MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unissint Structured version   Visualization version   GIF version

Theorem unissint 4869
Description: If the union of a class is included in its intersection, the class is either the empty set or a singleton (uniintsn 4884). (Contributed by NM, 30-Oct-2010.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
unissint ( 𝐴 𝐴 ↔ (𝐴 = ∅ ∨ 𝐴 = 𝐴))

Proof of Theorem unissint
StepHypRef Expression
1 simpl 486 . . . . 5 (( 𝐴 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴 𝐴)
2 df-ne 2933 . . . . . . 7 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
3 intssuni 4867 . . . . . . 7 (𝐴 ≠ ∅ → 𝐴 𝐴)
42, 3sylbir 238 . . . . . 6 𝐴 = ∅ → 𝐴 𝐴)
54adantl 485 . . . . 5 (( 𝐴 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴 𝐴)
61, 5eqssd 3904 . . . 4 (( 𝐴 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴 = 𝐴)
76ex 416 . . 3 ( 𝐴 𝐴 → (¬ 𝐴 = ∅ → 𝐴 = 𝐴))
87orrd 863 . 2 ( 𝐴 𝐴 → (𝐴 = ∅ ∨ 𝐴 = 𝐴))
9 ssv 3911 . . . . 5 𝐴 ⊆ V
10 int0 4859 . . . . 5 ∅ = V
119, 10sseqtrri 3924 . . . 4 𝐴
12 inteq 4848 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
1311, 12sseqtrrid 3940 . . 3 (𝐴 = ∅ → 𝐴 𝐴)
14 eqimss 3943 . . 3 ( 𝐴 = 𝐴 𝐴 𝐴)
1513, 14jaoi 857 . 2 ((𝐴 = ∅ ∨ 𝐴 = 𝐴) → 𝐴 𝐴)
168, 15impbii 212 1 ( 𝐴 𝐴 ↔ (𝐴 = ∅ ∨ 𝐴 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  wo 847   = wceq 1543  wne 2932  Vcvv 3398  wss 3853  c0 4223   cuni 4805   cint 4845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ne 2933  df-ral 3056  df-rex 3057  df-v 3400  df-dif 3856  df-in 3860  df-ss 3870  df-nul 4224  df-uni 4806  df-int 4846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator