| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssiun2 | Structured version Visualization version GIF version | ||
| Description: Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| ssiun2 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspe 3228 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
| 3 | eliun 4962 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 4 | 2, 3 | imbitrrdi 252 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 5 | 4 | ssrdv 3955 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3054 ⊆ wss 3917 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-v 3452 df-ss 3934 df-iun 4960 |
| This theorem is referenced by: ssiun2s 5015 disjxiun 5107 triun 5232 iunopeqop 5484 ixpf 8896 ixpiunwdom 9550 r1sdom 9734 r1val1 9746 rankuni2b 9813 rankval4 9827 cplem1 9849 domtriomlem 10402 ac6num 10439 iunfo 10499 iundom2g 10500 pwfseqlem3 10620 inar1 10735 tskuni 10743 iunconnlem 23321 ptclsg 23509 ovoliunlem1 25410 limciun 25802 ssiun2sf 32495 iunxpssiun1 32504 djussxp2 32579 suppovss 32611 bnj906 34927 bnj999 34955 bnj1014 34958 bnj1408 35033 rdgssun 37373 cpcolld 44254 iunmapss 45216 ssmapsn 45217 sge0iunmpt 46423 sge0iun 46424 voliunsge0lem 46477 omeiunltfirp 46524 |
| Copyright terms: Public domain | W3C validator |