Mathbox for Jeff Hankins < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topjoin Structured version   Visualization version   GIF version

Theorem topjoin 34137
 Description: Two equivalent formulations of the join of a collection of topologies. (Contributed by Jeff Hankins, 6-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
topjoin ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) = {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘})
Distinct variable groups:   𝑗,𝑘,𝑆   𝑗,𝑉,𝑘   𝑗,𝑋,𝑘

Proof of Theorem topjoin
StepHypRef Expression
1 topontop 21626 . . . . . . 7 (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ∈ Top)
21ad2antrl 727 . . . . . 6 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → 𝑘 ∈ Top)
3 toponmax 21639 . . . . . . . . 9 (𝑘 ∈ (TopOn‘𝑋) → 𝑋𝑘)
43ad2antrl 727 . . . . . . . 8 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → 𝑋𝑘)
54snssd 4702 . . . . . . 7 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → {𝑋} ⊆ 𝑘)
6 simprr 772 . . . . . . . 8 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → ∀𝑗𝑆 𝑗𝑘)
7 unissb 4835 . . . . . . . 8 ( 𝑆𝑘 ↔ ∀𝑗𝑆 𝑗𝑘)
86, 7sylibr 237 . . . . . . 7 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → 𝑆𝑘)
95, 8unssd 4093 . . . . . 6 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → ({𝑋} ∪ 𝑆) ⊆ 𝑘)
10 tgfiss 21704 . . . . . 6 ((𝑘 ∈ Top ∧ ({𝑋} ∪ 𝑆) ⊆ 𝑘) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘)
112, 9, 10syl2anc 587 . . . . 5 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ (𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗𝑘)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘)
1211expr 460 . . . 4 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋)) → (∀𝑗𝑆 𝑗𝑘 → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘))
1312ralrimiva 3113 . . 3 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ∀𝑘 ∈ (TopOn‘𝑋)(∀𝑗𝑆 𝑗𝑘 → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘))
14 ssintrab 4864 . . 3 ((topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} ↔ ∀𝑘 ∈ (TopOn‘𝑋)(∀𝑗𝑆 𝑗𝑘 → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ 𝑘))
1513, 14sylibr 237 . 2 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ⊆ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘})
16 fibas 21690 . . . . . 6 (fi‘({𝑋} ∪ 𝑆)) ∈ TopBases
17 tgtopon 21684 . . . . . 6 ((fi‘({𝑋} ∪ 𝑆)) ∈ TopBases → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ (TopOn‘ (fi‘({𝑋} ∪ 𝑆))))
1816, 17ax-mp 5 . . . . 5 (topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ (TopOn‘ (fi‘({𝑋} ∪ 𝑆)))
19 uniun 4826 . . . . . . . 8 ({𝑋} ∪ 𝑆) = ( {𝑋} ∪ 𝑆)
20 unisng 4822 . . . . . . . . . 10 (𝑋𝑉 {𝑋} = 𝑋)
2120adantr 484 . . . . . . . . 9 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → {𝑋} = 𝑋)
2221uneq1d 4069 . . . . . . . 8 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ( {𝑋} ∪ 𝑆) = (𝑋 𝑆))
2319, 22syl5req 2806 . . . . . . 7 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝑋 𝑆) = ({𝑋} ∪ 𝑆))
24 simpr 488 . . . . . . . . . . 11 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ⊆ (TopOn‘𝑋))
25 toponuni 21627 . . . . . . . . . . . . . . 15 (𝑘 ∈ (TopOn‘𝑋) → 𝑋 = 𝑘)
26 eqimss2 3951 . . . . . . . . . . . . . . 15 (𝑋 = 𝑘 𝑘𝑋)
2725, 26syl 17 . . . . . . . . . . . . . 14 (𝑘 ∈ (TopOn‘𝑋) → 𝑘𝑋)
28 sspwuni 4991 . . . . . . . . . . . . . 14 (𝑘 ⊆ 𝒫 𝑋 𝑘𝑋)
2927, 28sylibr 237 . . . . . . . . . . . . 13 (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ⊆ 𝒫 𝑋)
30 velpw 4502 . . . . . . . . . . . . 13 (𝑘 ∈ 𝒫 𝒫 𝑋𝑘 ⊆ 𝒫 𝑋)
3129, 30sylibr 237 . . . . . . . . . . . 12 (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ∈ 𝒫 𝒫 𝑋)
3231ssriv 3898 . . . . . . . . . . 11 (TopOn‘𝑋) ⊆ 𝒫 𝒫 𝑋
3324, 32sstrdi 3906 . . . . . . . . . 10 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ⊆ 𝒫 𝒫 𝑋)
34 sspwuni 4991 . . . . . . . . . 10 (𝑆 ⊆ 𝒫 𝒫 𝑋 𝑆 ⊆ 𝒫 𝑋)
