Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topjoin Structured version   Visualization version   GIF version

Theorem topjoin 34481
Description: Two equivalent formulations of the join of a collection of topologies. (Contributed by Jeff Hankins, 6-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
topjoin ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) = {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘})
Distinct variable groups:   𝑗,𝑘,𝑆   𝑗,𝑉,𝑘   𝑗,𝑋,𝑘

Proof of Theorem topjoin
StepHypRef Expression
1 topontop 21970 . . . . . . 7 (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ∈ Top)
21ad2antrl 724 . . . . . 6 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → 𝑘 ∈ Top)
3 toponmax 21983 . . . . . . . . 9 (𝑘 ∈ (TopOn‘𝑋) → 𝑋𝑘)
43ad2antrl 724 . . . . . . . 8 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → 𝑋𝑘)
54snssd 4739 . . . . . . 7 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → {𝑋} ⊆ 𝑘)
6 simprr 769 . . . . . . . 8 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → ∀𝑗𝑆 𝑗𝑘)
7 unissb 4870 . . . . . . . 8 ( 𝑆𝑘 ↔ ∀𝑗𝑆 𝑗𝑘)
86, 7sylibr 233 . . . . . . 7 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → 𝑆𝑘)
95, 8unssd 4116 . . . . . 6 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → ({𝑋} ∪ 𝑆) ⊆ 𝑘)
10 tgfiss 22049 . . . . . 6 ((𝑘 ∈ Top ∧ ({𝑋} ∪ 𝑆) ⊆ 𝑘) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘)
112, 9, 10syl2anc 583 . . . . 5 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘)
1211expr 456 . . . 4 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋)) → (∀𝑗𝑆 𝑗𝑘 → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘))
1312ralrimiva 3107 . . 3 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ∀𝑘 ∈ (TopOn‘𝑋)(∀𝑗𝑆 𝑗𝑘 → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘))
14 ssintrab 4899 . . 3 ((topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} ↔ ∀𝑘 ∈ (TopOn‘𝑋)(∀𝑗𝑆 𝑗𝑘 → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘))
1513, 14sylibr 233 . 2 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘})
16 fibas 22035 . . . . . 6 (fi‘({𝑋} ∪ 𝑆)) ∈ TopBases
17 tgtopon 22029 . . . . . 6 ((fi‘({𝑋} ∪ 𝑆)) ∈ TopBases → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ (TopOn‘ (fi‘({𝑋} ∪ 𝑆))))
1816, 17ax-mp 5 . . . . 5 (topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ (TopOn‘ (fi‘({𝑋} ∪ 𝑆)))
19 uniun 4861 . . . . . . . 8 ({𝑋} ∪ 𝑆) = ( {𝑋} ∪ 𝑆)
20 unisng 4857 . . . . . . . . . 10 (𝑋𝑉 {𝑋} = 𝑋)
2120adantr 480 . . . . . . . . 9 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → {𝑋} = 𝑋)
2221uneq1d 4092 . . . . . . . 8 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ( {𝑋} ∪ 𝑆) = (𝑋 𝑆))
2319, 22eqtr2id 2792 . . . . . . 7 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝑋 𝑆) = ({𝑋} ∪ 𝑆))
24 simpr 484 . . . . . . . . . . 11 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ⊆ (TopOn‘𝑋))
25 toponuni 21971 . . . . . . . . . . . . . . 15 (𝑘 ∈ (TopOn‘𝑋) → 𝑋 = 𝑘)
26 eqimss2 3974 . . . . . . . . . . . . . . 15 (𝑋 = 𝑘 𝑘𝑋)
2725, 26syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ (TopOn‘𝑋) → 𝑘𝑋)
28 sspwuni 5025 . . . . . . . . . . . . . 14 (𝑘 ⊆ 𝒫 𝑋 𝑘𝑋)
2927, 28sylibr 233 . . . . . . . . . . . . 13 (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ⊆ 𝒫 𝑋)
30 velpw 4535 . . . . . . . . . . . . 13 (𝑘 ∈ 𝒫 𝒫 𝑋𝑘 ⊆ 𝒫 𝑋)
3129, 30sylibr 233 . . . . . . . . . . . 12 (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ∈ 𝒫 𝒫 𝑋)
3231ssriv 3921 . . . . . . . . . . 11 (TopOn‘𝑋) ⊆ 𝒫 𝒫 𝑋
3324, 32sstrdi 3929 . . . . . . . . . 10 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ⊆ 𝒫 𝒫 𝑋)
