MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harval2 Structured version   Visualization version   GIF version

Theorem harval2 9988
Description: An alternate expression for the Hartogs number of a well-orderable set. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
harval2 (𝐴 ∈ dom card β†’ (harβ€˜π΄) = ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
Distinct variable group:   π‘₯,𝐴

Proof of Theorem harval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 harval 9551 . . . . . . 7 (𝐴 ∈ dom card β†’ (harβ€˜π΄) = {𝑦 ∈ On ∣ 𝑦 β‰Ό 𝐴})
21adantr 481 . . . . . 6 ((𝐴 ∈ dom card ∧ (π‘₯ ∈ On ∧ 𝐴 β‰Ί π‘₯)) β†’ (harβ€˜π΄) = {𝑦 ∈ On ∣ 𝑦 β‰Ό 𝐴})
3 sdomel 9120 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ π‘₯ ∈ On) β†’ (𝑦 β‰Ί π‘₯ β†’ 𝑦 ∈ π‘₯))
4 domsdomtr 9108 . . . . . . . . . . . 12 ((𝑦 β‰Ό 𝐴 ∧ 𝐴 β‰Ί π‘₯) β†’ 𝑦 β‰Ί π‘₯)
53, 4impel 506 . . . . . . . . . . 11 (((𝑦 ∈ On ∧ π‘₯ ∈ On) ∧ (𝑦 β‰Ό 𝐴 ∧ 𝐴 β‰Ί π‘₯)) β†’ 𝑦 ∈ π‘₯)
65an4s 658 . . . . . . . . . 10 (((𝑦 ∈ On ∧ 𝑦 β‰Ό 𝐴) ∧ (π‘₯ ∈ On ∧ 𝐴 β‰Ί π‘₯)) β†’ 𝑦 ∈ π‘₯)
76ancoms 459 . . . . . . . . 9 (((π‘₯ ∈ On ∧ 𝐴 β‰Ί π‘₯) ∧ (𝑦 ∈ On ∧ 𝑦 β‰Ό 𝐴)) β†’ 𝑦 ∈ π‘₯)
873impb 1115 . . . . . . . 8 (((π‘₯ ∈ On ∧ 𝐴 β‰Ί π‘₯) ∧ 𝑦 ∈ On ∧ 𝑦 β‰Ό 𝐴) β†’ 𝑦 ∈ π‘₯)
98rabssdv 4071 . . . . . . 7 ((π‘₯ ∈ On ∧ 𝐴 β‰Ί π‘₯) β†’ {𝑦 ∈ On ∣ 𝑦 β‰Ό 𝐴} βŠ† π‘₯)
109adantl 482 . . . . . 6 ((𝐴 ∈ dom card ∧ (π‘₯ ∈ On ∧ 𝐴 β‰Ί π‘₯)) β†’ {𝑦 ∈ On ∣ 𝑦 β‰Ό 𝐴} βŠ† π‘₯)
112, 10eqsstrd 4019 . . . . 5 ((𝐴 ∈ dom card ∧ (π‘₯ ∈ On ∧ 𝐴 β‰Ί π‘₯)) β†’ (harβ€˜π΄) βŠ† π‘₯)
1211expr 457 . . . 4 ((𝐴 ∈ dom card ∧ π‘₯ ∈ On) β†’ (𝐴 β‰Ί π‘₯ β†’ (harβ€˜π΄) βŠ† π‘₯))
1312ralrimiva 3146 . . 3 (𝐴 ∈ dom card β†’ βˆ€π‘₯ ∈ On (𝐴 β‰Ί π‘₯ β†’ (harβ€˜π΄) βŠ† π‘₯))
14 ssintrab 4974 . . 3 ((harβ€˜π΄) βŠ† ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} ↔ βˆ€π‘₯ ∈ On (𝐴 β‰Ί π‘₯ β†’ (harβ€˜π΄) βŠ† π‘₯))
1513, 14sylibr 233 . 2 (𝐴 ∈ dom card β†’ (harβ€˜π΄) βŠ† ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
16 breq2 5151 . . . 4 (π‘₯ = (harβ€˜π΄) β†’ (𝐴 β‰Ί π‘₯ ↔ 𝐴 β‰Ί (harβ€˜π΄)))
17 harcl 9550 . . . . 5 (harβ€˜π΄) ∈ On
1817a1i 11 . . . 4 (𝐴 ∈ dom card β†’ (harβ€˜π΄) ∈ On)
19 harsdom 9986 . . . 4 (𝐴 ∈ dom card β†’ 𝐴 β‰Ί (harβ€˜π΄))
2016, 18, 19elrabd 3684 . . 3 (𝐴 ∈ dom card β†’ (harβ€˜π΄) ∈ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
21 intss1 4966 . . 3 ((harβ€˜π΄) ∈ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} β†’ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} βŠ† (harβ€˜π΄))
2220, 21syl 17 . 2 (𝐴 ∈ dom card β†’ ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯} βŠ† (harβ€˜π΄))
2315, 22eqssd 3998 1 (𝐴 ∈ dom card β†’ (harβ€˜π΄) = ∩ {π‘₯ ∈ On ∣ 𝐴 β‰Ί π‘₯})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432   βŠ† wss 3947  βˆ© cint 4949   class class class wbr 5147  dom cdm 5675  Oncon0 6361  β€˜cfv 6540   β‰Ό cdom 8933   β‰Ί csdm 8934  harchar 9547  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-oi 9501  df-har 9548  df-card 9930
This theorem is referenced by:  harsucnn  9989  alephnbtwn  10062  harval3  42274  aleph1min  42293
  Copyright terms: Public domain W3C validator