MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unissint Structured version   Visualization version   GIF version

Theorem unissint 4893
Description: If the union of a class is included in its intersection, the class is either the empty set or a singleton (uniintsn 4906). (Contributed by NM, 30-Oct-2010.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
unissint ( 𝐴 𝐴 ↔ (𝐴 = ∅ ∨ 𝐴 = 𝐴))

Proof of Theorem unissint
StepHypRef Expression
1 simpl 485 . . . . 5 (( 𝐴 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴 𝐴)
2 df-ne 3017 . . . . . . 7 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
3 intssuni 4891 . . . . . . 7 (𝐴 ≠ ∅ → 𝐴 𝐴)
42, 3sylbir 237 . . . . . 6 𝐴 = ∅ → 𝐴 𝐴)
54adantl 484 . . . . 5 (( 𝐴 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴 𝐴)
61, 5eqssd 3984 . . . 4 (( 𝐴 𝐴 ∧ ¬ 𝐴 = ∅) → 𝐴 = 𝐴)
76ex 415 . . 3 ( 𝐴 𝐴 → (¬ 𝐴 = ∅ → 𝐴 = 𝐴))
87orrd 859 . 2 ( 𝐴 𝐴 → (𝐴 = ∅ ∨ 𝐴 = 𝐴))
9 ssv 3991 . . . . 5 𝐴 ⊆ V
10 int0 4883 . . . . 5 ∅ = V
119, 10sseqtrri 4004 . . . 4 𝐴
12 inteq 4872 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
1311, 12sseqtrrid 4020 . . 3 (𝐴 = ∅ → 𝐴 𝐴)
14 eqimss 4023 . . 3 ( 𝐴 = 𝐴 𝐴 𝐴)
1513, 14jaoi 853 . 2 ((𝐴 = ∅ ∨ 𝐴 = 𝐴) → 𝐴 𝐴)
168, 15impbii 211 1 ( 𝐴 𝐴 ↔ (𝐴 = ∅ ∨ 𝐴 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398  wo 843   = wceq 1533  wne 3016  Vcvv 3495  wss 3936  c0 4291   cuni 4832   cint 4869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-v 3497  df-dif 3939  df-in 3943  df-ss 3952  df-nul 4292  df-uni 4833  df-int 4870
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator