![]() |
Metamath
Proof Explorer Theorem List (p. 276 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 2sqnn 27501* | All primes of the form 4𝑘 + 1 are sums of squares of two positive integers. (Contributed by AV, 11-Jun-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))) | ||
Theorem | addsq2reu 27502* |
For each complex number 𝐶, there exists a unique complex
number
𝑎 added to the square of a unique
another complex number 𝑏
resulting in the given complex number 𝐶. The unique complex number
𝑎 is 𝐶, and the unique another complex
number 𝑏 is 0.
Remark: This, together with addsqnreup 27505, is an example showing that the pattern ∃!𝑎 ∈ 𝐴∃!𝑏 ∈ 𝐵𝜑 does not necessarily mean "There are unique sets 𝑎 and 𝑏 fulfilling 𝜑). See also comments for df-eu 2572 and 2eu4 2658. For more details see comment for addsqnreup 27505. (Contributed by AV, 21-Jun-2023.) |
⊢ (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) | ||
Theorem | addsqn2reu 27503* |
For each complex number 𝐶, there does not exist a unique
complex
number 𝑏, squared and added to a unique
another complex number
𝑎 resulting in the given complex number
𝐶.
Actually, for each
complex number 𝑏, 𝑎 = (𝐶 − (𝑏↑2)) is unique.
Remark: This, together with addsq2reu 27502, shows that commutation of two unique quantifications need not be equivalent, and provides an evident justification of the fact that considering the pair of variables is necessary to obtain what we intuitively understand as "double unique existence". (Proposed by GL, 23-Jun-2023.). (Contributed by AV, 23-Jun-2023.) |
⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) | ||
Theorem | addsqrexnreu 27504* |
For each complex number, there exists a complex number to which the
square of more than one (or no) other complex numbers can be added to
result in the given complex number.
Remark: This theorem, together with addsq2reu 27502, shows that there are cases in which there is a set together with a not unique other set fulfilling a wff, although there is a unique set fulfilling the wff together with another unique set (see addsq2reu 27502). For more details see comment for addsqnreup 27505. (Contributed by AV, 20-Jun-2023.) |
⊢ (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) | ||
Theorem | addsqnreup 27505* |
There is no unique decomposition of a complex number as a sum of a
complex number and a square of a complex number.
Remark: This theorem, together with addsq2reu 27502, is a real life example (about a numerical property) showing that the pattern ∃!𝑎 ∈ 𝐴∃!𝑏 ∈ 𝐵𝜑 does not necessarily mean "There are unique sets 𝑎 and 𝑏 fulfilling 𝜑"). See also comments for df-eu 2572 and 2eu4 2658. In the case of decompositions of complex numbers as a sum of a complex number and a square of a complex number, the only/unique complex number to which the square of a unique complex number is added yields in the given complex number is the given number itself, and the unique complex number to be squared is 0 (see comment for addsq2reu 27502). There are, however, complex numbers to which the square of more than one other complex numbers can be added to yield the given complex number (see addsqrexnreu 27504). For example, 〈1, (√‘(𝐶 − 1))〉 and 〈1, -(√‘(𝐶 − 1))〉 are two different decompositions of 𝐶 (if 𝐶 ≠ 1). Therefore, there is no unique decomposition of any complex number as a sum of a complex number and a square of a complex number, as generally proved by this theorem. As a consequence, a theorem must claim the existence of a unique pair of sets to express "There are unique 𝑎 and 𝑏 so that .." (more formally ∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 with 𝑝 = 〈𝑎, 𝑏〉), or by showing (∃!𝑥 ∈ 𝐴∃𝑦 ∈ 𝐵𝜑 ∧ ∃!𝑦 ∈ 𝐵∃𝑥 ∈ 𝐴𝜑) (see 2reu4 4546 resp. 2eu4 2658). These two representations are equivalent (see opreu2reurex 6325). An analogon of this theorem using the latter variant is given in addsqn2reurex2 27507. In some cases, however, the variant with (ordered!) pairs may be possible only for ordered sets (like ℝ or ℙ) and claiming that the first component is less than or equal to the second component (see, for example, 2sqreunnltb 27523 and 2sqreuopb 27530). Alternatively, (proper) unordered pairs can be used: ∃!𝑝𝑒𝒫 𝐴((♯‘𝑝) = 2 ∧ 𝜑), or, using the definition of proper pairs: ∃!𝑝 ∈ (Pairsproper‘𝐴)𝜑 (see, for example, inlinecirc02preu 48522). (Contributed by AV, 21-Jun-2023.) |
⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st ‘𝑝) + ((2nd ‘𝑝)↑2)) = 𝐶) | ||
Theorem | addsq2nreurex 27506* | For each complex number 𝐶, there is no unique complex number 𝑎 added to the square of another complex number 𝑏 resulting in the given complex number 𝐶. (Contributed by AV, 2-Jul-2023.) |
⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) | ||
Theorem | addsqn2reurex2 27507* |
For each complex number 𝐶, there does not uniquely exist two
complex numbers 𝑎 and 𝑏, with 𝑏 squared
and added to 𝑎
resulting in the given complex number 𝐶.
