Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topjoin Structured version   Visualization version   GIF version

Theorem topjoin 35713
Description: Two equivalent formulations of the join of a collection of topologies. (Contributed by Jeff Hankins, 6-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
topjoin ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) = {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘})
Distinct variable groups:   𝑗,𝑘,𝑆   𝑗,𝑉,𝑘   𝑗,𝑋,𝑘

Proof of Theorem topjoin
StepHypRef Expression
1 topontop 22734 . . . . . . 7 (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ∈ Top)
21ad2antrl 725 . . . . . 6 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → 𝑘 ∈ Top)
3 toponmax 22747 . . . . . . . . 9 (𝑘 ∈ (TopOn‘𝑋) → 𝑋𝑘)
43ad2antrl 725 . . . . . . . 8 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → 𝑋𝑘)
54snssd 4812 . . . . . . 7 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → {𝑋} ⊆ 𝑘)
6 simprr 770 . . . . . . . 8 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → ∀𝑗𝑆 𝑗𝑘)
7 unissb 4943 . . . . . . . 8 ( 𝑆𝑘 ↔ ∀𝑗𝑆 𝑗𝑘)
86, 7sylibr 233 . . . . . . 7 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → 𝑆𝑘)
95, 8unssd 4186 . . . . . 6 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → ({𝑋} ∪ 𝑆) ⊆ 𝑘)
10 tgfiss 22813 . . . . . 6 ((𝑘 ∈ Top ∧ ({𝑋} ∪ 𝑆) ⊆ 𝑘) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘)
112, 9, 10syl2anc 583 . . . . 5 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘)
1211expr 456 . . . 4 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋)) → (∀𝑗𝑆 𝑗𝑘 → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘))
1312ralrimiva 3145 . . 3 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ∀𝑘 ∈ (TopOn‘𝑋)(∀𝑗𝑆 𝑗𝑘 → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘))
14 ssintrab 4975 . . 3 ((topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} ↔ ∀𝑘 ∈ (TopOn‘𝑋)(∀𝑗𝑆 𝑗𝑘 → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘))
1513, 14sylibr 233 . 2 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘})
16 fibas 22799 . . . . . 6 (fi‘({𝑋} ∪ 𝑆)) ∈ TopBases
17 tgtopon 22793 . . . . . 6 ((fi‘({𝑋} ∪ 𝑆)) ∈ TopBases → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ (TopOn‘ (fi‘({𝑋} ∪ 𝑆))))
1816, 17ax-mp 5 . . . . 5 (topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ (TopOn‘ (fi‘({𝑋} ∪ 𝑆)))
19 uniun 4934 . . . . . . . 8 ({𝑋} ∪ 𝑆) = ( {𝑋} ∪ 𝑆)
20 unisng 4929 . . . . . . . . . 10 (𝑋𝑉 {𝑋} = 𝑋)
2120adantr 480 . . . . . . . . 9 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → {𝑋} = 𝑋)
2221uneq1d 4162 . . . . . . . 8 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ( {𝑋} ∪ 𝑆) = (𝑋 𝑆))
2319, 22eqtr2id 2784 . . . . . . 7 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝑋 𝑆) = ({𝑋} ∪ 𝑆))
24 simpr 484 . . . . . . . . . . 11 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ⊆ (TopOn‘𝑋))
25 toponuni 22735 . . . . . . . . . . . . . . 15 (𝑘 ∈ (TopOn‘𝑋) → 𝑋 = 𝑘)
26 eqimss2 4041 . . . . . . . . . . . . . . 15 (𝑋 = 𝑘 𝑘𝑋)
2725, 26syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ (TopOn‘𝑋) → 𝑘𝑋)
28 sspwuni 5103 . . . . . . . . . . . . . 14 (𝑘 ⊆ 𝒫 𝑋 𝑘𝑋)
2927, 28sylibr 233 . . . . . . . . . . . . 13 (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ⊆ 𝒫 𝑋)
30 velpw 4607 . . . . . . . . . . . . 13 (𝑘 ∈ 𝒫 𝒫 𝑋𝑘 ⊆ 𝒫 𝑋)
3129, 30sylibr 233 . . . . . . . . . . . 12 (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ∈ 𝒫 𝒫 𝑋)
3231ssriv 3986 . . . . . . . . . . 11 (TopOn‘𝑋) ⊆ 𝒫 𝒫 𝑋
3324, 32sstrdi 3994 . . . . . . . . . 10 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ⊆ 𝒫 𝒫 𝑋)
34 sspwuni 5103 . . . . . . . . . 10 (𝑆 ⊆ 𝒫 𝒫 𝑋 𝑆 ⊆ 𝒫 𝑋)
