Proof of Theorem topjoin
| Step | Hyp | Ref
| Expression |
| 1 | | topontop 22851 |
. . . . . . 7
⊢ (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ∈ Top) |
| 2 | 1 | ad2antrl 728 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘)) → 𝑘 ∈ Top) |
| 3 | | toponmax 22864 |
. . . . . . . . 9
⊢ (𝑘 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝑘) |
| 4 | 3 | ad2antrl 728 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘)) → 𝑋 ∈ 𝑘) |
| 5 | 4 | snssd 4785 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘)) → {𝑋} ⊆ 𝑘) |
| 6 | | simprr 772 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘)) → ∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘) |
| 7 | | unissb 4915 |
. . . . . . . 8
⊢ (∪ 𝑆
⊆ 𝑘 ↔
∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘) |
| 8 | 6, 7 | sylibr 234 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘)) → ∪ 𝑆 ⊆ 𝑘) |
| 9 | 5, 8 | unssd 4167 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘)) → ({𝑋} ∪ ∪ 𝑆) ⊆ 𝑘) |
| 10 | | tgfiss 22929 |
. . . . . 6
⊢ ((𝑘 ∈ Top ∧ ({𝑋} ∪ ∪ 𝑆)
⊆ 𝑘) →
(topGen‘(fi‘({𝑋} ∪ ∪ 𝑆))) ⊆ 𝑘) |
| 11 | 2, 9, 10 | syl2anc 584 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘)) → (topGen‘(fi‘({𝑋} ∪ ∪ 𝑆)))
⊆ 𝑘) |
| 12 | 11 | expr 456 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋)) → (∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 → (topGen‘(fi‘({𝑋} ∪ ∪ 𝑆)))
⊆ 𝑘)) |
| 13 | 12 | ralrimiva 3132 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → ∀𝑘 ∈ (TopOn‘𝑋)(∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 → (topGen‘(fi‘({𝑋} ∪ ∪ 𝑆)))
⊆ 𝑘)) |
| 14 | | ssintrab 4947 |
. . 3
⊢
((topGen‘(fi‘({𝑋} ∪ ∪ 𝑆))) ⊆ ∩ {𝑘
∈ (TopOn‘𝑋)
∣ ∀𝑗 ∈
𝑆 𝑗 ⊆ 𝑘} ↔ ∀𝑘 ∈ (TopOn‘𝑋)(∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 → (topGen‘(fi‘({𝑋} ∪ ∪ 𝑆)))
⊆ 𝑘)) |
| 15 | 13, 14 | sylibr 234 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ ∪ 𝑆)))
⊆ ∩ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘}) |
| 16 | | fibas 22915 |
. . . . . 6
⊢
(fi‘({𝑋} ∪
∪ 𝑆)) ∈ TopBases |
| 17 | | tgtopon 22909 |
. . . . . 6
⊢
((fi‘({𝑋}
∪ ∪ 𝑆)) ∈ TopBases →
(topGen‘(fi‘({𝑋} ∪ ∪ 𝑆))) ∈ (TopOn‘∪ (fi‘({𝑋} ∪ ∪ 𝑆)))) |
| 18 | 16, 17 | ax-mp 5 |
. . . . 5
⊢
(topGen‘(fi‘({𝑋} ∪ ∪ 𝑆))) ∈ (TopOn‘∪ (fi‘({𝑋} ∪ ∪ 𝑆))) |
| 19 | | uniun 4906 |
. . . . . . . 8
⊢ ∪ ({𝑋}
∪ ∪ 𝑆) = (∪ {𝑋} ∪ ∪ ∪ 𝑆) |
| 20 | | unisng 4901 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝑉 → ∪ {𝑋} = 𝑋) |
| 21 | 20 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → ∪
{𝑋} = 𝑋) |
