MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unissint Structured version   Visualization version   GIF version

Theorem unissint 4939
Description: If the union of a class is included in its intersection, the class is either the empty set or a singleton (uniintsn 4952). (Contributed by NM, 30-Oct-2010.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
unissint ( 𝐴 𝐴 ↔ (𝐴 = ∅ ∨ 𝐴 = 𝐴))

Proof of Theorem unissint
StepHypRef Expression
1 simpl 482 . . . . 5 (( 𝐴 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴 𝐴)
2 df-ne 2927 . . . . . . 7 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
3 intssuni 4937 . . . . . . 7 (𝐴 ≠ ∅ → 𝐴 𝐴)
42, 3sylbir 235 . . . . . 6 𝐴 = ∅ → 𝐴 𝐴)
54adantl 481 . . . . 5 (( 𝐴 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴 𝐴)
61, 5eqssd 3967 . . . 4 (( 𝐴 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴 = 𝐴)
76ex 412 . . 3 ( 𝐴 𝐴 → (¬ 𝐴 = ∅ → 𝐴 = 𝐴))
87orrd 863 . 2 ( 𝐴 𝐴 → (𝐴 = ∅ ∨ 𝐴 = 𝐴))
9 ssv 3974 . . . . 5 𝐴 ⊆ V
10 int0 4929 . . . . 5 ∅ = V
119, 10sseqtrri 3999 . . . 4 𝐴
12 inteq 4916 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
1311, 12sseqtrrid 3993 . . 3 (𝐴 = ∅ → 𝐴 𝐴)
14 eqimss 4008 . . 3 ( 𝐴 = 𝐴 𝐴 𝐴)
1513, 14jaoi 857 . 2 ((𝐴 = ∅ ∨ 𝐴 = 𝐴) → 𝐴 𝐴)
168, 15impbii 209 1 ( 𝐴 𝐴 ↔ (𝐴 = ∅ ∨ 𝐴 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1540  wne 2926  Vcvv 3450  wss 3917  c0 4299   cuni 4874   cint 4913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-v 3452  df-dif 3920  df-ss 3934  df-nul 4300  df-uni 4875  df-int 4914
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator