Step | Hyp | Ref
| Expression |
1 | | knatar.1 |
. . 3
⊢ 𝑋 = ∩
{𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} |
2 | | pwidg 4560 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
3 | 2 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → 𝐴 ∈ 𝒫 𝐴) |
4 | | simp2 1135 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝐴) ⊆ 𝐴) |
5 | | fveq2 6768 |
. . . . . 6
⊢ (𝑧 = 𝐴 → (𝐹‘𝑧) = (𝐹‘𝐴)) |
6 | | id 22 |
. . . . . 6
⊢ (𝑧 = 𝐴 → 𝑧 = 𝐴) |
7 | 5, 6 | sseq12d 3958 |
. . . . 5
⊢ (𝑧 = 𝐴 → ((𝐹‘𝑧) ⊆ 𝑧 ↔ (𝐹‘𝐴) ⊆ 𝐴)) |
8 | 7 | intminss 4910 |
. . . 4
⊢ ((𝐴 ∈ 𝒫 𝐴 ∧ (𝐹‘𝐴) ⊆ 𝐴) → ∩ {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} ⊆ 𝐴) |
9 | 3, 4, 8 | syl2anc 583 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ∩ {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} ⊆ 𝐴) |
10 | 1, 9 | eqsstrid 3973 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → 𝑋 ⊆ 𝐴) |
11 | | fveq2 6768 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) |
12 | 11 | sseq1d 3956 |
. . . . . . . . 9
⊢ (𝑦 = 𝑋 → ((𝐹‘𝑦) ⊆ (𝐹‘𝑤) ↔ (𝐹‘𝑋) ⊆ (𝐹‘𝑤))) |
13 | | pweq 4554 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → 𝒫 𝑥 = 𝒫 𝑤) |
14 | | fveq2 6768 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
15 | 14 | sseq2d 3957 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝑦) ⊆ (𝐹‘𝑤))) |
16 | 13, 15 | raleqbidv 3334 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ ∀𝑦 ∈ 𝒫 𝑤(𝐹‘𝑦) ⊆ (𝐹‘𝑤))) |
17 | | simpl3 1191 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) |
18 | | simprl 767 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → 𝑤 ∈ 𝒫 𝐴) |
19 | 16, 17, 18 | rspcdva 3562 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → ∀𝑦 ∈ 𝒫 𝑤(𝐹‘𝑦) ⊆ (𝐹‘𝑤)) |
20 | | fveq2 6768 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → (𝐹‘𝑧) = (𝐹‘𝑤)) |
21 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → 𝑧 = 𝑤) |
22 | 20, 21 | sseq12d 3958 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → ((𝐹‘𝑧) ⊆ 𝑧 ↔ (𝐹‘𝑤) ⊆ 𝑤)) |
23 | 22 | intminss 4910 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤) → ∩ {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} ⊆ 𝑤) |
24 | 23 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → ∩ {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} ⊆ 𝑤) |
25 | 1, 24 | eqsstrid 3973 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → 𝑋 ⊆ 𝑤) |
26 | | vex 3434 |
. . . . . . . . . . 11
⊢ 𝑤 ∈ V |
27 | 26 | elpw2 5272 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝒫 𝑤 ↔ 𝑋 ⊆ 𝑤) |
28 | 25, 27 | sylibr 233 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → 𝑋 ∈ 𝒫 𝑤) |
29 | 12, 19, 28 | rspcdva 3562 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → (𝐹‘𝑋) ⊆ (𝐹‘𝑤)) |
30 | | simprr 769 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → (𝐹‘𝑤) ⊆ 𝑤) |
31 | 29, 30 | sstrd 3935 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → (𝐹‘𝑋) ⊆ 𝑤) |
32 | 31 | expr 456 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ 𝑤 ∈ 𝒫 𝐴) → ((𝐹‘𝑤) ⊆ 𝑤 → (𝐹‘𝑋) ⊆ 𝑤)) |
33 | 32 | ralrimiva 3109 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ∀𝑤 ∈ 𝒫 𝐴((𝐹‘𝑤) ⊆ 𝑤 → (𝐹‘𝑋) ⊆ 𝑤)) |
34 | | ssintrab 4907 |
. . . . 5
⊢ ((𝐹‘𝑋) ⊆ ∩
{𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤} ↔ ∀𝑤 ∈ 𝒫 𝐴((𝐹‘𝑤) ⊆ 𝑤 → (𝐹‘𝑋) ⊆ 𝑤)) |
35 | 33, 34 | sylibr 233 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) ⊆ ∩
{𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤}) |
