Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssiun2 | Structured version Visualization version GIF version |
Description: Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ssiun2 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspe 3223 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | 1 | ex 416 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
3 | eliun 4908 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
4 | 2, 3 | syl6ibr 255 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
5 | 4 | ssrdv 3907 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ∃wrex 3062 ⊆ wss 3866 ∪ ciun 4904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-v 3410 df-in 3873 df-ss 3883 df-iun 4906 |
This theorem is referenced by: ssiun2s 4957 disjxiun 5050 triun 5174 iunopeqop 5404 ixpf 8601 ixpiunwdom 9206 trpredrec 9342 r1sdom 9390 r1val1 9402 rankuni2b 9469 rankval4 9483 cplem1 9505 domtriomlem 10056 ac6num 10093 iunfo 10153 iundom2g 10154 pwfseqlem3 10274 inar1 10389 tskuni 10397 iunconnlem 22324 ptclsg 22512 ovoliunlem1 24399 limciun 24791 ssiun2sf 30618 djussxp2 30704 suppovss 30737 bnj906 32623 bnj999 32651 bnj1014 32654 bnj1408 32729 rdgssun 35286 cpcolld 41549 iunmapss 42428 ssmapsn 42429 sge0iunmpt 43631 sge0iun 43632 voliunsge0lem 43685 omeiunltfirp 43732 |
Copyright terms: Public domain | W3C validator |