Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssltd | Structured version Visualization version GIF version |
Description: Deduce surreal set less than. (Contributed by Scott Fenton, 24-Sep-2024.) |
Ref | Expression |
---|---|
ssltd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ssltd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
ssltd.3 | ⊢ (𝜑 → 𝐴 ⊆ No ) |
ssltd.4 | ⊢ (𝜑 → 𝐵 ⊆ No ) |
ssltd.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) |
Ref | Expression |
---|---|
ssltd | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | 1 | elexd 3442 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
3 | ssltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
4 | 3 | elexd 3442 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
5 | ssltd.3 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ No ) | |
6 | ssltd.4 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ No ) | |
7 | ssltd.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) | |
8 | 7 | 3expb 1118 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 <s 𝑦) |
9 | 8 | ralrimivva 3114 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) |
10 | 5, 6, 9 | 3jca 1126 | . 2 ⊢ (𝜑 → (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) |
11 | brsslt 33907 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
12 | 2, 4, 10, 11 | syl21anbrc 1342 | 1 ⊢ (𝜑 → 𝐴 <<s 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 No csur 33770 <s cslt 33771 <<s csslt 33902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-sslt 33903 |
This theorem is referenced by: nulsslt 33918 nulssgt 33919 sslttr 33928 ssltun1 33929 ssltun2 33930 ssltleft 33981 ssltright 33982 cofsslt 34015 coinitsslt 34016 cofcutr 34019 |
Copyright terms: Public domain | W3C validator |