![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssltd | Structured version Visualization version GIF version |
Description: Deduce surreal set less-than. (Contributed by Scott Fenton, 24-Sep-2024.) |
Ref | Expression |
---|---|
ssltd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ssltd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
ssltd.3 | ⊢ (𝜑 → 𝐴 ⊆ No ) |
ssltd.4 | ⊢ (𝜑 → 𝐵 ⊆ No ) |
ssltd.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) |
Ref | Expression |
---|---|
ssltd | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | 1 | elexd 3512 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
3 | ssltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
4 | 3 | elexd 3512 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
5 | ssltd.3 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ No ) | |
6 | ssltd.4 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ No ) | |
7 | ssltd.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) | |
8 | 7 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 <s 𝑦) |
9 | 8 | ralrimivva 3208 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) |
10 | 5, 6, 9 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) |
11 | brsslt 27848 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
12 | 2, 4, 10, 11 | syl21anbrc 1344 | 1 ⊢ (𝜑 → 𝐴 <<s 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 No csur 27702 <s cslt 27703 <<s csslt 27843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-sslt 27844 |
This theorem is referenced by: ssltsn 27855 nulsslt 27860 nulssgt 27861 sslttr 27870 ssltun1 27871 ssltun2 27872 ssltleft 27927 ssltright 27928 cofsslt 27970 coinitsslt 27971 cofcutr 27976 addsproplem2 28021 addsuniflem 28052 negsproplem2 28079 negsid 28091 negsunif 28105 mulsproplem9 28168 ssltmul1 28191 ssltmul2 28192 precsexlem10 28258 precsexlem11 28259 nohalf 28425 recut 28446 0reno 28447 |
Copyright terms: Public domain | W3C validator |