![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssltsn | Structured version Visualization version GIF version |
Description: Surreal set less-than of two singletons. (Contributed by Scott Fenton, 17-Mar-2025.) |
Ref | Expression |
---|---|
ssltsn.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
ssltsn.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
ssltsn.3 | ⊢ (𝜑 → 𝐴 <s 𝐵) |
Ref | Expression |
---|---|
ssltsn | ⊢ (𝜑 → {𝐴} <<s {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5433 | . . 3 ⊢ {𝐴} ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {𝐴} ∈ V) |
3 | snex 5433 | . . 3 ⊢ {𝐵} ∈ V | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → {𝐵} ∈ V) |
5 | ssltsn.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
6 | 5 | snssd 4813 | . 2 ⊢ (𝜑 → {𝐴} ⊆ No ) |
7 | ssltsn.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
8 | 7 | snssd 4813 | . 2 ⊢ (𝜑 → {𝐵} ⊆ No ) |
9 | ssltsn.3 | . . . 4 ⊢ (𝜑 → 𝐴 <s 𝐵) | |
10 | velsn 4645 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
11 | velsn 4645 | . . . . 5 ⊢ (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵) | |
12 | breq12 5153 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 <s 𝑦 ↔ 𝐴 <s 𝐵)) | |
13 | 10, 11, 12 | syl2anb 597 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐵}) → (𝑥 <s 𝑦 ↔ 𝐴 <s 𝐵)) |
14 | 9, 13 | syl5ibrcom 246 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐵}) → 𝑥 <s 𝑦)) |
15 | 14 | 3impib 1114 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐵}) → 𝑥 <s 𝑦) |
16 | 2, 4, 6, 8, 15 | ssltd 27737 | 1 ⊢ (𝜑 → {𝐴} <<s {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 {csn 4629 class class class wbr 5148 No csur 27586 <s cslt 27587 <<s csslt 27726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5684 df-sslt 27727 |
This theorem is referenced by: n0scut 28216 |
Copyright terms: Public domain | W3C validator |