MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem3 Structured version   Visualization version   GIF version

Theorem pwfseqlem3 10257
Description: Lemma for pwfseq 10261. Using the construction 𝐷 from pwfseqlem1 10255, produce a function 𝐹 that maps any well-ordered infinite set to an element outside the set. (Contributed by Mario Carneiro, 31-May-2015.)
Hypotheses
Ref Expression
pwfseqlem4.g (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
pwfseqlem4.x (𝜑𝑋𝐴)
pwfseqlem4.h (𝜑𝐻:ω–1-1-onto𝑋)
pwfseqlem4.ps (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
pwfseqlem4.k ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)
pwfseqlem4.d 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
pwfseqlem4.f 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
Assertion
Ref Expression
pwfseqlem3 ((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥))
Distinct variable groups:   𝑛,𝑟,𝑤,𝑥,𝑧   𝐷,𝑛,𝑧   𝑤,𝐺   𝑤,𝐾   𝐻,𝑟,𝑥,𝑧   𝜑,𝑛,𝑟,𝑥,𝑧   𝜓,𝑛,𝑧   𝐴,𝑛,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝜓(𝑥,𝑤,𝑟)   𝐴(𝑤)   𝐷(𝑥,𝑤,𝑟)   𝐹(𝑥,𝑧,𝑤,𝑛,𝑟)   𝐺(𝑥,𝑧,𝑛,𝑟)   𝐻(𝑤,𝑛)   𝐾(𝑥,𝑧,𝑛,𝑟)   𝑋(𝑥,𝑧,𝑤,𝑛,𝑟)

Proof of Theorem pwfseqlem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3405 . . . 4 𝑥 ∈ V
2 vex 3405 . . . 4 𝑟 ∈ V
3 fvex 6719 . . . . 5 (𝐻‘(card‘𝑥)) ∈ V
4 fvex 6719 . . . . 5 (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ V
53, 4ifex 4479 . . . 4 if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})) ∈ V
6 pwfseqlem4.f . . . . 5 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
76ovmpt4g 7345 . . . 4 ((𝑥 ∈ V ∧ 𝑟 ∈ V ∧ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})) ∈ V) → (𝑥𝐹𝑟) = if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
81, 2, 5, 7mp3an 1463 . . 3 (𝑥𝐹𝑟) = if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}))
9 pwfseqlem4.ps . . . . . . . 8 (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
109simprbi 500 . . . . . . 7 (𝜓 → ω ≼ 𝑥)
1110adantl 485 . . . . . 6 ((𝜑𝜓) → ω ≼ 𝑥)
12 domnsym 8761 . . . . . 6 (ω ≼ 𝑥 → ¬ 𝑥 ≺ ω)
1311, 12syl 17 . . . . 5 ((𝜑𝜓) → ¬ 𝑥 ≺ ω)
14 isfinite 9256 . . . . 5 (𝑥 ∈ Fin ↔ 𝑥 ≺ ω)
1513, 14sylnibr 332 . . . 4 ((𝜑𝜓) → ¬ 𝑥 ∈ Fin)
1615iffalsed 4440 . . 3 ((𝜑𝜓) → if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})) = (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}))
178, 16syl5eq 2786 . 2 ((𝜑𝜓) → (𝑥𝐹𝑟) = (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}))
18 pwfseqlem4.g . . . . . . 7 (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
19 pwfseqlem4.x . . . . . . 7 (𝜑𝑋𝐴)
20 pwfseqlem4.h . . . . . . 7 (𝜑𝐻:ω–1-1-onto𝑋)
21 pwfseqlem4.k . . . . . . 7 ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)
22 pwfseqlem4.d . . . . . . 7 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
2318, 19, 20, 9, 21, 22pwfseqlem1 10255 . . . . . 6 ((𝜑𝜓) → 𝐷 ∈ ( 𝑛 ∈ ω (𝐴m 𝑛) ∖ 𝑛 ∈ ω (𝑥m 𝑛)))
24 eldif 3867 . . . . . 6 (𝐷 ∈ ( 𝑛 ∈ ω (𝐴m 𝑛) ∖ 𝑛 ∈ ω (𝑥m 𝑛)) ↔ (𝐷 𝑛 ∈ ω (𝐴m 𝑛) ∧ ¬ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)))
2523, 24sylib 221 . . . . 5 ((𝜑𝜓) → (𝐷 𝑛 ∈ ω (𝐴m 𝑛) ∧ ¬ 𝐷 𝑛 ∈ ω (𝑥m 𝑛)))
2625simpld 498 . . . 4 ((𝜑𝜓) → 𝐷 𝑛 ∈ ω (𝐴m 𝑛))
27 eliun 4898 . . . 4 (𝐷 𝑛 ∈ ω (𝐴m 𝑛) ↔ ∃𝑛 ∈ ω 𝐷 ∈ (𝐴m 𝑛))
2826, 27sylib 221 . . 3 ((𝜑𝜓) → ∃𝑛 ∈ ω 𝐷 ∈ (𝐴m 𝑛))
29 elmapi 8519 . . . . . 6 (𝐷 ∈ (𝐴m 𝑛) → 𝐷:𝑛𝐴)
3029ad2antll 729 . . . . 5 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → 𝐷:𝑛𝐴)
31 ssiun2 4946 . . . . . . . . 9 (𝑛 ∈ ω → (𝑥m 𝑛) ⊆ 𝑛 ∈ ω (𝑥m 𝑛))
3231ad2antrl 728 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝑥m 𝑛) ⊆ 𝑛 ∈ ω (𝑥m 𝑛))
3325simprd 499 . . . . . . . . 9 ((𝜑𝜓) → ¬ 𝐷 𝑛 ∈ ω (𝑥m 𝑛))
3433adantr 484 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ¬ 𝐷 𝑛 ∈ ω (𝑥m 𝑛))
3532, 34ssneldd 3894 . . . . . . 7 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ¬ 𝐷 ∈ (𝑥m 𝑛))
36 vex 3405 . . . . . . . . 9 𝑛 ∈ V
371, 36elmap 8541 . . . . . . . 8 (𝐷 ∈ (𝑥m 𝑛) ↔ 𝐷:𝑛𝑥)
38 ffn 6534 . . . . . . . . 9 (𝐷:𝑛𝐴𝐷 Fn 𝑛)
39 ffnfv 6924 . . . . . . . . . 10 (𝐷:𝑛𝑥 ↔ (𝐷 Fn 𝑛 ∧ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