Remark: This, together with addsq2reu 27502, is an example showing that the pattern ∃!𝑎 ∈ 𝐴∃!𝑏 ∈ 𝐵𝜑 does not necessarily mean "There are unique sets 𝑎 and 𝑏 fulfilling 𝜑), as it is the case with the pattern (∃!𝑎 ∈ 𝐴∃𝑏 ∈ 𝐵𝜑 ∧ ∃!𝑏 ∈ 𝐵∃𝑎 ∈ 𝐴𝜑. See also comments for df-eu 2572 and 2eu4 2658. (Contributed by AV, 2-Jul-2023.) |
⊢ (𝐶 ∈ ℂ → ¬ (∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ∧ ∃!𝑏 ∈ ℂ ∃𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)) | ||
Theorem | 2sqreulem1 27508* | Lemma 1 for 2sqreu 27518. (Contributed by AV, 4-Jun-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | ||
Theorem | 2sqreultlem 27509* | Lemma for 2sqreult 27520. (Contributed by AV, 8-Jun-2023.) (Proposed by GL, 8-Jun-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | ||
Theorem | 2sqreultblem 27510* | Lemma for 2sqreultb 27521. (Contributed by AV, 10-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 18-Jun-2023.) |
⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) | ||
Theorem | 2sqreunnlem1 27511* | Lemma 1 for 2sqreunn 27519. (Contributed by AV, 11-Jun-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | ||
Theorem | 2sqreunnltlem 27512* | Lemma for 2sqreunnlt 27522. (Contributed by AV, 4-Jun-2023.) Specialization to different integers, proposed by GL. (Revised by AV, 11-Jun-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | ||
Theorem | 2sqreunnltblem 27513* | Lemma for 2sqreunnltb 27523. (Contributed by AV, 11-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 18-Jun-2023.) |
⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) | ||
Theorem | 2sqreulem2 27514 | Lemma 2 for 2sqreu 27518 etc. (Contributed by AV, 25-Jun-2023.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + (𝐶↑2)) → 𝐵 = 𝐶)) | ||
Theorem | 2sqreulem3 27515 | Lemma 3 for 2sqreu 27518 etc. (Contributed by AV, 25-Jun-2023.) |
⊢ ((𝐴 ∈ ℕ0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0)) → (((𝜑 ∧ ((𝐴↑2) + (𝐵↑2)) = 𝑃) ∧ (𝜓 ∧ ((𝐴↑2) + (𝐶↑2)) = 𝑃)) → 𝐵 = 𝐶)) | ||
Theorem | 2sqreulem4 27516* | Lemma 4 for 2sqreu 27518 et. (Contributed by AV, 25-Jun-2023.) |
⊢ (𝜑 ↔ (𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ ∀𝑎 ∈ ℕ0 ∃*𝑏 ∈ ℕ0 𝜑 | ||
Theorem | 2sqreunnlem2 27517* | Lemma 2 for 2sqreunn 27519. (Contributed by AV, 25-Jun-2023.) |
⊢ (𝜑 ↔ (𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ ∀𝑎 ∈ ℕ ∃*𝑏 ∈ ℕ 𝜑 | ||
Theorem | 2sqreu 27518* | There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two nonnegative integers. See 2sqnn0 27500 for the existence of such a decomposition. (Contributed by AV, 4-Jun-2023.) (Revised by AV, 25-Jun-2023.) |
⊢ (𝜑 ↔ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑)) | ||
Theorem | 2sqreunn 27519* | There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two positive integers. See 2sqnn 27501 for the existence of such a decomposition. (Contributed by AV, 11-Jun-2023.) (Revised by AV, 25-Jun-2023.) |
⊢ (𝜑 ↔ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑)) | ||
Theorem | 2sqreult 27520* | There exists a unique decomposition of a prime as a sum of squares of two different nonnegative integers. (Contributed by AV, 8-Jun-2023.) (Proposed by GL, 8-Jun-2023.) (Revised by AV, 25-Jun-2023.) |
⊢ (𝜑 ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑)) | ||
Theorem | 2sqreultb 27521* | There exists a unique decomposition of a prime as a sum of squares of two different nonnegative integers iff 𝑃≡1 (mod 4). (Contributed by AV, 10-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 25-Jun-2023.) |
⊢ (𝜑 ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑))) | ||
Theorem | 2sqreunnlt 27522* | There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two different positive integers. (Contributed by AV, 4-Jun-2023.) Specialization to different integers, proposed by GL. (Revised by AV, 25-Jun-2023.) |
⊢ (𝜑 ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑)) | ||
Theorem | 2sqreunnltb 27523* | There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4𝑘 + 1. (Contributed by AV, 11-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 25-Jun-2023.) |
⊢ (𝜑 ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑))) | ||
Theorem | 2sqreuop 27524* | There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two nonnegative integers. Ordered pair variant of 2sqreu 27518. (Contributed by AV, 2-Jul-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ0 × ℕ0)((1st ‘𝑝) ≤ (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃)) | ||
Theorem | 2sqreuopnn 27525* | There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two positive integers. Ordered pair variant of 2sqreunn 27519. (Contributed by AV, 2-Jul-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) ≤ (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃)) | ||
Theorem | 2sqreuoplt 27526* | There exists a unique decomposition of a prime as a sum of squares of two different nonnegative integers. Ordered pair variant of 2sqreult 27520. (Contributed by AV, 2-Jul-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ0 × ℕ0)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃)) | ||
Theorem | 2sqreuopltb 27527* | There exists a unique decomposition of a prime as a sum of squares of two different nonnegative integers iff 𝑃≡1 (mod 4). Ordered pair variant of 2sqreultb 27521. (Contributed by AV, 3-Jul-2023.) |
⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ0 × ℕ0)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃))) | ||
Theorem | 2sqreuopnnlt 27528* | There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two different positive integers. Ordered pair variant of 2sqreunnlt 27522. (Contributed by AV, 3-Jul-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃)) | ||
Theorem | 2sqreuopnnltb 27529* | There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4𝑘 + 1. Ordered pair variant of 2sqreunnltb 27523. (Contributed by AV, 3-Jul-2023.) |
⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃))) | ||
Theorem | 2sqreuopb 27530* | There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4𝑘 + 1. Alternate ordered pair variant of 2sqreunnltb 27523. (Contributed by AV, 3-Jul-2023.) |
⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ × ℕ)∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))) | ||
Theorem | chebbnd1lem1 27531 | Lemma for chebbnd1 27534: show a lower bound on π(𝑥) at even integers using similar techniques to those used to prove bpos 27355. (Note that the expression 𝐾 is actually equal to 2 · 𝑁, but proving that is not necessary for the proof, and it's too much work.) The key to the proof is bposlem1 27346, which shows that each term in the expansion ((2 · 𝑁)C𝑁) = ∏𝑝 ∈ ℙ (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) is at most 2 · 𝑁, so that the sum really only has nonzero elements up to 2 · 𝑁, and since each term is at most 2 · 𝑁, after taking logs we get the inequality π(2 · 𝑁) · log(2 · 𝑁) ≤ log((2 · 𝑁)C𝑁), and bclbnd 27342 finishes the proof. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2016.) |
⊢ 𝐾 = if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘4) → (log‘((4↑𝑁) / 𝑁)) < ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁)))) | ||
Theorem | chebbnd1lem2 27532 | Lemma for chebbnd1 27534: Show that log(𝑁) / 𝑁 does not change too much between 𝑁 and 𝑀 = ⌊(𝑁 / 2). (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ 𝑀 = (⌊‘(𝑁 / 2)) ⇒ ⊢ ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁))) | ||
Theorem | chebbnd1lem3 27533 | Lemma for chebbnd1 27534: get a lower bound on π(𝑁) / (𝑁 / log(𝑁)) that is independent of 𝑁. (Contributed by Mario Carneiro, 21-Sep-2014.) |
⊢ 𝑀 = (⌊‘(𝑁 / 2)) ⇒ ⊢ ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) / 2) < ((π‘𝑁) · ((log‘𝑁) / 𝑁))) | ||
Theorem | chebbnd1 27534 | The Chebyshev bound: The function π(𝑥) is eventually lower bounded by a positive constant times 𝑥 / log(𝑥). Alternatively stated, the function (𝑥 / log(𝑥)) / π(𝑥) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π‘𝑥))) ∈ 𝑂(1) | ||
