![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssiun2 | Structured version Visualization version GIF version |
Description: Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ssiun2 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspe 3244 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | 1 | ex 411 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
3 | eliun 5000 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
4 | 2, 3 | imbitrrdi 251 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
5 | 4 | ssrdv 3987 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ∃wrex 3068 ⊆ wss 3947 ∪ ciun 4996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rex 3069 df-v 3474 df-in 3954 df-ss 3964 df-iun 4998 |
This theorem is referenced by: ssiun2s 5050 disjxiun 5144 triun 5279 iunopeqop 5520 ixpf 8916 ixpiunwdom 9587 r1sdom 9771 r1val1 9783 rankuni2b 9850 rankval4 9864 cplem1 9886 domtriomlem 10439 ac6num 10476 iunfo 10536 iundom2g 10537 pwfseqlem3 10657 inar1 10772 tskuni 10780 iunconnlem 23151 ptclsg 23339 ovoliunlem1 25251 limciun 25643 ssiun2sf 32058 djussxp2 32140 suppovss 32173 bnj906 34239 bnj999 34267 bnj1014 34270 bnj1408 34345 rdgssun 36562 cpcolld 43319 iunmapss 44212 ssmapsn 44213 sge0iunmpt 45432 sge0iun 45433 voliunsge0lem 45486 omeiunltfirp 45533 |
Copyright terms: Public domain | W3C validator |