4039baib 539 . . . . . . . . 9 (𝐷 Fn 𝑛 → (𝐷:𝑛𝑥 ↔ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
4130, 38, 403syl 18 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝐷:𝑛𝑥 ↔ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
4237, 41syl5bb 286 . . . . . . 7 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝐷 ∈ (𝑥m 𝑛) ↔ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
4335, 42mtbid 327 . . . . . 6 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ¬ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥)
44 nnon 7639 . . . . . . . . 9 (𝑛 ∈ ω → 𝑛 ∈ On)
4544ad2antrl 728 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → 𝑛 ∈ On)
46 ssrab2 3983 . . . . . . . . . 10 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ⊆ ω
47 omsson 7637 . . . . . . . . . 10 ω ⊆ On
4846, 47sstri 3900 . . . . . . . . 9 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ⊆ On
49 ordom 7643 . . . . . . . . . . . . 13 Ord ω
50 simprl 771 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → 𝑛 ∈ ω)
51 ordelss 6218 . . . . . . . . . . . . 13 ((Ord ω ∧ 𝑛 ∈ ω) → 𝑛 ⊆ ω)
5249, 50, 51sylancr 590 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → 𝑛 ⊆ ω)
53 rexnal 3153 . . . . . . . . . . . . 13 (∃𝑧𝑛 ¬ (𝐷𝑧) ∈ 𝑥 ↔ ¬ ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥)
5443, 53sylibr 237 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ∃𝑧𝑛 ¬ (𝐷𝑧) ∈ 𝑥)
55 ssrexv 3958 . . . . . . . . . . . 12 (𝑛 ⊆ ω → (∃𝑧𝑛 ¬ (𝐷𝑧) ∈ 𝑥 → ∃𝑧 ∈ ω ¬ (𝐷𝑧) ∈ 𝑥))
5652, 54, 55sylc 65 . . . . . . . . . . 11 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ∃𝑧 ∈ ω ¬ (𝐷𝑧) ∈ 𝑥)
57 rabn0 4290 . . . . . . . . . . 11 ({𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ≠ ∅ ↔ ∃𝑧 ∈ ω ¬ (𝐷𝑧) ∈ 𝑥)
5856, 57sylibr 237 . . . . . . . . . 10 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ≠ ∅)
59 onint 7563 . . . . . . . . . 10 (({𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ⊆ On ∧ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ≠ ∅) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})
6048, 58, 59sylancr 590 . . . . . . . . 9 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})
6148, 60sseldi 3889 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ On)
62 ontri1 6236 . . . . . . . 8 ((𝑛 ∈ On ∧ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ On) → (𝑛 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ↔ ¬ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ 𝑛))
6345, 61, 62syl2anc 587 . . . . . . 7 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝑛 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ↔ ¬ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ 𝑛))
64 ssintrab 4872 . . . . . . . 8 (𝑛 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ↔ ∀𝑧 ∈ ω (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧))
65 nnon 7639 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ω → 𝑧 ∈ On)
66 ontri1 6236 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ On ∧ 𝑧 ∈ On) → (𝑛𝑧 ↔ ¬ 𝑧𝑛))
6744, 65, 66syl2an 599 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ω ∧ 𝑧 ∈ ω) → (𝑛𝑧 ↔ ¬ 𝑧𝑛))
6867imbi2d 344 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ 𝑧 ∈ ω) → ((¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧) ↔ (¬ (𝐷𝑧) ∈ 𝑥 → ¬ 𝑧𝑛)))
69 con34b 319 . . . . . . . . . . . . . 14 ((𝑧𝑛 → (𝐷𝑧) ∈ 𝑥) ↔ (¬ (𝐷𝑧) ∈ 𝑥 → ¬ 𝑧𝑛))
7068, 69bitr4di 292 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ 𝑧 ∈ ω) → ((¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧) ↔ (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)))
7170pm5.74da 804 . . . . . . . . . . . 12 (𝑛 ∈ ω → ((𝑧 ∈ ω → (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧)) ↔ (𝑧 ∈ ω → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥))))
72 bi2.04 392 . . . . . . . . . . . 12 ((𝑧 ∈ ω → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)) ↔ (𝑧𝑛 → (𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥)))
