MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltd Structured version   Visualization version   GIF version

Theorem ssltd 27720
Description: Deduce surreal set less-than. (Contributed by Scott Fenton, 24-Sep-2024.)
Hypotheses
Ref Expression
ssltd.1 (𝜑𝐴𝑉)
ssltd.2 (𝜑𝐵𝑊)
ssltd.3 (𝜑𝐴 No )
ssltd.4 (𝜑𝐵 No )
ssltd.5 ((𝜑𝑥𝐴𝑦𝐵) → 𝑥 <s 𝑦)
Assertion
Ref Expression
ssltd (𝜑𝐴 <<s 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem ssltd
StepHypRef Expression
1 ssltd.1 . . 3 (𝜑𝐴𝑉)
21elexd 3462 . 2 (𝜑𝐴 ∈ V)
3 ssltd.2 . . 3 (𝜑𝐵𝑊)
43elexd 3462 . 2 (𝜑𝐵 ∈ V)
5 ssltd.3 . . 3 (𝜑𝐴 No )
6 ssltd.4 . . 3 (𝜑𝐵 No )
7 ssltd.5 . . . . 5 ((𝜑𝑥𝐴𝑦𝐵) → 𝑥 <s 𝑦)
873expb 1120 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑥 <s 𝑦)
98ralrimivva 3172 . . 3 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
105, 6, 93jca 1128 . 2 (𝜑 → (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦))
11 brsslt 27714 . 2 (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 No 𝐵 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)))
122, 4, 10, 11syl21anbrc 1345 1 (𝜑𝐴 <<s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  wral 3044  Vcvv 3438  wss 3905   class class class wbr 5095   No csur 27567   <s cslt 27568   <<s csslt 27709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-sslt 27710
This theorem is referenced by:  ssltsn  27721  nulsslt  27726  nulssgt  27727  sslttr  27736  ssltun1  27737  ssltun2  27738  eqscut3  27753  ssltleft  27802  ssltright  27803  cofsslt  27849  coinitsslt  27850  cofcutr  27855  addsproplem2  27900  addsuniflem  27931  negsproplem2  27958  negsid  27970  negsunif  27984  mulsproplem9  28050  ssltmul1  28073  ssltmul2  28074  precsexlem10  28141  precsexlem11  28142  onscutlt  28188  n0sfincut  28269  recut  28383  0reno  28384
  Copyright terms: Public domain W3C validator