| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssiun2 | Structured version Visualization version GIF version | ||
| Description: Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| ssiun2 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspe 3227 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
| 3 | eliun 4959 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 4 | 2, 3 | imbitrrdi 252 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 5 | 4 | ssrdv 3952 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 ∪ ciun 4955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3449 df-ss 3931 df-iun 4957 |
| This theorem is referenced by: ssiun2s 5012 disjxiun 5104 triun 5229 iunopeqop 5481 ixpf 8893 ixpiunwdom 9543 r1sdom 9727 r1val1 9739 rankuni2b 9806 rankval4 9820 cplem1 9842 domtriomlem 10395 ac6num 10432 iunfo 10492 iundom2g 10493 pwfseqlem3 10613 inar1 10728 tskuni 10736 iunconnlem 23314 ptclsg 23502 ovoliunlem1 25403 limciun 25795 ssiun2sf 32488 iunxpssiun1 32497 djussxp2 32572 suppovss 32604 bnj906 34920 bnj999 34948 bnj1014 34951 bnj1408 35026 rdgssun 37366 cpcolld 44247 iunmapss 45209 ssmapsn 45210 sge0iunmpt 46416 sge0iun 46417 voliunsge0lem 46470 omeiunltfirp 46517 |
| Copyright terms: Public domain | W3C validator |