Theorem | chtppilimlem1 27535 | Lemma for chtppilim 27537. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 𝑁 ∈ (2[,)+∞)) & ⊢ (𝜑 → ((𝑁↑𝑐𝐴) / (π‘𝑁)) < (1 − 𝐴)) ⇒ ⊢ (𝜑 → ((𝐴↑2) · ((π‘𝑁) · (log‘𝑁))) < (θ‘𝑁)) | ||
Theorem | chtppilimlem2 27536* | Lemma for chtppilim 27537. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧 ≤ 𝑥 → ((𝐴↑2) · ((π‘𝑥) · (log‘𝑥))) < (θ‘𝑥))) | ||
Theorem | chtppilim 27537 | The θ function is asymptotic to π(𝑥)log(𝑥), so it is sufficient to prove θ(𝑥) / 𝑥 ⇝𝑟 1 to establish the PNT. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π‘𝑥) · (log‘𝑥)))) ⇝𝑟 1 | ||
Theorem | chto1ub 27538 | The θ function is upper bounded by a linear term. Corollary of chtub 27274. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1) | ||
Theorem | chebbnd2 27539 | The Chebyshev bound, part 2: The function π(𝑥) is eventually upper bounded by a positive constant times 𝑥 / log(𝑥). Alternatively stated, the function π(𝑥) / (𝑥 / log(𝑥)) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014.) |
⊢ (𝑥 ∈ (2[,)+∞) ↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))) ∈ 𝑂(1) | ||
Theorem | chto1lb 27540 | The θ function is lower bounded by a linear term. Corollary of chebbnd1 27534. (Contributed by Mario Carneiro, 8-Apr-2016.) |
⊢ (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∈ 𝑂(1) | ||
Theorem | chpchtlim 27541 | The ψ and θ functions are asymptotic to each other, so is sufficient to prove either θ(𝑥) / 𝑥 ⇝𝑟 1 or ψ(𝑥) / 𝑥 ⇝𝑟 1 to establish the PNT. (Contributed by Mario Carneiro, 8-Apr-2016.) |
⊢ (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1 | ||
Theorem | chpo1ub 27542 | The ψ function is upper bounded by a linear term. (Contributed by Mario Carneiro, 16-Apr-2016.) |
⊢ (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1) | ||
Theorem | chpo1ubb 27543* | The ψ function is upper bounded by a linear term. (Contributed by Mario Carneiro, 31-May-2016.) |
⊢ ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ ℝ+ (ψ‘𝑥) ≤ (𝑐 · 𝑥) | ||
Theorem | vmadivsum 27544* | The sum of the von Mangoldt function over 𝑛 is asymptotic to log𝑥 + 𝑂(1). Equation 9.2.13 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 16-Apr-2016.) |
⊢ (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1) | ||
Theorem | vmadivsumb 27545* | Give a total bound on the von Mangoldt sum. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1[,)+∞)(abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ≤ 𝑐 | ||
Theorem | rplogsumlem1 27546* | Lemma for rplogsum 27589. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ 2) | ||
Theorem | rplogsumlem2 27547* | Lemma for rplogsum 27589. Equation 9.2.14 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ (𝐴 ∈ ℤ → Σ𝑛 ∈ (1...𝐴)(((Λ‘𝑛) − if(𝑛 ∈ ℙ, (log‘𝑛), 0)) / 𝑛) ≤ 2) | ||
Theorem | dchrisum0lem1a 27548 | Lemma for dchrisum0lem1 27578. (Contributed by Mario Carneiro, 7-Jun-2016.) |
⊢ (((𝜑 ∧ 𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ≤ ((𝑋↑2) / 𝐷) ∧ (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ≥‘(⌊‘𝑋)))) | ||
Theorem | rpvmasumlem 27549* | Lemma for rpvmasum 27588. Calculate the "trivial case" estimate Σ𝑛 ≤ 𝑥( 1 (𝑛)Λ(𝑛) / 𝑛) = log𝑥 + 𝑂(1), where 1 (𝑥) is the principal Dirichlet character. Equation 9.4.7 of [Shapiro], p. 376. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1)) | ||
Theorem | dchrisumlema 27550* | Lemma for dchrisum 27554. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) ⇒ ⊢ (𝜑 → ((𝐼 ∈ ℝ+ → ⦋𝐼 / 𝑛⦌𝐴 ∈ ℝ) ∧ (𝐼 ∈ (𝑀[,)+∞) → 0 ≤ ⦋𝐼 / 𝑛⦌𝐴))) | ||
Theorem | dchrisumlem1 27551* | Lemma for dchrisum 27554. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑛))) ≤ 𝑅) ⇒ ⊢ ((𝜑 ∧ 𝑈 ∈ ℕ0) → (abs‘Σ𝑛 ∈ (0..^𝑈)(𝑋‘(𝐿‘𝑛))) ≤ 𝑅) | ||
Theorem | dchrisumlem2 27552* | Lemma for dchrisum 27554. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑛))) ≤ 𝑅) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑀 ≤ 𝑈) & ⊢ (𝜑 → 𝑈 ≤ (𝐼 + 1)) & ⊢ (𝜑 → 𝐼 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ (ℤ≥‘𝐼)) ⇒ ⊢ (𝜑 → (abs‘((seq1( + , 𝐹)‘𝐽) − (seq1( + , 𝐹)‘𝐼))) ≤ ((2 · 𝑅) · ⦋𝑈 / 𝑛⦌𝐴)) | ||
Theorem | dchrisumlem3 27553* | Lemma for dchrisum 27554. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿‘𝑛))) ≤ 𝑅) ⇒ ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))) | ||
Theorem | dchrisum 27554* | If 𝑛 ∈ [𝑀, +∞) ↦ 𝐴(𝑛) is a positive decreasing function approaching zero, then the infinite sum Σ𝑛, 𝑋(𝑛)𝐴(𝑛) is convergent, with the partial sum Σ𝑛 ≤ 𝑥, 𝑋(𝑛)𝐴(𝑛) within 𝑂(𝐴(𝑀)) of the limit 𝑇. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ (𝑛 = 𝑥 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+) ∧ (𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → (𝑛 ∈ ℝ+ ↦ 𝐴) ⇝𝑟 0) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑛)) · 𝐴)) ⇒ ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵))) | ||
Theorem | dchrmusumlema 27555* | Lemma for dchrmusum 27586 and dchrisumn0 27583. Apply dchrisum 27554 for the function 1 / 𝑦. (Contributed by Mario Carneiro, 4-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) ⇒ ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦))) | ||
Theorem | dchrmusum2 27556* | The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by 𝑛, is bounded, provided that 𝑇 ≠ 0. Lemma 9.4.2 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ 𝑂(1)) | ||
Theorem | dchrvmasumlem1 27557* | An alternative expression for a Dirichlet-weighted von Mangoldt sum in terms of the Möbius function. Equation 9.4.11 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 3-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘𝑚) / 𝑚)))) | ||
Theorem | dchrvmasum2lem 27558* | Give an expression for log𝑥 remarkably similar to Σ𝑛 ≤ 𝑥(𝑋(𝑛)Λ(𝑛) / 𝑛) given in dchrvmasumlem1 27557. Part of Lemma 9.4.3 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 1 ≤ 𝐴) ⇒ ⊢ (𝜑 → (log‘𝐴) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))) | ||
Theorem | dchrvmasum2if 27559* | Combine the results of dchrvmasumlem1 27557 and dchrvmasum2lem 27558 inside a conditional. (Contributed by Mario Carneiro, 4-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 1 ≤ 𝐴) ⇒ ⊢ (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿‘𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)))) | ||
Theorem | dchrvmasumlem2 27560* | Lemma for dchrvmasum 27587. (Contributed by Mario Carneiro, 4-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ+) → 𝐹 ∈ ℂ) & ⊢ (𝑚 = (𝑥 / 𝑑) → 𝐹 = 𝐾) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑚 ∈ (3[,)+∞)) → (abs‘(𝐹 − 𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚))) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹 − 𝑇)) ≤ 𝑅) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) ∈ 𝑂(1)) | ||
Theorem | dchrvmasumlem3 27561* | Lemma for dchrvmasum 27587. (Contributed by Mario Carneiro, 3-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ+) → 𝐹 ∈ ℂ) & ⊢ (𝑚 = (𝑥 / 𝑑) → 𝐹 = 𝐾) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑚 ∈ (3[,)+∞)) → (abs‘(𝐹 − 𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚))) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹 − 𝑇)) ≤ 𝑅) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝐾 − 𝑇))) ∈ 𝑂(1)) | ||
Theorem | dchrvmasumlema 27562* | Lemma for dchrvmasum 27587 and dchrvmasumif 27565. Apply dchrisum 27554 for the function log(𝑦) / 𝑦, which is decreasing above e (or above 3, the nearest integer bound). (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎))) ⇒ ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 · ((log‘𝑦) / 𝑦)))) | ||
Theorem | dchrvmasumiflem1 27563* | Lemma for dchrvmasumif 27565. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦)) & ⊢ 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎))) & ⊢ (𝜑 → 𝐸 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐾) ⇝ 𝑇) & ⊢ (𝜑 → ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦))) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)))) ∈ 𝑂(1)) | ||
