MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unissint Structured version   Visualization version   GIF version

Theorem unissint 4903
Description: If the union of a class is included in its intersection, the class is either the empty set or a singleton (uniintsn 4918). (Contributed by NM, 30-Oct-2010.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
unissint ( 𝐴 𝐴 ↔ (𝐴 = ∅ ∨ 𝐴 = 𝐴))

Proof of Theorem unissint
StepHypRef Expression
1 simpl 483 . . . . 5 (( 𝐴 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴 𝐴)
2 df-ne 2944 . . . . . . 7 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
3 intssuni 4901 . . . . . . 7 (𝐴 ≠ ∅ → 𝐴 𝐴)
42, 3sylbir 234 . . . . . 6 𝐴 = ∅ → 𝐴 𝐴)
54adantl 482 . . . . 5 (( 𝐴 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴 𝐴)
61, 5eqssd 3938 . . . 4 (( 𝐴 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴 = 𝐴)
76ex 413 . . 3 ( 𝐴 𝐴 → (¬ 𝐴 = ∅ → 𝐴 = 𝐴))
87orrd 860 . 2 ( 𝐴 𝐴 → (𝐴 = ∅ ∨ 𝐴 = 𝐴))
9 ssv 3945 . . . . 5 𝐴 ⊆ V
10 int0 4893 . . . . 5 ∅ = V
119, 10sseqtrri 3958 . . . 4 𝐴
12 inteq 4882 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
1311, 12sseqtrrid 3974 . . 3 (𝐴 = ∅ → 𝐴 𝐴)
14 eqimss 3977 . . 3 ( 𝐴 = 𝐴 𝐴 𝐴)
1513, 14jaoi 854 . 2 ((𝐴 = ∅ ∨ 𝐴 = 𝐴) → 𝐴 𝐴)
168, 15impbii 208 1 ( 𝐴 𝐴 ↔ (𝐴 = ∅ ∨ 𝐴 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 844   = wceq 1539  wne 2943  Vcvv 3432  wss 3887  c0 4256   cuni 4839   cint 4879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257  df-uni 4840  df-int 4880
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator