![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unissint | Structured version Visualization version GIF version |
Description: If the union of a class is included in its intersection, the class is either the empty set or a singleton (uniintsn 5009). (Contributed by NM, 30-Oct-2010.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
unissint | ⊢ (∪ 𝐴 ⊆ ∩ 𝐴 ↔ (𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . 5 ⊢ ((∪ 𝐴 ⊆ ∩ 𝐴 ∧ ¬ 𝐴 = ∅) → ∪ 𝐴 ⊆ ∩ 𝐴) | |
2 | df-ne 2947 | . . . . . . 7 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
3 | intssuni 4994 | . . . . . . 7 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) | |
4 | 2, 3 | sylbir 235 | . . . . . 6 ⊢ (¬ 𝐴 = ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) |
5 | 4 | adantl 481 | . . . . 5 ⊢ ((∪ 𝐴 ⊆ ∩ 𝐴 ∧ ¬ 𝐴 = ∅) → ∩ 𝐴 ⊆ ∪ 𝐴) |
6 | 1, 5 | eqssd 4026 | . . . 4 ⊢ ((∪ 𝐴 ⊆ ∩ 𝐴 ∧ ¬ 𝐴 = ∅) → ∪ 𝐴 = ∩ 𝐴) |
7 | 6 | ex 412 | . . 3 ⊢ (∪ 𝐴 ⊆ ∩ 𝐴 → (¬ 𝐴 = ∅ → ∪ 𝐴 = ∩ 𝐴)) |
8 | 7 | orrd 862 | . 2 ⊢ (∪ 𝐴 ⊆ ∩ 𝐴 → (𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴)) |
9 | ssv 4033 | . . . . 5 ⊢ ∪ 𝐴 ⊆ V | |
10 | int0 4986 | . . . . 5 ⊢ ∩ ∅ = V | |
11 | 9, 10 | sseqtrri 4046 | . . . 4 ⊢ ∪ 𝐴 ⊆ ∩ ∅ |
12 | inteq 4973 | . . . 4 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
13 | 11, 12 | sseqtrrid 4062 | . . 3 ⊢ (𝐴 = ∅ → ∪ 𝐴 ⊆ ∩ 𝐴) |
14 | eqimss 4067 | . . 3 ⊢ (∪ 𝐴 = ∩ 𝐴 → ∪ 𝐴 ⊆ ∩ 𝐴) | |
15 | 13, 14 | jaoi 856 | . 2 ⊢ ((𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴) → ∪ 𝐴 ⊆ ∩ 𝐴) |
16 | 8, 15 | impbii 209 | 1 ⊢ (∪ 𝐴 ⊆ ∩ 𝐴 ↔ (𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ≠ wne 2946 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 ∪ cuni 4931 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 df-uni 4932 df-int 4971 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |