![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unissint | Structured version Visualization version GIF version |
Description: If the union of a class is included in its intersection, the class is either the empty set or a singleton (uniintsn 4990). (Contributed by NM, 30-Oct-2010.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
unissint | ⊢ (∪ 𝐴 ⊆ ∩ 𝐴 ↔ (𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . . 5 ⊢ ((∪ 𝐴 ⊆ ∩ 𝐴 ∧ ¬ 𝐴 = ∅) → ∪ 𝐴 ⊆ ∩ 𝐴) | |
2 | df-ne 2939 | . . . . . . 7 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
3 | intssuni 4973 | . . . . . . 7 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) | |
4 | 2, 3 | sylbir 234 | . . . . . 6 ⊢ (¬ 𝐴 = ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) |
5 | 4 | adantl 480 | . . . . 5 ⊢ ((∪ 𝐴 ⊆ ∩ 𝐴 ∧ ¬ 𝐴 = ∅) → ∩ 𝐴 ⊆ ∪ 𝐴) |
6 | 1, 5 | eqssd 3998 | . . . 4 ⊢ ((∪ 𝐴 ⊆ ∩ 𝐴 ∧ ¬ 𝐴 = ∅) → ∪ 𝐴 = ∩ 𝐴) |
7 | 6 | ex 411 | . . 3 ⊢ (∪ 𝐴 ⊆ ∩ 𝐴 → (¬ 𝐴 = ∅ → ∪ 𝐴 = ∩ 𝐴)) |
8 | 7 | orrd 859 | . 2 ⊢ (∪ 𝐴 ⊆ ∩ 𝐴 → (𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴)) |
9 | ssv 4005 | . . . . 5 ⊢ ∪ 𝐴 ⊆ V | |
10 | int0 4965 | . . . . 5 ⊢ ∩ ∅ = V | |
11 | 9, 10 | sseqtrri 4018 | . . . 4 ⊢ ∪ 𝐴 ⊆ ∩ ∅ |
12 | inteq 4952 | . . . 4 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
13 | 11, 12 | sseqtrrid 4034 | . . 3 ⊢ (𝐴 = ∅ → ∪ 𝐴 ⊆ ∩ 𝐴) |
14 | eqimss 4039 | . . 3 ⊢ (∪ 𝐴 = ∩ 𝐴 → ∪ 𝐴 ⊆ ∩ 𝐴) | |
15 | 13, 14 | jaoi 853 | . 2 ⊢ ((𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴) → ∪ 𝐴 ⊆ ∩ 𝐴) |
16 | 8, 15 | impbii 208 | 1 ⊢ (∪ 𝐴 ⊆ ∩ 𝐴 ↔ (𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 ∨ wo 843 = wceq 1539 ≠ wne 2938 Vcvv 3472 ⊆ wss 3947 ∅c0 4321 ∪ cuni 4907 ∩ cint 4949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-v 3474 df-dif 3950 df-in 3954 df-ss 3964 df-nul 4322 df-uni 4908 df-int 4950 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |