MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltd Structured version   Visualization version   GIF version

Theorem ssltd 27851
Description: Deduce surreal set less-than. (Contributed by Scott Fenton, 24-Sep-2024.)
Hypotheses
Ref Expression
ssltd.1 (𝜑𝐴𝑉)
ssltd.2 (𝜑𝐵𝑊)
ssltd.3 (𝜑𝐴 No )
ssltd.4 (𝜑𝐵 No )
ssltd.5 ((𝜑𝑥𝐴𝑦𝐵) → 𝑥 <s 𝑦)
Assertion
Ref Expression
ssltd (𝜑𝐴 <<s 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem ssltd
StepHypRef Expression
1 ssltd.1 . . 3 (𝜑𝐴𝑉)
21elexd 3502 . 2 (𝜑𝐴 ∈ V)
3 ssltd.2 . . 3 (𝜑𝐵𝑊)
43elexd 3502 . 2 (𝜑𝐵 ∈ V)
5 ssltd.3 . . 3 (𝜑𝐴 No )
6 ssltd.4 . . 3 (𝜑𝐵 No )
7 ssltd.5 . . . . 5 ((𝜑𝑥𝐴𝑦𝐵) → 𝑥 <s 𝑦)
873expb 1119 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑥 <s 𝑦)
98ralrimivva 3200 . . 3 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
105, 6, 93jca 1127 . 2 (𝜑 → (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦))
11 brsslt 27845 . 2 (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
122, 4, 10, 11syl21anbrc 1343 1 (𝜑𝐴 <<s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2106  wral 3059  Vcvv 3478  wss 3963   class class class wbr 5148   No csur 27699   <s cslt 27700   <<s csslt 27840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-sslt 27841
This theorem is referenced by:  ssltsn  27852  nulsslt  27857  nulssgt  27858  sslttr  27867  ssltun1  27868  ssltun2  27869  ssltleft  27924  ssltright  27925  cofsslt  27967  coinitsslt  27968  cofcutr  27973  addsproplem2  28018  addsuniflem  28049  negsproplem2  28076  negsid  28088  negsunif  28102  mulsproplem9  28165  ssltmul1  28188  ssltmul2  28189  precsexlem10  28255  precsexlem11  28256  nohalf  28422  recut  28443  0reno  28444
  Copyright terms: Public domain W3C validator