| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssiun2 | Structured version Visualization version GIF version | ||
| Description: Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| ssiun2 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspe 3222 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
| 3 | eliun 4943 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 4 | 2, 3 | imbitrrdi 252 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 5 | 4 | ssrdv 3935 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-v 3438 df-ss 3914 df-iun 4941 |
| This theorem is referenced by: ssiun2s 4995 disjxiun 5086 triun 5210 iunopeqop 5459 ixpf 8844 ixpiunwdom 9476 r1sdom 9667 r1val1 9679 rankuni2b 9746 rankval4 9760 cplem1 9782 domtriomlem 10333 ac6num 10370 iunfo 10430 iundom2g 10431 pwfseqlem3 10551 inar1 10666 tskuni 10674 iunconnlem 23342 ptclsg 23530 ovoliunlem1 25430 limciun 25822 ssiun2sf 32539 iunxpssiun1 32548 djussxp2 32630 suppovss 32662 bnj906 34942 bnj999 34970 bnj1014 34973 bnj1408 35048 rankval4b 35111 rdgssun 37422 cpcolld 44350 iunmapss 45311 ssmapsn 45312 sge0iunmpt 46515 sge0iun 46516 voliunsge0lem 46569 omeiunltfirp 46616 |
| Copyright terms: Public domain | W3C validator |