| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltd | Structured version Visualization version GIF version | ||
| Description: Deduce surreal set less-than. (Contributed by Scott Fenton, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| ssltd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ssltd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| ssltd.3 | ⊢ (𝜑 → 𝐴 ⊆ No ) |
| ssltd.4 | ⊢ (𝜑 → 𝐵 ⊆ No ) |
| ssltd.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) |
| Ref | Expression |
|---|---|
| ssltd | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | 1 | elexd 3461 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 3 | ssltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 4 | 3 | elexd 3461 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
| 5 | ssltd.3 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ No ) | |
| 6 | ssltd.4 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ No ) | |
| 7 | ssltd.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) | |
| 8 | 7 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 <s 𝑦) |
| 9 | 8 | ralrimivva 3176 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) |
| 10 | 5, 6, 9 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) |
| 11 | brsslt 27728 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
| 12 | 2, 4, 10, 11 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ⊆ wss 3898 class class class wbr 5095 No csur 27581 <s cslt 27582 <<s csslt 27723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-sslt 27724 |
| This theorem is referenced by: nulsslt 27741 nulssgt 27742 sslttr 27751 ssltun1 27752 ssltun2 27753 eqscut3 27768 ssltleft 27818 ssltright 27819 cofsslt 27865 coinitsslt 27866 cofcutr 27871 addsproplem2 27916 addsuniflem 27947 negsproplem2 27974 negsid 27986 negsunif 28000 mulsproplem9 28066 ssltmul1 28089 ssltmul2 28090 precsexlem10 28157 precsexlem11 28158 onscutlt 28204 n0sfincut 28285 recut 28401 0reno 28402 |
| Copyright terms: Public domain | W3C validator |