Theorem | dchrvmasumiflem2 27564* | Lemma for dchrvmasum 27587. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦)) & ⊢ 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎))) & ⊢ (𝜑 → 𝐸 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐾) ⇝ 𝑇) & ⊢ (𝜑 → ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦))) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ 𝑂(1)) | ||
Theorem | dchrvmasumif 27565* | An asymptotic approximation for the sum of 𝑋(𝑛)Λ(𝑛) / 𝑛 conditional on the value of the infinite sum 𝑆. (We will later show that the case 𝑆 = 0 is impossible, and hence establish dchrvmasum 27587.) (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦)) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ 𝑂(1)) | ||
Theorem | dchrvmaeq0 27566* | The set 𝑊 is the collection of all non-principal Dirichlet characters such that the sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is equal to zero. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦)) & ⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑊 ↔ 𝑆 = 0)) | ||
Theorem | dchrisum0fval 27567* | Value of the function 𝐹, the divisor sum of a Dirichlet character. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) ⇒ ⊢ (𝐴 ∈ ℕ → (𝐹‘𝐴) = Σ𝑡 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴} (𝑋‘(𝐿‘𝑡))) | ||
Theorem | dchrisum0fmul 27568* | The function 𝐹, the divisor sum of a Dirichlet character, is a multiplicative function (but not completely multiplicative). Equation 9.4.27 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) ⇒ ⊢ (𝜑 → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) · (𝐹‘𝐵))) | ||
Theorem | dchrisum0ff 27569* | The function 𝐹 is a real function. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) ⇒ ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | ||
Theorem | dchrisum0flblem1 27570* | Lemma for dchrisum0flb 27572. Base case, prime power. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → if((√‘(𝑃↑𝐴)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃↑𝐴))) | ||
Theorem | dchrisum0flblem2 27571* | Lemma for dchrisum0flb 27572. Induction over relatively prime factors, with the prime power case handled in dchrisum0flblem1 . (Contributed by Mario Carneiro, 5-May-2016.) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑃 ∥ 𝐴) & ⊢ (𝜑 → ∀𝑦 ∈ (1..^𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)) ⇒ ⊢ (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹‘𝐴)) | ||
Theorem | dchrisum0flb 27572* | The divisor sum of a real Dirichlet character, is lower bounded by zero everywhere and one at the squares. Equation 9.4.29 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹‘𝐴)) | ||
Theorem | dchrisum0fno1 27573* | The sum Σ𝑘 ≤ 𝑥, 𝐹(𝑥) / √𝑘 is divergent (i.e. not eventually bounded). Equation 9.4.30 of [Shapiro], p. 383. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) & ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹‘𝑘) / (√‘𝑘))) ∈ 𝑂(1)) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | rpvmasum2 27574* | A partial result along the lines of rpvmasum 27588. The sum of the von Mangoldt function over those integers 𝑛≡𝐴 (mod 𝑁) is asymptotic to (1 − 𝑀)(log𝑥 / ϕ(𝑥)) + 𝑂(1), where 𝑀 is the number of non-principal Dirichlet characters with Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 = 0. Our goal is to show this set is empty. Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} & ⊢ 𝑈 = (Unit‘𝑍) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ 𝑇 = (◡𝐿 “ {𝐴}) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑊) → 𝐴 = (1r‘𝑍)) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1)) | ||
Theorem | dchrisum0re 27575* | Suppose 𝑋 is a non-principal Dirichlet character with Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 = 0. Then 𝑋 is a real character. Part of Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} & ⊢ (𝜑 → 𝑋 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) | ||
Theorem | dchrisum0lema 27576* | Lemma for dchrisum0 27582. Apply dchrisum 27554 for the function 1 / √𝑦. (Contributed by Mario Carneiro, 10-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))) ⇒ ⊢ (𝜑 → ∃𝑡∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)))) | ||
Theorem | dchrisum0lem1b 27577* | Lemma for dchrisum0lem1 27578. (Contributed by Mario Carneiro, 7-Jun-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦))) ⇒ ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿‘𝑚)) / (√‘𝑚))) ≤ ((2 · 𝐶) / (√‘𝑥))) | ||
Theorem | dchrisum0lem1 27578* | Lemma for dchrisum0 27582. (Contributed by Mario Carneiro, 12-May-2016.) (Revised by Mario Carneiro, 7-Jun-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦))) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1)) | ||
Theorem | dchrisum0lem2a 27579* | Lemma for dchrisum0 27582. (Contributed by Mario Carneiro, 12-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦))) & ⊢ 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))) & ⊢ (𝜑 → 𝐻 ⇝𝑟 𝑈) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1)) | ||
Theorem | dchrisum0lem2 27580* | Lemma for dchrisum0 27582. (Contributed by Mario Carneiro, 12-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦))) & ⊢ 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))) & ⊢ (𝜑 → 𝐻 ⇝𝑟 𝑈) & ⊢ 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐾) ⇝ 𝑇) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦)) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿‘𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1)) | ||
Theorem | dchrisum0lem3 27581* | Lemma for dchrisum0 27582. (Contributed by Mario Carneiro, 12-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / (√‘𝑎))) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦))) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿‘𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1)) | ||
Theorem | dchrisum0 27582* | The sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is nonzero for all non-principal Dirichlet characters (i.e. the assumption 𝑋 ∈ 𝑊 is contradictory). This is the key result that allows to eliminate the conditionals from dchrmusum2 27556 and dchrvmasumif 27565. Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 12-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿‘𝑚)) / 𝑚) = 0} & ⊢ (𝜑 → 𝑋 ∈ 𝑊) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | dchrisumn0 27583* | The sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is nonzero for all non-principal Dirichlet characters (i.e. the assumption 𝑋 ∈ 𝑊 is contradictory). This is the key result that allows to eliminate the conditionals from dchrmusum2 27556 and dchrvmasumif 27565. Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 12-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) ⇒ ⊢ (𝜑 → 𝑇 ≠ 0) | ||
Theorem | dchrmusumlem 27584* | The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by 𝑛, is bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛))) ∈ 𝑂(1)) | ||
Theorem | dchrvmasumlem 27585* | The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by 𝑛, is bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) & ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) & ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ 𝑂(1)) | ||
Theorem | dchrmusum 27586* | The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by 𝑛, is bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛))) ∈ 𝑂(1)) | ||
Theorem | dchrvmasum 27587* | The sum of the von Mangoldt function multiplied by a non-principal Dirichlet character, divided by 𝑛, is bounded. Equation 9.4.8 of [Shapiro], p. 376. (Contributed by Mario Carneiro, 12-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝐺 = (DChr‘𝑁) & ⊢ 𝐷 = (Base‘𝐺) & ⊢ 1 = (0g‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ≠ 1 ) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ 𝑂(1)) | ||
Theorem | rpvmasum 27588* | The sum of the von Mangoldt function over those integers 𝑛≡𝐴 (mod 𝑁) is asymptotic to log𝑥 / ϕ(𝑥) + 𝑂(1). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 2-May-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑈 = (Unit‘𝑍) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ 𝑇 = (◡𝐿 “ {𝐴}) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1)) | ||
