| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssiun2 | Structured version Visualization version GIF version | ||
| Description: Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| ssiun2 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspe 3225 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
| 3 | eliun 4955 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 4 | 2, 3 | imbitrrdi 252 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 5 | 4 | ssrdv 3949 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3911 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3446 df-ss 3928 df-iun 4953 |
| This theorem is referenced by: ssiun2s 5007 disjxiun 5099 triun 5224 iunopeqop 5476 ixpf 8870 ixpiunwdom 9519 r1sdom 9703 r1val1 9715 rankuni2b 9782 rankval4 9796 cplem1 9818 domtriomlem 10371 ac6num 10408 iunfo 10468 iundom2g 10469 pwfseqlem3 10589 inar1 10704 tskuni 10712 iunconnlem 23347 ptclsg 23535 ovoliunlem1 25436 limciun 25828 ssiun2sf 32538 iunxpssiun1 32547 djussxp2 32622 suppovss 32654 bnj906 34913 bnj999 34941 bnj1014 34944 bnj1408 35019 rdgssun 37359 cpcolld 44240 iunmapss 45202 ssmapsn 45203 sge0iunmpt 46409 sge0iun 46410 voliunsge0lem 46463 omeiunltfirp 46510 |
| Copyright terms: Public domain | W3C validator |