311, 12syl 17 . . . . 5 ((𝜑𝜓) → ¬ 𝑥 ≺ ω)
14 isfinite 9721 . . . . 5 (𝑥 ∈ Fin ↔ 𝑥 ≺ ω)
1513, 14sylnibr 329 . . . 4 ((𝜑𝜓) → ¬ 𝑥 ∈ Fin)
1615iffalsed 4559 . . 3 ((𝜑𝜓) → if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})) = (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}))
178, 16eqtrid 2792 . 2 ((𝜑𝜓) → (𝑥𝐹𝑟) = (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}))
18 pwfseqlem4.g . . . . . . 7 (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
19 pwfseqlem4.x . . . . . . 7 (𝜑𝑋𝐴)
20 pwfseqlem4.h . . . . . . 7 (𝜑𝐻:ω–1-1-onto𝑋)
21 pwfseqlem4.k . . . . . . 7 ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)
22 pwfseqlem4.d . . . . . . 7 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
2318, 19, 20, 9, 21, 22pwfseqlem1 10727 . . . . . 6 ((𝜑𝜓) → 𝐷 ∈ ( 𝑛 ∈ ω (𝐴m 𝑛) ∖ 𝑛 ∈ ω (𝑥m 𝑛)))
24 eldif 3986 . . . . . 6 (𝐷 ∈ ( 𝑛 ∈ ω (𝐴m 𝑛) ∖ 𝑛 ∈ ω (𝑥m 𝑛)) ↔ (𝐷 𝑛 ∈ ω (𝐴m 𝑛) ∧ ¬ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)))
2523, 24sylib 218 . . . . 5 ((𝜑𝜓) → (𝐷 𝑛 ∈ ω (𝐴m 𝑛) ∧ ¬ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)))
2625simpld 494 . . . 4 ((𝜑𝜓) → 𝐷 𝑛 ∈ ω (𝐴m 𝑛))
27 eliun 5019 . . . 4 (𝐷 𝑛 ∈ ω (𝐴m 𝑛) ↔ ∃𝑛 ∈ ω 𝐷 ∈ (𝐴m 𝑛))
2826, 27sylib 218 . . 3 ((𝜑𝜓) → ∃𝑛 ∈ ω 𝐷 ∈ (𝐴m 𝑛))
29 elmapi 8907 . . . . . 6 (𝐷 ∈ (𝐴m 𝑛) → 𝐷:𝑛𝐴)
3029ad2antll 728 . . . . 5 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → 𝐷:𝑛𝐴)
31 ssiun2 5070 . . . . . . . . 9 (𝑛 ∈ ω → (𝑥m 𝑛) ⊆ 𝑛 ∈ ω (𝑥m 𝑛))
3231ad2antrl 727 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝑥m 𝑛) ⊆ 𝑛 ∈ ω (𝑥m 𝑛))
3325simprd 495 . . . . . . . . 9 ((𝜑𝜓) → ¬ 𝐷 𝑛 ∈ ω (𝑥m 𝑛))
3433adantr 480 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ¬ 𝐷 𝑛 ∈ ω (𝑥m 𝑛))
3532, 34ssneldd 4011 . . . . . . 7 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ¬ 𝐷 ∈ (𝑥m 𝑛))
36 vex 3492 . . . . . . . . 9 𝑛 ∈ V
371, 36elmap 8929 . . . . . . . 8 (𝐷 ∈ (𝑥m 𝑛) ↔ 𝐷:𝑛𝑥)
38 ffn 6747 . . . . . . . . 9 (𝐷:𝑛𝐴𝐷 Fn 𝑛)
39 ffnfv 7153 . . . . . . . . . 10 (𝐷:𝑛𝑥 ↔ (𝐷 Fn 𝑛 ∧ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
4039baib 535 . . . . . . . . 9 (𝐷 Fn 𝑛 → (𝐷:𝑛𝑥 ↔ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
4130, 38, 403syl 18 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝐷:𝑛𝑥 ↔ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
4237, 41bitrid 283 . . . . . . 7 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝐷 ∈ (𝑥m 𝑛) ↔ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
4335, 42mtbid 324 . . . . . 6 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ¬ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥)
44 nnon 7909 . . . . . . . . 9 (𝑛 ∈ ω → 𝑛 ∈ On)
4544ad2antrl 727 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → 𝑛 ∈ On)
46 ssrab2 4103 . . . . . . . . . 10 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ⊆ ω
47 omsson 7907 . . . . . . . . . 10 ω ⊆ On
4846, 47sstri 4018 . . . . . . . . 9 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ⊆ On
49 ordom 7913 . . . . . . . . . . . . 13 Ord ω
50 simprl 770 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → 𝑛 ∈ ω)
51 ordelss 6411 . . . . . . . . . . . . 13 ((Ord ω ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω)
5249, 50, 51sylancr 586 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → 𝑛 ⊆ ω)
53 rexnal 3106 . . . . . . . . . . . . 13 (∃𝑧𝑛 ¬ (𝐷𝑧) ∈ 𝑥 ↔ ¬ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥)