36 | 22 | cbvrabv 3424 |
. . . . . 6
⊢ {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} = {𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤} |
37 | 36 | inteqi 4888 |
. . . . 5
⊢ ∩ {𝑧
∈ 𝒫 𝐴 ∣
(𝐹‘𝑧) ⊆ 𝑧} = ∩ {𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤} |
38 | 1, 37 | eqtri 2767 |
. . . 4
⊢ 𝑋 = ∩
{𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤} |
39 | 35, 38 | sseqtrrdi 3976 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) ⊆ 𝑋) |
40 | 11 | sseq1d 3956 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → ((𝐹‘𝑦) ⊆ (𝐹‘𝐴) ↔ (𝐹‘𝑋) ⊆ (𝐹‘𝐴))) |
41 | | pweq 4554 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) |
42 | | fveq2 6768 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) |
43 | 42 | sseq2d 3957 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → ((𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝑦) ⊆ (𝐹‘𝐴))) |
44 | 41, 43 | raleqbidv 3334 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ ∀𝑦 ∈ 𝒫 𝐴(𝐹‘𝑦) ⊆ (𝐹‘𝐴))) |
45 | | simp3 1136 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) |
46 | 44, 45, 3 | rspcdva 3562 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ∀𝑦 ∈ 𝒫 𝐴(𝐹‘𝑦) ⊆ (𝐹‘𝐴)) |
47 | 3, 10 | sselpwd 5253 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → 𝑋 ∈ 𝒫 𝐴) |
48 | 40, 46, 47 | rspcdva 3562 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) ⊆ (𝐹‘𝐴)) |
49 | 48, 4 | sstrd 3935 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) ⊆ 𝐴) |
50 | | fvex 6781 |
. . . . . . 7
⊢ (𝐹‘𝑋) ∈ V |
51 | 50 | elpw 4542 |
. . . . . 6
⊢ ((𝐹‘𝑋) ∈ 𝒫 𝐴 ↔ (𝐹‘𝑋) ⊆ 𝐴) |
52 | 49, 51 | sylibr 233 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) ∈ 𝒫 𝐴) |
53 | | fveq2 6768 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝑋) → (𝐹‘𝑦) = (𝐹‘(𝐹‘𝑋))) |
54 | 53 | sseq1d 3956 |
. . . . . 6
⊢ (𝑦 = (𝐹‘𝑋) → ((𝐹‘𝑦) ⊆ (𝐹‘𝑋) ↔ (𝐹‘(𝐹‘𝑋)) ⊆ (𝐹‘𝑋))) |
55 | | pweq 4554 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋) |
56 | | fveq2 6768 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) |
57 | 56 | sseq2d 3957 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝑦) ⊆ (𝐹‘𝑋))) |
58 | 55, 57 | raleqbidv 3334 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ ∀𝑦 ∈ 𝒫 𝑋(𝐹‘𝑦) ⊆ (𝐹‘𝑋))) |
59 | 58, 45, 47 | rspcdva 3562 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ∀𝑦 ∈ 𝒫 𝑋(𝐹‘𝑦) ⊆ (𝐹‘𝑋)) |
60 | 50 | elpw 4542 |
. . . . . . 7
⊢ ((𝐹‘𝑋) ∈ 𝒫 𝑋 ↔ (𝐹‘𝑋) ⊆ 𝑋) |
61 | 39, 60 | sylibr 233 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) ∈ 𝒫 𝑋) |
62 | 54, 59, 61 | rspcdva 3562 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘(𝐹‘𝑋)) ⊆ (𝐹‘𝑋)) |
63 | | fveq2 6768 |
. . . . . . 7
⊢ (𝑤 = (𝐹‘𝑋) → (𝐹‘𝑤) = (𝐹‘(𝐹‘𝑋))) |
64 | | id 22 |
. . . . . . 7
⊢ (𝑤 = (𝐹‘𝑋) → 𝑤 = (𝐹‘𝑋)) |
65 | 63, 64 | sseq12d 3958 |
. . . . . 6
⊢ (𝑤 = (𝐹‘𝑋) → ((𝐹‘𝑤) ⊆ 𝑤 ↔ (𝐹‘(𝐹‘𝑋)) ⊆ (𝐹‘𝑋))) |
66 | 65 | intminss 4910 |
. . . . 5
⊢ (((𝐹‘𝑋) ∈ 𝒫 𝐴 ∧ (𝐹‘(𝐹‘𝑋)) ⊆ (𝐹‘𝑋)) → ∩
{𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤} ⊆ (𝐹‘𝑋)) |
67 | 52, 62, 66 | syl2anc 583 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ∩ {𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤} ⊆ (𝐹‘𝑋)) |
68 | 38, 67 | eqsstrid 3973 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → 𝑋 ⊆ (𝐹‘𝑋)) |
69 | 39, 68 | eqssd 3942 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) = 𝑋) |
70 | 10, 69 | jca 511 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝑋 ⊆ 𝐴 ∧ (𝐹‘𝑋) = 𝑋)) |