Theorem | rplogsum 27589* | The sum of log𝑝 / 𝑝 over the primes 𝑝≡𝐴 (mod 𝑁) is asymptotic to log𝑥 / ϕ(𝑥) + 𝑂(1). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 16-Apr-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑈 = (Unit‘𝑍) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ 𝑇 = (◡𝐿 “ {𝐴}) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1)) | ||
Theorem | dirith2 27590 | Dirichlet's theorem: there are infinitely many primes in any arithmetic progression coprime to 𝑁. Theorem 9.4.1 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 30-Apr-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.) |
⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑈 = (Unit‘𝑍) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ 𝑇 = (◡𝐿 “ {𝐴}) ⇒ ⊢ (𝜑 → (ℙ ∩ 𝑇) ≈ ℕ) | ||
Theorem | dirith 27591* | Dirichlet's theorem: there are infinitely many primes in any arithmetic progression coprime to 𝑁. Theorem 9.4.1 of [Shapiro], p. 375. See https://metamath-blog.blogspot.com/2016/05/dirichlets-theorem.html for an informal exposition. This is Metamath 100 proof #48. (Contributed by Mario Carneiro, 12-May-2016.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → {𝑝 ∈ ℙ ∣ 𝑁 ∥ (𝑝 − 𝐴)} ≈ ℕ) | ||
Theorem | mudivsum 27592* | Asymptotic formula for Σ𝑛 ≤ 𝑥, μ(𝑛) / 𝑛 = 𝑂(1). Equation 10.2.1 of [Shapiro], p. 405. (Contributed by Mario Carneiro, 14-May-2016.) |
⊢ (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1) | ||
Theorem | mulogsumlem 27593* | Lemma for mulogsum 27594. (Contributed by Mario Carneiro, 14-May-2016.) |
⊢ (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1) | ||
Theorem | mulogsum 27594* | Asymptotic formula for Σ𝑛 ≤ 𝑥, (μ(𝑛) / 𝑛)log(𝑥 / 𝑛) = 𝑂(1). Equation 10.2.6 of [Shapiro], p. 406. (Contributed by Mario Carneiro, 14-May-2016.) |
⊢ (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1) | ||
Theorem | logdivsum 27595* | Asymptotic analysis of Σ𝑛 ≤ 𝑥, log𝑛 / 𝑛 = (log𝑥)↑2 / 2 + 𝐿 + 𝑂(log𝑥 / 𝑥). (Contributed by Mario Carneiro, 18-May-2016.) |
⊢ 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2))) ⇒ ⊢ (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹 ⇝𝑟 𝐿 ∧ 𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹‘𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴))) | ||
Theorem | mulog2sumlem1 27596* | Asymptotic formula for Σ𝑛 ≤ 𝑥, log(𝑥 / 𝑛) / 𝑛 = (1 / 2)log↑2(𝑥) + γ · log𝑥 − 𝐿 + 𝑂(log𝑥 / 𝑥), with explicit constants. Equation 10.2.7 of [Shapiro], p. 407. (Contributed by Mario Carneiro, 18-May-2016.) |
⊢ 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2))) & ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → e ≤ 𝐴) ⇒ ⊢ (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))) ≤ (2 · ((log‘𝐴) / 𝐴))) | ||
Theorem | mulog2sumlem2 27597* | Lemma for mulog2sum 27599. (Contributed by Mario Carneiro, 19-May-2016.) |
⊢ 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2))) & ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) & ⊢ 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) & ⊢ 𝑅 = (((1 / 2) + (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚)) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) ∈ 𝑂(1)) | ||
Theorem | mulog2sumlem3 27598* | Lemma for mulog2sum 27599. (Contributed by Mario Carneiro, 13-May-2016.) |
⊢ 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2))) & ⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥)))) ∈ 𝑂(1)) | ||
Theorem | mulog2sum 27599* | Asymptotic formula for Σ𝑛 ≤ 𝑥, (μ(𝑛) / 𝑛)log↑2(𝑥 / 𝑛) = 2log𝑥 + 𝑂(1). Equation 10.2.8 of [Shapiro], p. 407. (Contributed by Mario Carneiro, 19-May-2016.) |
⊢ (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥)))) ∈ 𝑂(1) | ||
Theorem | vmalogdivsum2 27600* | The sum Σ𝑛 ≤ 𝑥, Λ(𝑛)log(𝑥 / 𝑛) / 𝑛 is asymptotic to log↑2(𝑥) / 2 + 𝑂(log𝑥). Exercise 9.1.7 of [Shapiro], p. 336. (Contributed by Mario Carneiro, 30-May-2016.) |
⊢ (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |