| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unissint | Structured version Visualization version GIF version | ||
| Description: If the union of a class is included in its intersection, the class is either the empty set or a singleton (uniintsn 4966). (Contributed by NM, 30-Oct-2010.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| unissint | ⊢ (∪ 𝐴 ⊆ ∩ 𝐴 ↔ (𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((∪ 𝐴 ⊆ ∩ 𝐴 ∧ ¬ 𝐴 = ∅) → ∪ 𝐴 ⊆ ∩ 𝐴) | |
| 2 | df-ne 2934 | . . . . . . 7 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
| 3 | intssuni 4951 | . . . . . . 7 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) | |
| 4 | 2, 3 | sylbir 235 | . . . . . 6 ⊢ (¬ 𝐴 = ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((∪ 𝐴 ⊆ ∩ 𝐴 ∧ ¬ 𝐴 = ∅) → ∩ 𝐴 ⊆ ∪ 𝐴) |
| 6 | 1, 5 | eqssd 3981 | . . . 4 ⊢ ((∪ 𝐴 ⊆ ∩ 𝐴 ∧ ¬ 𝐴 = ∅) → ∪ 𝐴 = ∩ 𝐴) |
| 7 | 6 | ex 412 | . . 3 ⊢ (∪ 𝐴 ⊆ ∩ 𝐴 → (¬ 𝐴 = ∅ → ∪ 𝐴 = ∩ 𝐴)) |
| 8 | 7 | orrd 863 | . 2 ⊢ (∪ 𝐴 ⊆ ∩ 𝐴 → (𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴)) |
| 9 | ssv 3988 | . . . . 5 ⊢ ∪ 𝐴 ⊆ V | |
| 10 | int0 4943 | . . . . 5 ⊢ ∩ ∅ = V | |
| 11 | 9, 10 | sseqtrri 4013 | . . . 4 ⊢ ∪ 𝐴 ⊆ ∩ ∅ |
| 12 | inteq 4930 | . . . 4 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
| 13 | 11, 12 | sseqtrrid 4007 | . . 3 ⊢ (𝐴 = ∅ → ∪ 𝐴 ⊆ ∩ 𝐴) |
| 14 | eqimss 4022 | . . 3 ⊢ (∪ 𝐴 = ∩ 𝐴 → ∪ 𝐴 ⊆ ∩ 𝐴) | |
| 15 | 13, 14 | jaoi 857 | . 2 ⊢ ((𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴) → ∪ 𝐴 ⊆ ∩ 𝐴) |
| 16 | 8, 15 | impbii 209 | 1 ⊢ (∪ 𝐴 ⊆ ∩ 𝐴 ↔ (𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ≠ wne 2933 Vcvv 3464 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4888 ∩ cint 4927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-v 3466 df-dif 3934 df-ss 3948 df-nul 4314 df-uni 4889 df-int 4928 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |