| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltsn | Structured version Visualization version GIF version | ||
| Description: Surreal set less-than of two singletons. (Contributed by Scott Fenton, 17-Mar-2025.) |
| Ref | Expression |
|---|---|
| ssltsn.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| ssltsn.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| ssltsn.3 | ⊢ (𝜑 → 𝐴 <s 𝐵) |
| Ref | Expression |
|---|---|
| ssltsn | ⊢ (𝜑 → {𝐴} <<s {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5411 | . . 3 ⊢ {𝐴} ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {𝐴} ∈ V) |
| 3 | snex 5411 | . . 3 ⊢ {𝐵} ∈ V | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → {𝐵} ∈ V) |
| 5 | ssltsn.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 6 | 5 | snssd 4790 | . 2 ⊢ (𝜑 → {𝐴} ⊆ No ) |
| 7 | ssltsn.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 8 | 7 | snssd 4790 | . 2 ⊢ (𝜑 → {𝐵} ⊆ No ) |
| 9 | ssltsn.3 | . . . 4 ⊢ (𝜑 → 𝐴 <s 𝐵) | |
| 10 | velsn 4622 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 11 | velsn 4622 | . . . . 5 ⊢ (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵) | |
| 12 | breq12 5129 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 <s 𝑦 ↔ 𝐴 <s 𝐵)) | |
| 13 | 10, 11, 12 | syl2anb 598 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐵}) → (𝑥 <s 𝑦 ↔ 𝐴 <s 𝐵)) |
| 14 | 9, 13 | syl5ibrcom 247 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐵}) → 𝑥 <s 𝑦)) |
| 15 | 14 | 3impib 1116 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐵}) → 𝑥 <s 𝑦) |
| 16 | 2, 4, 6, 8, 15 | ssltd 27760 | 1 ⊢ (𝜑 → {𝐴} <<s {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 {csn 4606 class class class wbr 5124 No csur 27608 <s cslt 27609 <<s csslt 27749 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-sslt 27750 |
| This theorem is referenced by: cutneg 27802 zscut 28352 twocut 28366 nohalf 28367 pw2recs 28380 halfcut 28390 addhalfcut 28391 zs12bday 28400 |
| Copyright terms: Public domain | W3C validator |