| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltsn | Structured version Visualization version GIF version | ||
| Description: Surreal set less-than of two singletons. (Contributed by Scott Fenton, 17-Mar-2025.) |
| Ref | Expression |
|---|---|
| ssltsn.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| ssltsn.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| ssltsn.3 | ⊢ (𝜑 → 𝐴 <s 𝐵) |
| Ref | Expression |
|---|---|
| ssltsn | ⊢ (𝜑 → {𝐴} <<s {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltsn.3 | . 2 ⊢ (𝜑 → 𝐴 <s 𝐵) | |
| 2 | ssltsn.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 3 | ssltsn.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 4 | 2, 3 | ssltsnb 27725 | . 2 ⊢ (𝜑 → ({𝐴} <<s {𝐵} ↔ 𝐴 <s 𝐵)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → {𝐴} <<s {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 {csn 4574 class class class wbr 5089 No csur 27571 <s cslt 27572 <<s csslt 27713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-xp 5620 df-sslt 27714 |
| This theorem is referenced by: cutneg 27770 zscut 28324 twocut 28339 nohalf 28340 pw2recs 28354 halfcut 28371 addhalfcut 28372 pw2cut2 28375 zs12bday 28387 |
| Copyright terms: Public domain | W3C validator |