| 22 | 21 | uneq1d 4142 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → (∪
{𝑋} ∪ ∪ ∪ 𝑆) = (𝑋 ∪ ∪ ∪ 𝑆)) |
| 23 | 19, 22 | eqtr2id 2783 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → (𝑋 ∪ ∪ ∪ 𝑆) =
∪ ({𝑋} ∪ ∪ 𝑆)) |
| 24 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ⊆ (TopOn‘𝑋)) |
| 25 | | toponuni 22852 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝑘) |
| 26 | | eqimss2 4018 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 = ∪
𝑘 → ∪ 𝑘
⊆ 𝑋) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (TopOn‘𝑋) → ∪ 𝑘
⊆ 𝑋) |
| 28 | | sspwuni 5076 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ⊆ 𝒫 𝑋 ↔ ∪ 𝑘
⊆ 𝑋) |
| 29 | 27, 28 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ⊆ 𝒫 𝑋) |
| 30 | | velpw 4580 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝒫 𝒫
𝑋 ↔ 𝑘 ⊆ 𝒫 𝑋) |
| 31 | 29, 30 | sylibr 234 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ∈ 𝒫 𝒫 𝑋) |
| 32 | 31 | ssriv 3962 |
. . . . . . . . . . 11
⊢
(TopOn‘𝑋)
⊆ 𝒫 𝒫 𝑋 |
| 33 | 24, 32 | sstrdi 3971 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ⊆ 𝒫 𝒫 𝑋) |
| 34 | | sspwuni 5076 |
. . . . . . . . . 10
⊢ (𝑆 ⊆ 𝒫 𝒫
𝑋 ↔ ∪ 𝑆
⊆ 𝒫 𝑋) |
| 35 | 33, 34 | sylib 218 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → ∪ 𝑆 ⊆ 𝒫 𝑋) |
| 36 | | sspwuni 5076 |
. . . . . . . . 9
⊢ (∪ 𝑆
⊆ 𝒫 𝑋 ↔
∪ ∪ 𝑆 ⊆ 𝑋) |
| 37 | 35, 36 | sylib 218 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → ∪ ∪ 𝑆
⊆ 𝑋) |
| 38 | | ssequn2 4164 |
. . . . . . . 8
⊢ (∪ ∪ 𝑆 ⊆ 𝑋 ↔ (𝑋 ∪ ∪ ∪ 𝑆) =
𝑋) |
| 39 | 37, 38 | sylib 218 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → (𝑋 ∪ ∪ ∪ 𝑆) =
𝑋) |
| 40 | | snex 5406 |
. . . . . . . . 9
⊢ {𝑋} ∈ V |
| 41 | | fvex 6889 |
. . . . . . . . . . . 12
⊢
(TopOn‘𝑋)
∈ V |
| 42 | 41 | ssex 5291 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ (TopOn‘𝑋) → 𝑆 ∈ V) |
| 43 | 42 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ∈ V) |
| 44 | 43 | uniexd 7736 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → ∪ 𝑆 ∈ V) |
| 45 | | unexg 7737 |
. . . . . . . . 9
⊢ (({𝑋} ∈ V ∧ ∪ 𝑆
∈ V) → ({𝑋} ∪
∪ 𝑆) ∈ V) |
| 46 | 40, 44, 45 | sylancr 587 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → ({𝑋} ∪ ∪ 𝑆) ∈ V) |
| 47 | | fiuni 9440 |
. . . . . . . 8
⊢ (({𝑋} ∪ ∪ 𝑆)
∈ V → ∪ ({𝑋} ∪ ∪ 𝑆) = ∪
(fi‘({𝑋} ∪ ∪ 𝑆))) |
| 48 | 46, 47 | syl 17 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → ∪
({𝑋} ∪ ∪ 𝑆) =
∪ (fi‘({𝑋} ∪ ∪ 𝑆))) |
| 49 | 23, 39, 48 | 3eqtr3d 2778 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → 𝑋 = ∪
(fi‘({𝑋} ∪ ∪ 𝑆))) |
| 50 | 49 | fveq2d 6880 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → (TopOn‘𝑋) = (TopOn‘∪ (fi‘({𝑋} ∪ ∪ 𝑆)))) |
