![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssiun2 | Structured version Visualization version GIF version |
Description: Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ssiun2 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspe 3246 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
3 | eliun 4999 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
4 | 2, 3 | imbitrrdi 252 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
5 | 4 | ssrdv 4000 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∃wrex 3067 ⊆ wss 3962 ∪ ciun 4995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rex 3068 df-v 3479 df-ss 3979 df-iun 4997 |
This theorem is referenced by: ssiun2s 5052 disjxiun 5144 triun 5279 iunopeqop 5530 ixpf 8958 ixpiunwdom 9627 r1sdom 9811 r1val1 9823 rankuni2b 9890 rankval4 9904 cplem1 9926 domtriomlem 10479 ac6num 10516 iunfo 10576 iundom2g 10577 pwfseqlem3 10697 inar1 10812 tskuni 10820 iunconnlem 23450 ptclsg 23638 ovoliunlem1 25550 limciun 25943 ssiun2sf 32579 djussxp2 32664 suppovss 32695 bnj906 34922 bnj999 34950 bnj1014 34953 bnj1408 35028 rdgssun 37360 cpcolld 44253 iunmapss 45157 ssmapsn 45158 sge0iunmpt 46373 sge0iun 46374 voliunsge0lem 46427 omeiunltfirp 46474 |
Copyright terms: Public domain | W3C validator |