5443, 53sylibr 234 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ∃𝑧𝑛 ¬ (𝐷𝑧) ∈ 𝑥)
55 ssrexv 4078 . . . . . . . . . . . 12 (𝑛 ⊆ ω → (∃𝑧𝑛 ¬ (𝐷𝑧) ∈ 𝑥 → ∃𝑧 ∈ ω ¬ (𝐷𝑧) ∈ 𝑥))
5652, 54, 55sylc 65 . . . . . . . . . . 11 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ∃𝑧 ∈ ω ¬ (𝐷𝑧) ∈ 𝑥)
57 rabn0 4412 . . . . . . . . . . 11 ({𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ≠ ∅ ↔ ∃𝑧 ∈ ω ¬ (𝐷𝑧) ∈ 𝑥)
5856, 57sylibr 234 . . . . . . . . . 10 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ≠ ∅)
59 onint 7826 . . . . . . . . . 10 (({𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ⊆ On ∧ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ≠ ∅) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})
6048, 58, 59sylancr 586 . . . . . . . . 9 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})
6148, 60sselid 4006 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ On)
62 ontri1 6429 . . . . . . . 8 ((𝑛 ∈ On ∧ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ On) → (𝑛 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ↔ ¬ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ 𝑛))
6345, 61, 62syl2anc 583 . . . . . . 7 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝑛 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ↔ ¬ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ 𝑛))
64 ssintrab 4995 . . . . . . . 8 (𝑛 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ↔ ∀𝑧 ∈ ω (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧))
65 nnon 7909 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ω → 𝑧 ∈ On)
66 ontri1 6429 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ On ∧ 𝑧 ∈ On) → (𝑛𝑧 ↔ ¬ 𝑧𝑛))
6744, 65, 66syl2an 595 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ω ∧ 𝑧 ∈ ω) → (𝑛𝑧 ↔ ¬ 𝑧𝑛))
6867imbi2d 340 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ 𝑧 ∈ ω) → ((¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧) ↔ (¬ (𝐷𝑧) ∈ 𝑥 → ¬ 𝑧𝑛)))
69 con34b 316 . . . . . . . . . . . . . 14 ((𝑧𝑛 → (𝐷𝑧) ∈ 𝑥) ↔ (¬ (𝐷𝑧) ∈ 𝑥 → ¬ 𝑧𝑛))
7068, 69bitr4di 289 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ 𝑧 ∈ ω) → ((¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧) ↔ (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)))
7170pm5.74da 803 . . . . . . . . . . . 12 (𝑛 ∈ ω → ((𝑧 ∈ ω → (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧)) ↔ (𝑧 ∈ ω → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥))))
72 bi2.04 387 . . . . . . . . . . . 12 ((𝑧 ∈ ω → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)) ↔ (𝑧𝑛 → (𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥)))
7371, 72bitrdi 287 . . . . . . . . . . 11 (𝑛 ∈ ω → ((𝑧 ∈ ω → (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧)) ↔ (𝑧𝑛 → (𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥))))
74 elnn 7914 . . . . . . . . . . . . . 14 ((𝑧𝑛𝑛 ∈ ω) → 𝑧 ∈ ω)
75 pm2.27 42 . . . . . . . . . . . . . 14 (𝑧 ∈ ω → ((𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥) → (𝐷𝑧) ∈ 𝑥))
7674, 75syl 17 . . . . . . . . . . . . 13 ((𝑧𝑛𝑛 ∈ ω) → ((𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥) → (𝐷𝑧) ∈ 𝑥))
7776expcom 413 . . . . . . . . . . . 12 (𝑛 ∈ ω → (𝑧𝑛 → ((𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥) → (𝐷𝑧) ∈ 𝑥)))
