Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > harval2 | Structured version Visualization version GIF version |
Description: An alternate expression for the Hartogs number of a well-orderable set. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
harval2 | ⊢ (𝐴 ∈ dom card → (har‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | harval 9249 | . . . . . . 7 ⊢ (𝐴 ∈ dom card → (har‘𝐴) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴}) | |
2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → (har‘𝐴) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴}) |
3 | sdomel 8860 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ≺ 𝑥 → 𝑦 ∈ 𝑥)) | |
4 | domsdomtr 8848 | . . . . . . . . . . . 12 ⊢ ((𝑦 ≼ 𝐴 ∧ 𝐴 ≺ 𝑥) → 𝑦 ≺ 𝑥) | |
5 | 3, 4 | impel 505 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑦 ≼ 𝐴 ∧ 𝐴 ≺ 𝑥)) → 𝑦 ∈ 𝑥) |
6 | 5 | an4s 656 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ On ∧ 𝑦 ≼ 𝐴) ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → 𝑦 ∈ 𝑥) |
7 | 6 | ancoms 458 | . . . . . . . . 9 ⊢ (((𝑥 ∈ On ∧ 𝐴 ≺ 𝑥) ∧ (𝑦 ∈ On ∧ 𝑦 ≼ 𝐴)) → 𝑦 ∈ 𝑥) |
8 | 7 | 3impb 1113 | . . . . . . . 8 ⊢ (((𝑥 ∈ On ∧ 𝐴 ≺ 𝑥) ∧ 𝑦 ∈ On ∧ 𝑦 ≼ 𝐴) → 𝑦 ∈ 𝑥) |
9 | 8 | rabssdv 4004 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝐴 ≺ 𝑥) → {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴} ⊆ 𝑥) |
10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → {𝑦 ∈ On ∣ 𝑦 ≼ 𝐴} ⊆ 𝑥) |
11 | 2, 10 | eqsstrd 3955 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴 ≺ 𝑥)) → (har‘𝐴) ⊆ 𝑥) |
12 | 11 | expr 456 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝑥 ∈ On) → (𝐴 ≺ 𝑥 → (har‘𝐴) ⊆ 𝑥)) |
13 | 12 | ralrimiva 3107 | . . 3 ⊢ (𝐴 ∈ dom card → ∀𝑥 ∈ On (𝐴 ≺ 𝑥 → (har‘𝐴) ⊆ 𝑥)) |
14 | ssintrab 4899 | . . 3 ⊢ ((har‘𝐴) ⊆ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ↔ ∀𝑥 ∈ On (𝐴 ≺ 𝑥 → (har‘𝐴) ⊆ 𝑥)) | |
15 | 13, 14 | sylibr 233 | . 2 ⊢ (𝐴 ∈ dom card → (har‘𝐴) ⊆ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
16 | breq2 5074 | . . . 4 ⊢ (𝑥 = (har‘𝐴) → (𝐴 ≺ 𝑥 ↔ 𝐴 ≺ (har‘𝐴))) | |
17 | harcl 9248 | . . . . 5 ⊢ (har‘𝐴) ∈ On | |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ dom card → (har‘𝐴) ∈ On) |
19 | harsdom 9684 | . . . 4 ⊢ (𝐴 ∈ dom card → 𝐴 ≺ (har‘𝐴)) | |
20 | 16, 18, 19 | elrabd 3619 | . . 3 ⊢ (𝐴 ∈ dom card → (har‘𝐴) ∈ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
21 | intss1 4891 | . . 3 ⊢ ((har‘𝐴) ∈ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ⊆ (har‘𝐴)) | |
22 | 20, 21 | syl 17 | . 2 ⊢ (𝐴 ∈ dom card → ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ⊆ (har‘𝐴)) |
23 | 15, 22 | eqssd 3934 | 1 ⊢ (𝐴 ∈ dom card → (har‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ⊆ wss 3883 ∩ cint 4876 class class class wbr 5070 dom cdm 5580 Oncon0 6251 ‘cfv 6418 ≼ cdom 8689 ≺ csdm 8690 harchar 9245 cardccrd 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-oi 9199 df-har 9246 df-card 9628 |
This theorem is referenced by: harsucnn 9687 alephnbtwn 9758 harval3 41041 aleph1min 41053 |
Copyright terms: Public domain | W3C validator |