3533, 34sylib 217 . . . . . . . . 9 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ⊆ 𝒫 𝑋)
36 sspwuni 5103 . . . . . . . . 9 ( 𝑆 ⊆ 𝒫 𝑋 𝑆𝑋)
3735, 36sylib 217 . . . . . . . 8 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆𝑋)
38 ssequn2 4183 . . . . . . . 8 ( 𝑆𝑋 ↔ (𝑋 𝑆) = 𝑋)
3937, 38sylib 217 . . . . . . 7 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝑋 𝑆) = 𝑋)
40 snex 5431 . . . . . . . . 9 {𝑋} ∈ V
41 fvex 6904 . . . . . . . . . . . 12 (TopOn‘𝑋) ∈ V
4241ssex 5321 . . . . . . . . . . 11 (𝑆 ⊆ (TopOn‘𝑋) → 𝑆 ∈ V)
4342adantl 481 . . . . . . . . . 10 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ∈ V)
4443uniexd 7736 . . . . . . . . 9 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ∈ V)
45 unexg 7740 . . . . . . . . 9 (({𝑋} ∈ V ∧ 𝑆 ∈ V) → ({𝑋} ∪ 𝑆) ∈ V)
4640, 44, 45sylancr 586 . . . . . . . 8 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ({𝑋} ∪ 𝑆) ∈ V)
47 fiuni 9429 . . . . . . . 8 (({𝑋} ∪ 𝑆) ∈ V → ({𝑋} ∪ 𝑆) = (fi‘({𝑋} ∪ 𝑆)))
4846, 47syl 17 . . . . . . 7 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ({𝑋} ∪ 𝑆) = (fi‘({𝑋} ∪ 𝑆)))
4923, 39, 483eqtr3d 2779 . . . . . 6 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑋 = (fi‘({𝑋} ∪ 𝑆)))
5049fveq2d 6895 . . . . 5 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (TopOn‘𝑋) = (TopOn‘ (fi‘({𝑋} ∪ 𝑆))))
5118, 50eleqtrrid 2839 . . . 4 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ (TopOn‘𝑋))
52 elssuni 4941 . . . . . . . 8 (𝑗𝑆𝑗 𝑆)
53 ssun2 4173 . . . . . . . 8 𝑆 ⊆ ({𝑋} ∪ 𝑆)
5452, 53sstrdi 3994 . . . . . . 7 (𝑗𝑆𝑗 ⊆ ({𝑋} ∪ 𝑆))
55 ssfii 9420 . . . . . . . 8 (({𝑋} ∪ 𝑆) ∈ V → ({𝑋} ∪ 𝑆) ⊆ (fi‘({𝑋} ∪ 𝑆)))
5646, 55syl 17 . . . . . . 7 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ({𝑋} ∪ 𝑆) ⊆ (fi‘({𝑋} ∪ 𝑆)))
5754, 56sylan9ssr 3996 . . . . . 6 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑗𝑆) → 𝑗 ⊆ (fi‘({𝑋} ∪ 𝑆)))
58 bastg 22788 . . . . . . 7 ((fi‘({𝑋} ∪ 𝑆)) ∈ TopBases → (fi‘({𝑋} ∪ 𝑆)) ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
5916, 58ax-mp 5 . . . . . 6 (fi‘({𝑋} ∪ 𝑆)) ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆)))
6057, 59sstrdi 3994 . . . . 5 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑗𝑆) → 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
6160ralrimiva 3145 . . . 4 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ∀𝑗𝑆 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
62 sseq2 4008 . . . . . 6 (𝑘 = (topGen‘(fi‘({𝑋} ∪ 𝑆))) → (𝑗𝑘𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆)))))
6362ralbidv 3176 . . . . 5 (𝑘 = (topGen‘(fi‘({𝑋} ∪ 𝑆))) → (∀𝑗𝑆 𝑗𝑘 ↔ ∀𝑗𝑆 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆)))))
6463elrab 3683 . . . 4 ((topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} ↔ ((topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆)))))
6551, 61, 64sylanbrc 582 . . 3 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘})
66 intss1 4967 . . 3 ((topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} → {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
6765, 66syl 17 . 2 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
6815, 67eqssd 3999 1 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) = {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  {crab 3431  Vcvv 3473  cun 3946  wss 3948  𝒫 cpw 4602  {csn 4628   cuni 4908   cint 4950  cfv 6543  ficfi 9411  topGenctg 17390  Topctop 22714  TopOnctopon 22731  TopBasesctb 22767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7860  df-1o 8472  df-er 8709  df-en 8946  df-fin 8949  df-fi 9412  df-topgen 17396  df-top 22715  df-topon 22732  df-bases 22768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator