![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssltsn | Structured version Visualization version GIF version |
Description: Surreal set less-than of two singletons. (Contributed by Scott Fenton, 17-Mar-2025.) |
Ref | Expression |
---|---|
ssltsn.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
ssltsn.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
ssltsn.3 | ⊢ (𝜑 → 𝐴 <s 𝐵) |
Ref | Expression |
---|---|
ssltsn | ⊢ (𝜑 → {𝐴} <<s {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5451 | . . 3 ⊢ {𝐴} ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {𝐴} ∈ V) |
3 | snex 5451 | . . 3 ⊢ {𝐵} ∈ V | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → {𝐵} ∈ V) |
5 | ssltsn.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
6 | 5 | snssd 4834 | . 2 ⊢ (𝜑 → {𝐴} ⊆ No ) |
7 | ssltsn.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
8 | 7 | snssd 4834 | . 2 ⊢ (𝜑 → {𝐵} ⊆ No ) |
9 | ssltsn.3 | . . . 4 ⊢ (𝜑 → 𝐴 <s 𝐵) | |
10 | velsn 4664 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
11 | velsn 4664 | . . . . 5 ⊢ (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵) | |
12 | breq12 5171 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 <s 𝑦 ↔ 𝐴 <s 𝐵)) | |
13 | 10, 11, 12 | syl2anb 597 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐵}) → (𝑥 <s 𝑦 ↔ 𝐴 <s 𝐵)) |
14 | 9, 13 | syl5ibrcom 247 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐵}) → 𝑥 <s 𝑦)) |
15 | 14 | 3impib 1116 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐵}) → 𝑥 <s 𝑦) |
16 | 2, 4, 6, 8, 15 | ssltd 27854 | 1 ⊢ (𝜑 → {𝐴} <<s {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 class class class wbr 5166 No csur 27702 <s cslt 27703 <<s csslt 27843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-sslt 27844 |
This theorem is referenced by: n0scut 28356 zscut 28411 halfcut 28434 pw2bday 28436 addhalfcut 28437 zs12bday 28442 |
Copyright terms: Public domain | W3C validator |