| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltd | Structured version Visualization version GIF version | ||
| Description: Deduce surreal set less-than. (Contributed by Scott Fenton, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| ssltd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ssltd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| ssltd.3 | ⊢ (𝜑 → 𝐴 ⊆ No ) |
| ssltd.4 | ⊢ (𝜑 → 𝐵 ⊆ No ) |
| ssltd.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) |
| Ref | Expression |
|---|---|
| ssltd | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | 1 | elexd 3460 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 3 | ssltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 4 | 3 | elexd 3460 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
| 5 | ssltd.3 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ No ) | |
| 6 | ssltd.4 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ No ) | |
| 7 | ssltd.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) | |
| 8 | 7 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 <s 𝑦) |
| 9 | 8 | ralrimivva 3175 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) |
| 10 | 5, 6, 9 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) |
| 11 | brsslt 27726 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
| 12 | 2, 4, 10, 11 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3902 class class class wbr 5091 No csur 27579 <s cslt 27580 <<s csslt 27721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-sslt 27722 |
| This theorem is referenced by: nulsslt 27739 nulssgt 27740 sslttr 27749 ssltun1 27750 ssltun2 27751 eqscut3 27766 ssltleft 27816 ssltright 27817 cofsslt 27863 coinitsslt 27864 cofcutr 27869 addsproplem2 27914 addsuniflem 27945 negsproplem2 27972 negsid 27984 negsunif 27998 mulsproplem9 28064 ssltmul1 28087 ssltmul2 28088 precsexlem10 28155 precsexlem11 28156 onscutlt 28202 n0sfincut 28283 recut 28399 0reno 28400 |
| Copyright terms: Public domain | W3C validator |