| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > harval2 | Structured version Visualization version GIF version | ||
| Description: An alternate expression for the Hartogs number of a well-orderable set. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| harval2 | ⊢ (𝐴 ∈ dom card → (har‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harval 9457 | . . . . . . 7 ⊢ (𝐴 ∈ dom card → (har‘𝐴) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴}) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → (har‘𝐴) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴}) |
| 3 | sdomel 9048 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ≺ 𝑥 → 𝑦 ∈ 𝑥)) | |
| 4 | domsdomtr 9036 | . . . . . . . . . . . 12 ⊢ ((𝑦 ≼ 𝐴 ∧ 𝐴 ≺ 𝑥) → 𝑦 ≺ 𝑥) | |
| 5 | 3, 4 | impel 505 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑦 ≼ 𝐴 ∧ 𝐴 ≺ 𝑥)) → 𝑦 ∈ 𝑥) |
| 6 | 5 | an4s 660 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≼ 𝐴) ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → 𝑦 ∈ 𝑥) |
| 7 | 6 | ancoms 458 | . . . . . . . . 9 ⊢ (((𝑥 ∈ On ∧ 𝐴 ≺ 𝑥) ∧ (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) → 𝑦 ∈ 𝑥) |
| 8 | 7 | 3impb 1114 | . . . . . . . 8 ⊢ (((𝑥 ∈ On ∧ 𝐴 ≺ 𝑥) ∧ 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴) → 𝑦 ∈ 𝑥) |
| 9 | 8 | rabssdv 4023 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝐴 ≺ 𝑥) → {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴} ⊆ 𝑥) |
| 10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴} ⊆ 𝑥) |
| 11 | 2, 10 | eqsstrd 3965 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → (har‘𝐴) ⊆ 𝑥) |
| 12 | 11 | expr 456 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝑥 ∈ On) → (𝐴 ≺ 𝑥 → (har‘𝐴) ⊆ 𝑥)) |
| 13 | 12 | ralrimiva 3125 | . . 3 ⊢ (𝐴 ∈ dom card → ∀𝑥 ∈ On (𝐴 ≺ 𝑥 → (har‘𝐴) ⊆ 𝑥)) |
| 14 | ssintrab 4923 | . . 3 ⊢ ((har‘𝐴) ⊆ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ↔ ∀𝑥 ∈ On (𝐴 ≺ 𝑥 → (har‘𝐴) ⊆ 𝑥)) | |
| 15 | 13, 14 | sylibr 234 | . 2 ⊢ (𝐴 ∈ dom card → (har‘𝐴) ⊆ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
| 16 | breq2 5099 | . . . 4 ⊢ (𝑥 = (har‘𝐴) → (𝐴 ≺ 𝑥 ↔ 𝐴 ≺ (har‘𝐴))) | |
| 17 | harcl 9456 | . . . . 5 ⊢ (har‘𝐴) ∈ On | |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ dom card → (har‘𝐴) ∈ On) |
| 19 | harsdom 9899 | . . . 4 ⊢ (𝐴 ∈ dom card → 𝐴 ≺ (har‘𝐴)) | |
| 20 | 16, 18, 19 | elrabd 3645 | . . 3 ⊢ (𝐴 ∈ dom card → (har‘𝐴) ∈ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
| 21 | intss1 4915 | . . 3 ⊢ ((har‘𝐴) ∈ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ⊆ (har‘𝐴)) | |
| 22 | 20, 21 | syl 17 | . 2 ⊢ (𝐴 ∈ dom card → ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ⊆ (har‘𝐴)) |
| 23 | 15, 22 | eqssd 3948 | 1 ⊢ (𝐴 ∈ dom card → (har‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 ⊆ wss 3898 ∩ cint 4899 class class class wbr 5095 dom cdm 5621 Oncon0 6314 ‘cfv 6489 ≼ cdom 8877 ≺ csdm 8878 harchar 9453 cardccrd 9839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-oi 9407 df-har 9454 df-card 9843 |
| This theorem is referenced by: harsucnn 9902 alephnbtwn 9973 harval3 43695 aleph1min 43714 |
| Copyright terms: Public domain | W3C validator |