34 sspwuni 5025 . . . . . . . . . 10 (𝑆 ⊆ 𝒫 𝒫 𝑋 𝑆 ⊆ 𝒫 𝑋)
3533, 34sylib 217 . . . . . . . . 9 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ⊆ 𝒫 𝑋)
36 sspwuni 5025 . . . . . . . . 9 ( 𝑆 ⊆ 𝒫 𝑋 𝑆𝑋)
3735, 36sylib 217 . . . . . . . 8 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆𝑋)
38 ssequn2 4113 . . . . . . . 8 ( 𝑆𝑋 ↔ (𝑋 𝑆) = 𝑋)
3937, 38sylib 217 . . . . . . 7 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝑋 𝑆) = 𝑋)
40 snex 5349 . . . . . . . . 9 {𝑋} ∈ V
41 fvex 6769 . . . . . . . . . . . 12 (TopOn‘𝑋) ∈ V
4241ssex 5240 . . . . . . . . . . 11 (𝑆 ⊆ (TopOn‘𝑋) → 𝑆 ∈ V)
4342adantl 481 . . . . . . . . . 10 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ∈ V)
4443uniexd 7573 . . . . . . . . 9 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ∈ V)
45 unexg 7577 . . . . . . . . 9 (({𝑋} ∈ V ∧ 𝑆 ∈ V) → ({𝑋} ∪ 𝑆) ∈ V)
4640, 44, 45sylancr 586 . . . . . . . 8 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ({𝑋} ∪ 𝑆) ∈ V)
47 fiuni 9117 . . . . . . . 8 (({𝑋} ∪ 𝑆) ∈ V → ({𝑋} ∪ 𝑆) = (fi‘({𝑋} ∪ 𝑆)))
4846, 47syl 17 . . . . . . 7 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ({𝑋} ∪ 𝑆) = (fi‘({𝑋} ∪ 𝑆)))
4923, 39, 483eqtr3d 2786 . . . . . 6 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑋 = (fi‘({𝑋} ∪ 𝑆)))
5049fveq2d 6760 . . . . 5 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (TopOn‘𝑋) = (TopOn‘ (fi‘({𝑋} ∪ 𝑆))))
5118, 50eleqtrrid 2846 . . . 4 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ (TopOn‘𝑋))
52 elssuni 4868 . . . . . . . 8 (𝑗𝑆𝑗 𝑆)
53 ssun2 4103 . . . . . . . 8 𝑆 ⊆ ({𝑋} ∪ 𝑆)
5452, 53sstrdi 3929 . . . . . . 7 (𝑗𝑆𝑗 ⊆ ({𝑋} ∪ 𝑆))
55 ssfii 9108 . . . . . . . 8 (({𝑋} ∪ 𝑆) ∈ V → ({𝑋} ∪ 𝑆) ⊆ (fi‘({𝑋} ∪ 𝑆)))
5646, 55syl 17 . . . . . . 7 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ({𝑋} ∪ 𝑆) ⊆ (fi‘({𝑋} ∪ 𝑆)))
5754, 56sylan9ssr 3931 . . . . . 6 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑗𝑆) → 𝑗 ⊆ (fi‘({𝑋} ∪ 𝑆)))
58 bastg 22024 . . . . . . 7 ((fi‘({𝑋} ∪ 𝑆)) ∈ TopBases → (fi‘({𝑋} ∪ 𝑆)) ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
5916, 58ax-mp 5 . . . . . 6 (fi‘({𝑋} ∪ 𝑆)) ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆)))
6057, 59sstrdi 3929 . . . . 5 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑗𝑆) → 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
6160ralrimiva 3107 . . . 4 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ∀𝑗𝑆 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
62 sseq2 3943 . . . . . 6 (𝑘 = (topGen‘(fi‘({𝑋} ∪ 𝑆))) → (𝑗𝑘𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆)))))
6362ralbidv 3120 . . . . 5 (𝑘 = (topGen‘(fi‘({𝑋} ∪ 𝑆))) → (∀𝑗𝑆 𝑗𝑘 ↔ ∀𝑗𝑆 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆)))))
6463elrab 3617 . . . 4 ((topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} ↔ ((topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆)))))
6551, 61, 64sylanbrc 582 . . 3 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘})
66 intss1 4891 . . 3 ((topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} → {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
6765, 66syl 17 . 2 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
6815, 67eqssd 3934 1 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) = {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  cun 3881  wss 3883  𝒫 cpw 4530  {csn 4558   cuni 4836   cint 4876  cfv 6418  ficfi 9099  topGenctg 17065  Topctop 21950  TopOnctopon 21967  TopBasesctb 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-er 8456  df-en 8692  df-fin 8695  df-fi 9100  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator