| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltd | Structured version Visualization version GIF version | ||
| Description: Deduce surreal set less-than. (Contributed by Scott Fenton, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| ssltd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ssltd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| ssltd.3 | ⊢ (𝜑 → 𝐴 ⊆ No ) |
| ssltd.4 | ⊢ (𝜑 → 𝐵 ⊆ No ) |
| ssltd.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) |
| Ref | Expression |
|---|---|
| ssltd | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | 1 | elexd 3503 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 3 | ssltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 4 | 3 | elexd 3503 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
| 5 | ssltd.3 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ No ) | |
| 6 | ssltd.4 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ No ) | |
| 7 | ssltd.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝑥 <s 𝑦) | |
| 8 | 7 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 <s 𝑦) |
| 9 | 8 | ralrimivva 3201 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) |
| 10 | 5, 6, 9 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) |
| 11 | brsslt 27831 | . 2 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | |
| 12 | 2, 4, 10, 11 | syl21anbrc 1344 | 1 ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2107 ∀wral 3060 Vcvv 3479 ⊆ wss 3950 class class class wbr 5142 No csur 27685 <s cslt 27686 <<s csslt 27826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-sslt 27827 |
| This theorem is referenced by: ssltsn 27838 nulsslt 27843 nulssgt 27844 sslttr 27853 ssltun1 27854 ssltun2 27855 ssltleft 27910 ssltright 27911 cofsslt 27953 coinitsslt 27954 cofcutr 27959 addsproplem2 28004 addsuniflem 28035 negsproplem2 28062 negsid 28074 negsunif 28088 mulsproplem9 28151 ssltmul1 28174 ssltmul2 28175 precsexlem10 28241 precsexlem11 28242 nohalf 28408 recut 28429 0reno 28430 |
| Copyright terms: Public domain | W3C validator |