7877a2d 29 . . . . . . . . . . 11 (𝑛 ∈ ω → ((𝑧𝑛 → (𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥)) → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)))
7973, 78sylbid 240 . . . . . . . . . 10 (𝑛 ∈ ω → ((𝑧 ∈ ω → (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧)) → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)))
8079ad2antrl 727 . . . . . . . . 9 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ((𝑧 ∈ ω → (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧)) → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)))
8180ralimdv2 3169 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (∀𝑧 ∈ ω (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧) → ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
8264, 81biimtrid 242 . . . . . . 7 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝑛 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
8363, 82sylbird 260 . . . . . 6 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (¬ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ 𝑛 → ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
8443, 83mt3d 148 . . . . 5 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ 𝑛)
8530, 84ffvelcdmd 7119 . . . 4 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝐴)
86 fveq2 6920 . . . . . . . . 9 (𝑦 = {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → (𝐷𝑦) = (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}))
8786eleq1d 2829 . . . . . . . 8 (𝑦 = {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → ((𝐷𝑦) ∈ 𝑥 ↔ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥))
8887notbid 318 . . . . . . 7 (𝑦 = {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → (¬ (𝐷𝑦) ∈ 𝑥 ↔ ¬ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥))
89 fveq2 6920 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝐷𝑧) = (𝐷𝑦))
9089eleq1d 2829 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝐷𝑧) ∈ 𝑥 ↔ (𝐷𝑦) ∈ 𝑥))
9190notbid 318 . . . . . . . 8 (𝑧 = 𝑦 → (¬ (𝐷𝑧) ∈ 𝑥 ↔ ¬ (𝐷𝑦) ∈ 𝑥))
9291cbvrabv 3454 . . . . . . 7 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} = {𝑦 ∈ ω ∣ ¬ (𝐷𝑦) ∈ 𝑥}
9388, 92elrab2 3711 . . . . . 6 ( {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ↔ ( {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ ω ∧ ¬ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥))
9493simprbi 496 . . . . 5 ( {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → ¬ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥)
9560, 94syl 17 . . . 4 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ¬ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥)
9685, 95eldifd 3987 . . 3 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ (𝐴𝑥))
9728, 96rexlimddv 3167 . 2 ((𝜑𝜓) → (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ (𝐴𝑥))
9817, 97eqeltrd 2844 1 ((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  wss 3976  c0 4352  ifcif 4548  𝒫 cpw 4622   cint 4970   ciun 5015   class class class wbr 5166   We wwe 5651   × cxp 5698  ccnv 5699  ran crn 5701  Ord word 6394  Oncon0 6395   Fn wfn 6568  wf 6569  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cmpo 7450  ωcom 7903  m cmap 8884  cdom 9001  csdm 9002  Fincfn 9003  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007
This theorem is referenced by:  pwfseqlem4a  10730  pwfseqlem4  10731
  Copyright terms: Public domain W3C validator