7371, 72bitrdi 290 . . . . . . . . . . 11 (𝑛 ∈ ω → ((𝑧 ∈ ω → (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧)) ↔ (𝑧𝑛 → (𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥))))
74 elnn 7644 . . . . . . . . . . . . . 14 ((𝑧𝑛𝑛 ∈ ω) → 𝑧 ∈ ω)
75 pm2.27 42 . . . . . . . . . . . . . 14 (𝑧 ∈ ω → ((𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥) → (𝐷𝑧) ∈ 𝑥))
7674, 75syl 17 . . . . . . . . . . . . 13 ((𝑧𝑛𝑛 ∈ ω) → ((𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥) → (𝐷𝑧) ∈ 𝑥))
7776expcom 417 . . . . . . . . . . . 12 (𝑛 ∈ ω → (𝑧𝑛 → ((𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥) → (𝐷𝑧) ∈ 𝑥)))
7877a2d 29 . . . . . . . . . . 11 (𝑛 ∈ ω → ((𝑧𝑛 → (𝑧 ∈ ω → (𝐷𝑧) ∈ 𝑥)) → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)))
7973, 78sylbid 243 . . . . . . . . . 10 (𝑛 ∈ ω → ((𝑧 ∈ ω → (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧)) → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)))
8079ad2antrl 728 . . . . . . . . 9 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ((𝑧 ∈ ω → (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧)) → (𝑧𝑛 → (𝐷𝑧) ∈ 𝑥)))
8180ralimdv2 3092 . . . . . . . 8 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (∀𝑧 ∈ ω (¬ (𝐷𝑧) ∈ 𝑥𝑛𝑧) → ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
8264, 81syl5bi 245 . . . . . . 7 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝑛 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
8363, 82sylbird 263 . . . . . 6 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (¬ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ 𝑛 → ∀𝑧𝑛 (𝐷𝑧) ∈ 𝑥))
8443, 83mt3d 150 . . . . 5 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ 𝑛)
8530, 84ffvelrnd 6894 . . . 4 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝐴)
86 fveq2 6706 . . . . . . . . 9 (𝑦 = {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → (𝐷𝑦) = (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}))
8786eleq1d 2818 . . . . . . . 8 (𝑦 = {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → ((𝐷𝑦) ∈ 𝑥 ↔ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥))
8887notbid 321 . . . . . . 7 (𝑦 = {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → (¬ (𝐷𝑦) ∈ 𝑥 ↔ ¬ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥))
89 fveq2 6706 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝐷𝑧) = (𝐷𝑦))
9089eleq1d 2818 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝐷𝑧) ∈ 𝑥 ↔ (𝐷𝑦) ∈ 𝑥))
9190notbid 321 . . . . . . . 8 (𝑧 = 𝑦 → (¬ (𝐷𝑧) ∈ 𝑥 ↔ ¬ (𝐷𝑦) ∈ 𝑥))
9291cbvrabv 3395 . . . . . . 7 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} = {𝑦 ∈ ω ∣ ¬ (𝐷𝑦) ∈ 𝑥}
9388, 92elrab2 3598 . . . . . 6 ( {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ↔ ( {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ ω ∧ ¬ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥))
9493simprbi 500 . . . . 5 ( {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} ∈ {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥} → ¬ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥)
9560, 94syl 17 . . . 4 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → ¬ (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ 𝑥)
9685, 95eldifd 3868 . . 3 (((𝜑𝜓) ∧ (𝑛 ∈ ω ∧ 𝐷 ∈ (𝐴m 𝑛))) → (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ (𝐴𝑥))
9728, 96rexlimddv 3203 . 2 ((𝜑𝜓) → (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥}) ∈ (𝐴𝑥))
9817, 97eqeltrd 2834 1 ((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2935  wral 3054  wrex 3055  {crab 3058  Vcvv 3401  cdif 3854  wss 3857  c0 4227  ifcif 4429  𝒫 cpw 4503   cint 4849   ciun 4894   class class class wbr 5043   We wwe 5497   × cxp 5538  ccnv 5539  ran crn 5541  Ord word 6201  Oncon0 6202   Fn wfn 6364  wf 6365  1-1wf1 6366  1-1-ontowf1o 6368  cfv 6369  (class class class)co 7202  cmpo 7204  ωcom 7633  m cmap 8497  cdom 8613  csdm 8614  Fincfn 8615  cardccrd 9534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619
This theorem is referenced by:  pwfseqlem4a  10258  pwfseqlem4  10259
  Copyright terms: Public domain W3C validator