| 51 | 18, 50 | eleqtrrid 2841 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ ∪ 𝑆)))
∈ (TopOn‘𝑋)) |
| 52 | | elssuni 4913 |
. . . . . . . 8
⊢ (𝑗 ∈ 𝑆 → 𝑗 ⊆ ∪ 𝑆) |
| 53 | | ssun2 4154 |
. . . . . . . 8
⊢ ∪ 𝑆
⊆ ({𝑋} ∪ ∪ 𝑆) |
| 54 | 52, 53 | sstrdi 3971 |
. . . . . . 7
⊢ (𝑗 ∈ 𝑆 → 𝑗 ⊆ ({𝑋} ∪ ∪ 𝑆)) |
| 55 | | ssfii 9431 |
. . . . . . . 8
⊢ (({𝑋} ∪ ∪ 𝑆)
∈ V → ({𝑋} ∪
∪ 𝑆) ⊆ (fi‘({𝑋} ∪ ∪ 𝑆))) |
| 56 | 46, 55 | syl 17 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → ({𝑋} ∪ ∪ 𝑆) ⊆ (fi‘({𝑋} ∪ ∪ 𝑆))) |
| 57 | 54, 56 | sylan9ssr 3973 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑗 ∈ 𝑆) → 𝑗 ⊆ (fi‘({𝑋} ∪ ∪ 𝑆))) |
| 58 | | bastg 22904 |
. . . . . . 7
⊢
((fi‘({𝑋}
∪ ∪ 𝑆)) ∈ TopBases → (fi‘({𝑋} ∪ ∪ 𝑆))
⊆ (topGen‘(fi‘({𝑋} ∪ ∪ 𝑆)))) |
| 59 | 16, 58 | ax-mp 5 |
. . . . . 6
⊢
(fi‘({𝑋} ∪
∪ 𝑆)) ⊆ (topGen‘(fi‘({𝑋} ∪ ∪ 𝑆))) |
| 60 | 57, 59 | sstrdi 3971 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑗 ∈ 𝑆) → 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ ∪ 𝑆)))) |
| 61 | 60 | ralrimiva 3132 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → ∀𝑗 ∈ 𝑆 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ ∪ 𝑆)))) |
| 62 | | sseq2 3985 |
. . . . . 6
⊢ (𝑘 =
(topGen‘(fi‘({𝑋} ∪ ∪ 𝑆))) → (𝑗 ⊆ 𝑘 ↔ 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ ∪ 𝑆))))) |
| 63 | 62 | ralbidv 3163 |
. . . . 5
⊢ (𝑘 =
(topGen‘(fi‘({𝑋} ∪ ∪ 𝑆))) → (∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘 ↔ ∀𝑗 ∈ 𝑆 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ ∪ 𝑆))))) |
| 64 | 63 | elrab 3671 |
. . . 4
⊢
((topGen‘(fi‘({𝑋} ∪ ∪ 𝑆))) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘} ↔ ((topGen‘(fi‘({𝑋} ∪ ∪ 𝑆)))
∈ (TopOn‘𝑋)
∧ ∀𝑗 ∈
𝑆 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ ∪ 𝑆))))) |
| 65 | 51, 61, 64 | sylanbrc 583 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ ∪ 𝑆)))
∈ {𝑘 ∈
(TopOn‘𝑋) ∣
∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘}) |
| 66 | | intss1 4939 |
. . 3
⊢
((topGen‘(fi‘({𝑋} ∪ ∪ 𝑆))) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘} → ∩ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘} ⊆ (topGen‘(fi‘({𝑋} ∪ ∪ 𝑆)))) |
| 67 | 65, 66 | syl 17 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → ∩
{𝑘 ∈
(TopOn‘𝑋) ∣
∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘} ⊆ (topGen‘(fi‘({𝑋} ∪ ∪ 𝑆)))) |
| 68 | 15, 67 | eqssd 3976 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ ∪ 𝑆)))
= ∩ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗 ∈ 𝑆 𝑗 ⊆ 𝑘}) |