| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltd | Structured version Visualization version GIF version | ||
| Description: Deduce surreal set less-than. (Contributed by Scott Fenton, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| ssltd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ssltd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| ssltd.3 | ⊢ (𝜑 → 𝐴 ⊆ No ) |
| ssltd.4 | ⊢ (𝜑 → 𝐵 ⊆ No ) |
| ssltd.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) |
| Ref | Expression |
|---|---|
| ssltd | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | 1 | elexd 3471 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 3 | ssltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 4 | 3 | elexd 3471 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
| 5 | ssltd.3 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ No ) | |
| 6 | ssltd.4 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ No ) | |
| 7 | ssltd.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) | |
| 8 | 7 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 <s 𝑦) |
| 9 | 8 | ralrimivva 3180 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) |
| 10 | 5, 6, 9 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) |
| 11 | brsslt 27697 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
| 12 | 2, 4, 10, 11 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 No csur 27551 <s cslt 27552 <<s csslt 27692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-sslt 27693 |
| This theorem is referenced by: ssltsn 27704 nulsslt 27709 nulssgt 27710 sslttr 27719 ssltun1 27720 ssltun2 27721 ssltleft 27782 ssltright 27783 cofsslt 27826 coinitsslt 27827 cofcutr 27832 addsproplem2 27877 addsuniflem 27908 negsproplem2 27935 negsid 27947 negsunif 27961 mulsproplem9 28027 ssltmul1 28050 ssltmul2 28051 precsexlem10 28118 precsexlem11 28119 onscutlt 28165 n0sfincut 28246 recut 28347 0reno 28348 |
| Copyright terms: Public domain | W3C validator |