MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harval2 Structured version   Visualization version   GIF version

Theorem harval2 9989
Description: An alternate expression for the Hartogs number of a well-orderable set. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
harval2 (𝐴 ∈ dom card → (har‘𝐴) = {𝑥 ∈ On ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem harval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 harval 9552 . . . . . . 7 (𝐴 ∈ dom card → (har‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
21adantr 480 . . . . . 6 ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → (har‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
3 sdomel 9121 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥𝑦𝑥))
4 domsdomtr 9109 . . . . . . . . . . . 12 ((𝑦𝐴𝐴𝑥) → 𝑦𝑥)
53, 4impel 505 . . . . . . . . . . 11 (((𝑦 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑦𝐴𝐴𝑥)) → 𝑦𝑥)
65an4s 657 . . . . . . . . . 10 (((𝑦 ∈ On ∧ 𝑦𝐴) ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → 𝑦𝑥)
76ancoms 458 . . . . . . . . 9 (((𝑥 ∈ On ∧ 𝐴𝑥) ∧ (𝑦 ∈ On ∧ 𝑦𝐴)) → 𝑦𝑥)
873impb 1112 . . . . . . . 8 (((𝑥 ∈ On ∧ 𝐴𝑥) ∧ 𝑦 ∈ On ∧ 𝑦𝐴) → 𝑦𝑥)
98rabssdv 4065 . . . . . . 7 ((𝑥 ∈ On ∧ 𝐴𝑥) → {𝑦 ∈ On ∣ 𝑦𝐴} ⊆ 𝑥)
109adantl 481 . . . . . 6 ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → {𝑦 ∈ On ∣ 𝑦𝐴} ⊆ 𝑥)
112, 10eqsstrd 4013 . . . . 5 ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → (har‘𝐴) ⊆ 𝑥)
1211expr 456 . . . 4 ((𝐴 ∈ dom card ∧ 𝑥 ∈ On) → (𝐴𝑥 → (har‘𝐴) ⊆ 𝑥))
1312ralrimiva 3138 . . 3 (𝐴 ∈ dom card → ∀𝑥 ∈ On (𝐴𝑥 → (har‘𝐴) ⊆ 𝑥))
14 ssintrab 4966 . . 3 ((har‘𝐴) ⊆ {𝑥 ∈ On ∣ 𝐴𝑥} ↔ ∀𝑥 ∈ On (𝐴𝑥 → (har‘𝐴) ⊆ 𝑥))
1513, 14sylibr 233 . 2 (𝐴 ∈ dom card → (har‘𝐴) ⊆ {𝑥 ∈ On ∣ 𝐴𝑥})
16 breq2 5143 . . . 4 (𝑥 = (har‘𝐴) → (𝐴𝑥𝐴 ≺ (har‘𝐴)))
17 harcl 9551 . . . . 5 (har‘𝐴) ∈ On
1817a1i 11 . . . 4 (𝐴 ∈ dom card → (har‘𝐴) ∈ On)
19 harsdom 9987 . . . 4 (𝐴 ∈ dom card → 𝐴 ≺ (har‘𝐴))
2016, 18, 19elrabd 3678 . . 3 (𝐴 ∈ dom card → (har‘𝐴) ∈ {𝑥 ∈ On ∣ 𝐴𝑥})
21 intss1 4958 . . 3 ((har‘𝐴) ∈ {𝑥 ∈ On ∣ 𝐴𝑥} → {𝑥 ∈ On ∣ 𝐴𝑥} ⊆ (har‘𝐴))
2220, 21syl 17 . 2 (𝐴 ∈ dom card → {𝑥 ∈ On ∣ 𝐴𝑥} ⊆ (har‘𝐴))
2315, 22eqssd 3992 1 (𝐴 ∈ dom card → (har‘𝐴) = {𝑥 ∈ On ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3053  {crab 3424  wss 3941   cint 4941   class class class wbr 5139  dom cdm 5667  Oncon0 6355  cfv 6534  cdom 8934  csdm 8935  harchar 9548  cardccrd 9927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-oi 9502  df-har 9549  df-card 9931
This theorem is referenced by:  harsucnn  9990  alephnbtwn  10063  harval3  42803  aleph1min  42822
  Copyright terms: Public domain W3C validator