MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltd Structured version   Visualization version   GIF version

Theorem ssltd 27760
Description: Deduce surreal set less-than. (Contributed by Scott Fenton, 24-Sep-2024.)
Hypotheses
Ref Expression
ssltd.1 (𝜑𝐴𝑉)
ssltd.2 (𝜑𝐵𝑊)
ssltd.3 (𝜑𝐴 No )
ssltd.4 (𝜑𝐵 No )
ssltd.5 ((𝜑𝑥𝐴𝑦𝐵) → 𝑥 <s 𝑦)
Assertion
Ref Expression
ssltd (𝜑𝐴 <<s 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem ssltd
StepHypRef Expression
1 ssltd.1 . . 3 (𝜑𝐴𝑉)
21elexd 3488 . 2 (𝜑𝐴 ∈ V)
3 ssltd.2 . . 3 (𝜑𝐵𝑊)
43elexd 3488 . 2 (𝜑𝐵 ∈ V)
5 ssltd.3 . . 3 (𝜑𝐴 No )
6 ssltd.4 . . 3 (𝜑𝐵 No )
7 ssltd.5 . . . . 5 ((𝜑𝑥𝐴𝑦𝐵) → 𝑥 <s 𝑦)
873expb 1120 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑥 <s 𝑦)
98ralrimivva 3188 . . 3 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
105, 6, 93jca 1128 . 2 (𝜑 → (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦))
11 brsslt 27754 . 2 (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
122, 4, 10, 11syl21anbrc 1345 1 (𝜑𝐴 <<s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  wral 3052  Vcvv 3464  wss 3931   class class class wbr 5124   No csur 27608   <s cslt 27609   <<s csslt 27749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-sslt 27750
This theorem is referenced by:  ssltsn  27761  nulsslt  27766  nulssgt  27767  sslttr  27776  ssltun1  27777  ssltun2  27778  ssltleft  27839  ssltright  27840  cofsslt  27883  coinitsslt  27884  cofcutr  27889  addsproplem2  27934  addsuniflem  27965  negsproplem2  27992  negsid  28004  negsunif  28018  mulsproplem9  28084  ssltmul1  28107  ssltmul2  28108  precsexlem10  28175  precsexlem11  28176  onscutlt  28222  n0sfincut  28303  recut  28404  0reno  28405
  Copyright terms: Public domain W3C validator