Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssiun2 | Structured version Visualization version GIF version |
Description: Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ssiun2 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspe 3229 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | 1 | ex 414 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
3 | eliun 4935 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
4 | 2, 3 | syl6ibr 252 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
5 | 4 | ssrdv 3932 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ∃wrex 3071 ⊆ wss 3892 ∪ ciun 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rex 3072 df-v 3439 df-in 3899 df-ss 3909 df-iun 4933 |
This theorem is referenced by: ssiun2s 4985 disjxiun 5078 triun 5213 iunopeqop 5448 ixpf 8739 ixpiunwdom 9393 r1sdom 9576 r1val1 9588 rankuni2b 9655 rankval4 9669 cplem1 9691 domtriomlem 10244 ac6num 10281 iunfo 10341 iundom2g 10342 pwfseqlem3 10462 inar1 10577 tskuni 10585 iunconnlem 22623 ptclsg 22811 ovoliunlem1 24711 limciun 25103 ssiun2sf 30944 djussxp2 31030 suppovss 31062 bnj906 32955 bnj999 32983 bnj1014 32986 bnj1408 33061 rdgssun 35593 cpcolld 41914 iunmapss 42799 ssmapsn 42800 sge0iunmpt 44006 sge0iun 44007 voliunsge0lem 44060 omeiunltfirp 44107 |
Copyright terms: Public domain | W3C validator |