MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssiun2 Structured version   Visualization version   GIF version

Theorem ssiun2 5006
Description: Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ssiun2 (𝑥𝐴𝐵 𝑥𝐴 𝐵)

Proof of Theorem ssiun2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rspe 3225 . . . 4 ((𝑥𝐴𝑦𝐵) → ∃𝑥𝐴 𝑦𝐵)
21ex 412 . . 3 (𝑥𝐴 → (𝑦𝐵 → ∃𝑥𝐴 𝑦𝐵))
3 eliun 4955 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
42, 3imbitrrdi 252 . 2 (𝑥𝐴 → (𝑦𝐵𝑦 𝑥𝐴 𝐵))
54ssrdv 3949 1 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wrex 3053  wss 3911   ciun 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-v 3446  df-ss 3928  df-iun 4953
This theorem is referenced by:  ssiun2s  5007  disjxiun  5099  triun  5224  iunopeqop  5476  ixpf  8870  ixpiunwdom  9519  r1sdom  9705  r1val1  9717  rankuni2b  9784  rankval4  9798  cplem1  9820  domtriomlem  10373  ac6num  10410  iunfo  10470  iundom2g  10471  pwfseqlem3  10591  inar1  10706  tskuni  10714  iunconnlem  23348  ptclsg  23536  ovoliunlem1  25437  limciun  25829  ssiun2sf  32539  iunxpssiun1  32548  djussxp2  32623  suppovss  32655  bnj906  34914  bnj999  34942  bnj1014  34945  bnj1408  35020  rdgssun  37360  cpcolld  44241  iunmapss  45203  ssmapsn  45204  sge0iunmpt  46410  sge0iun  46411  voliunsge0lem  46464  omeiunltfirp  46511
  Copyright terms: Public domain W3C validator