| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > harval2 | Structured version Visualization version GIF version | ||
| Description: An alternate expression for the Hartogs number of a well-orderable set. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| harval2 | ⊢ (𝐴 ∈ dom card → (har‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harval 9441 | . . . . . . 7 ⊢ (𝐴 ∈ dom card → (har‘𝐴) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴}) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → (har‘𝐴) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴}) |
| 3 | sdomel 9032 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ≺ 𝑥 → 𝑦 ∈ 𝑥)) | |
| 4 | domsdomtr 9020 | . . . . . . . . . . . 12 ⊢ ((𝑦 ≼ 𝐴 ∧ 𝐴 ≺ 𝑥) → 𝑦 ≺ 𝑥) | |
| 5 | 3, 4 | impel 505 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑦 ≼ 𝐴 ∧ 𝐴 ≺ 𝑥)) → 𝑦 ∈ 𝑥) |
| 6 | 5 | an4s 660 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≼ 𝐴) ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → 𝑦 ∈ 𝑥) |
| 7 | 6 | ancoms 458 | . . . . . . . . 9 ⊢ (((𝑥 ∈ On ∧ 𝐴 ≺ 𝑥) ∧ (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) → 𝑦 ∈ 𝑥) |
| 8 | 7 | 3impb 1114 | . . . . . . . 8 ⊢ (((𝑥 ∈ On ∧ 𝐴 ≺ 𝑥) ∧ 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴) → 𝑦 ∈ 𝑥) |
| 9 | 8 | rabssdv 4020 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝐴 ≺ 𝑥) → {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴} ⊆ 𝑥) |
| 10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴} ⊆ 𝑥) |
| 11 | 2, 10 | eqsstrd 3964 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → (har‘𝐴) ⊆ 𝑥) |
| 12 | 11 | expr 456 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝑥 ∈ On) → (𝐴 ≺ 𝑥 → (har‘𝐴) ⊆ 𝑥)) |
| 13 | 12 | ralrimiva 3124 | . . 3 ⊢ (𝐴 ∈ dom card → ∀𝑥 ∈ On (𝐴 ≺ 𝑥 → (har‘𝐴) ⊆ 𝑥)) |
| 14 | ssintrab 4916 | . . 3 ⊢ ((har‘𝐴) ⊆ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ↔ ∀𝑥 ∈ On (𝐴 ≺ 𝑥 → (har‘𝐴) ⊆ 𝑥)) | |
| 15 | 13, 14 | sylibr 234 | . 2 ⊢ (𝐴 ∈ dom card → (har‘𝐴) ⊆ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
| 16 | breq2 5090 | . . . 4 ⊢ (𝑥 = (har‘𝐴) → (𝐴 ≺ 𝑥 ↔ 𝐴 ≺ (har‘𝐴))) | |
| 17 | harcl 9440 | . . . . 5 ⊢ (har‘𝐴) ∈ On | |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ dom card → (har‘𝐴) ∈ On) |
| 19 | harsdom 9883 | . . . 4 ⊢ (𝐴 ∈ dom card → 𝐴 ≺ (har‘𝐴)) | |
| 20 | 16, 18, 19 | elrabd 3644 | . . 3 ⊢ (𝐴 ∈ dom card → (har‘𝐴) ∈ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
| 21 | intss1 4908 | . . 3 ⊢ ((har‘𝐴) ∈ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ⊆ (har‘𝐴)) | |
| 22 | 20, 21 | syl 17 | . 2 ⊢ (𝐴 ∈ dom card → ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ⊆ (har‘𝐴)) |
| 23 | 15, 22 | eqssd 3947 | 1 ⊢ (𝐴 ∈ dom card → (har‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ⊆ wss 3897 ∩ cint 4892 class class class wbr 5086 dom cdm 5611 Oncon0 6301 ‘cfv 6476 ≼ cdom 8862 ≺ csdm 8863 harchar 9437 cardccrd 9823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-oi 9391 df-har 9438 df-card 9827 |
| This theorem is referenced by: harsucnn 9886 alephnbtwn 9957 harval3 43571 aleph1min 43590 |
| Copyright terms: Public domain | W3C validator |