| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltd | Structured version Visualization version GIF version | ||
| Description: Deduce surreal set less-than. (Contributed by Scott Fenton, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| ssltd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ssltd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| ssltd.3 | ⊢ (𝜑 → 𝐴 ⊆ No ) |
| ssltd.4 | ⊢ (𝜑 → 𝐵 ⊆ No ) |
| ssltd.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) |
| Ref | Expression |
|---|---|
| ssltd | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | 1 | elexd 3462 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 3 | ssltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 4 | 3 | elexd 3462 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
| 5 | ssltd.3 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ No ) | |
| 6 | ssltd.4 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ No ) | |
| 7 | ssltd.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) | |
| 8 | 7 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 <s 𝑦) |
| 9 | 8 | ralrimivva 3172 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) |
| 10 | 5, 6, 9 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) |
| 11 | brsslt 27714 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
| 12 | 2, 4, 10, 11 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ⊆ wss 3905 class class class wbr 5095 No csur 27567 <s cslt 27568 <<s csslt 27709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-sslt 27710 |
| This theorem is referenced by: ssltsn 27721 nulsslt 27726 nulssgt 27727 sslttr 27736 ssltun1 27737 ssltun2 27738 eqscut3 27753 ssltleft 27802 ssltright 27803 cofsslt 27849 coinitsslt 27850 cofcutr 27855 addsproplem2 27900 addsuniflem 27931 negsproplem2 27958 negsid 27970 negsunif 27984 mulsproplem9 28050 ssltmul1 28073 ssltmul2 28074 precsexlem10 28141 precsexlem11 28142 onscutlt 28188 n0sfincut 28269 recut 28383 0reno 28384 |
| Copyright terms: Public domain | W3C validator |