Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssiun2 | Structured version Visualization version GIF version |
Description: Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ssiun2 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspe 3234 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
3 | eliun 4933 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
4 | 2, 3 | syl6ibr 251 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
5 | 4 | ssrdv 3931 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3066 ⊆ wss 3891 ∪ ciun 4929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-v 3432 df-in 3898 df-ss 3908 df-iun 4931 |
This theorem is referenced by: ssiun2s 4982 disjxiun 5075 triun 5208 iunopeqop 5437 ixpf 8682 ixpiunwdom 9310 trpredrec 9467 r1sdom 9516 r1val1 9528 rankuni2b 9595 rankval4 9609 cplem1 9631 domtriomlem 10182 ac6num 10219 iunfo 10279 iundom2g 10280 pwfseqlem3 10400 inar1 10515 tskuni 10523 iunconnlem 22559 ptclsg 22747 ovoliunlem1 24647 limciun 25039 ssiun2sf 30878 djussxp2 30964 suppovss 30996 bnj906 32889 bnj999 32917 bnj1014 32920 bnj1408 32995 rdgssun 35528 cpcolld 41829 iunmapss 42708 ssmapsn 42709 sge0iunmpt 43910 sge0iun 43911 voliunsge0lem 43964 omeiunltfirp 44011 |
Copyright terms: Public domain | W3C validator |