3533, 34sylib 221 . . . . . . . . 9 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ⊆ 𝒫 𝑋)
36 sspwuni 4991 . . . . . . . . 9 ( 𝑆 ⊆ 𝒫 𝑋 𝑆𝑋)
3735, 36sylib 221 . . . . . . . 8 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆𝑋)
38 ssequn2 4090 . . . . . . . 8 ( 𝑆𝑋 ↔ (𝑋 𝑆) = 𝑋)
3937, 38sylib 221 . . . . . . 7 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝑋 𝑆) = 𝑋)
40 snex 5304 . . . . . . . . 9 {𝑋} ∈ V
41 fvex 6676 . . . . . . . . . . . 12 (TopOn‘𝑋) ∈ V
4241ssex 5195 . . . . . . . . . . 11 (𝑆 ⊆ (TopOn‘𝑋) → 𝑆 ∈ V)
4342adantl 485 . . . . . . . . . 10 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ∈ V)
4443uniexd 7472 . . . . . . . . 9 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑆 ∈ V)
45 unexg 7476 . . . . . . . . 9 (({𝑋} ∈ V ∧ 𝑆 ∈ V) → ({𝑋} ∪ 𝑆) ∈ V)
4640, 44, 45sylancr 590 . . . . . . . 8 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ({𝑋} ∪ 𝑆) ∈ V)
47 fiuni 8938 . . . . . . . 8 (({𝑋} ∪ 𝑆) ∈ V → ({𝑋} ∪ 𝑆) = (fi‘({𝑋} ∪ 𝑆)))
4846, 47syl 17 . . . . . . 7 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ({𝑋} ∪ 𝑆) = (fi‘({𝑋} ∪ 𝑆)))
4923, 39, 483eqtr3d 2801 . . . . . 6 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → 𝑋 = (fi‘({𝑋} ∪ 𝑆)))
5049fveq2d 6667 . . . . 5 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (TopOn‘𝑋) = (TopOn‘ (fi‘({𝑋} ∪ 𝑆))))
5118, 50eleqtrrid 2859 . . . 4 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ (TopOn‘𝑋))
52 elssuni 4833 . . . . . . . 8 (𝑗𝑆𝑗 𝑆)
53 ssun2 4080 . . . . . . . 8 𝑆 ⊆ ({𝑋} ∪ 𝑆)
5452, 53sstrdi 3906 . . . . . . 7 (𝑗𝑆𝑗 ⊆ ({𝑋} ∪ 𝑆))
55 ssfii 8929 . . . . . . . 8 (({𝑋} ∪ 𝑆) ∈ V → ({𝑋} ∪ 𝑆) ⊆ (fi‘({𝑋} ∪ 𝑆)))
5646, 55syl 17 . . . . . . 7 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ({𝑋} ∪ 𝑆) ⊆ (fi‘({𝑋} ∪ 𝑆)))
5754, 56sylan9ssr 3908 . . . . . 6 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑗𝑆) → 𝑗 ⊆ (fi‘({𝑋} ∪ 𝑆)))
58 bastg 21679 . . . . . . 7 ((fi‘({𝑋} ∪ 𝑆)) ∈ TopBases → (fi‘({𝑋} ∪ 𝑆)) ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
5916, 58ax-mp 5 . . . . . 6 (fi‘({𝑋} ∪ 𝑆)) ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆)))
6057, 59sstrdi 3906 . . . . 5 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑗𝑆) → 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
6160ralrimiva 3113 . . . 4 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → ∀𝑗𝑆 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
62 sseq2 3920 . . . . . 6 (𝑘 = (topGen‘(fi‘({𝑋} ∪ 𝑆))) → (𝑗𝑘𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆)))))
6362ralbidv 3126 . . . . 5 (𝑘 = (topGen‘(fi‘({𝑋} ∪ 𝑆))) → (∀𝑗𝑆 𝑗𝑘 ↔ ∀𝑗𝑆 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆)))))
6463elrab 3604 . . . 4 ((topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} ↔ ((topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑗 ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆)))))
6551, 61, 64sylanbrc 586 . . 3 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘})
66 intss1 4856 . . 3 ((topGen‘(fi‘({𝑋} ∪ 𝑆))) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} → {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
6765, 66syl 17 . 2 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘} ⊆ (topGen‘(fi‘({𝑋} ∪ 𝑆))))
6815, 67eqssd 3911 1 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (topGen‘(fi‘({𝑋} ∪ 𝑆))) = {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑗𝑘})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3070  {crab 3074  Vcvv 3409   ∪ cun 3858   ⊆ wss 3860  𝒫 cpw 4497  {csn 4525  ∪ cuni 4801  ∩ cint 4841  ‘cfv 6340  ficfi 8920  topGenctg 16782  Topctop 21606  TopOnctopon 21623  TopBasesctb 21658 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-om 7586  df-1o 8118  df-er 8305  df-en 8541  df-fin 8544  df-fi 8921  df-topgen 16788  df-top 21607  df-topon 21624  df-bases 21659 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator