![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > harval2 | Structured version Visualization version GIF version |
Description: An alternate expression for the Hartogs number of a well-orderable set. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
harval2 | ⊢ (𝐴 ∈ dom card → (har‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | harval 9552 | . . . . . . 7 ⊢ (𝐴 ∈ dom card → (har‘𝐴) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴}) | |
2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → (har‘𝐴) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴}) |
3 | sdomel 9121 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ≺ 𝑥 → 𝑦 ∈ 𝑥)) | |
4 | domsdomtr 9109 | . . . . . . . . . . . 12 ⊢ ((𝑦 ≼ 𝐴 ∧ 𝐴 ≺ 𝑥) → 𝑦 ≺ 𝑥) | |
5 | 3, 4 | impel 505 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑦 ≼ 𝐴 ∧ 𝐴 ≺ 𝑥)) → 𝑦 ∈ 𝑥) |
6 | 5 | an4s 657 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≼ 𝐴) ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → 𝑦 ∈ 𝑥) |
7 | 6 | ancoms 458 | . . . . . . . . 9 ⊢ (((𝑥 ∈ On ∧ 𝐴 ≺ 𝑥) ∧ (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) → 𝑦 ∈ 𝑥) |
8 | 7 | 3impb 1112 | . . . . . . . 8 ⊢ (((𝑥 ∈ On ∧ 𝐴 ≺ 𝑥) ∧ 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴) → 𝑦 ∈ 𝑥) |
9 | 8 | rabssdv 4065 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝐴 ≺ 𝑥) → {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴} ⊆ 𝑥) |
10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴} ⊆ 𝑥) |
11 | 2, 10 | eqsstrd 4013 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → (har‘𝐴) ⊆ 𝑥) |
12 | 11 | expr 456 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝑥 ∈ On) → (𝐴 ≺ 𝑥 → (har‘𝐴) ⊆ 𝑥)) |
13 | 12 | ralrimiva 3138 | . . 3 ⊢ (𝐴 ∈ dom card → ∀𝑥 ∈ On (𝐴 ≺ 𝑥 → (har‘𝐴) ⊆ 𝑥)) |
14 | ssintrab 4966 | . . 3 ⊢ ((har‘𝐴) ⊆ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ↔ ∀𝑥 ∈ On (𝐴 ≺ 𝑥 → (har‘𝐴) ⊆ 𝑥)) | |
15 | 13, 14 | sylibr 233 | . 2 ⊢ (𝐴 ∈ dom card → (har‘𝐴) ⊆ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
16 | breq2 5143 | . . . 4 ⊢ (𝑥 = (har‘𝐴) → (𝐴 ≺ 𝑥 ↔ 𝐴 ≺ (har‘𝐴))) | |
17 | harcl 9551 | . . . . 5 ⊢ (har‘𝐴) ∈ On | |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ dom card → (har‘𝐴) ∈ On) |
19 | harsdom 9987 | . . . 4 ⊢ (𝐴 ∈ dom card → 𝐴 ≺ (har‘𝐴)) | |
20 | 16, 18, 19 | elrabd 3678 | . . 3 ⊢ (𝐴 ∈ dom card → (har‘𝐴) ∈ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
21 | intss1 4958 | . . 3 ⊢ ((har‘𝐴) ∈ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ⊆ (har‘𝐴)) | |
22 | 20, 21 | syl 17 | . 2 ⊢ (𝐴 ∈ dom card → ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ⊆ (har‘𝐴)) |
23 | 15, 22 | eqssd 3992 | 1 ⊢ (𝐴 ∈ dom card → (har‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 {crab 3424 ⊆ wss 3941 ∩ cint 4941 class class class wbr 5139 dom cdm 5667 Oncon0 6355 ‘cfv 6534 ≼ cdom 8934 ≺ csdm 8935 harchar 9548 cardccrd 9927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-oi 9502 df-har 9549 df-card 9931 |
This theorem is referenced by: harsucnn 9990 alephnbtwn 10063 harval3 42803 aleph1min 42822 |
Copyright terms: Public domain | W3C validator |