| Metamath
Proof Explorer Theorem List (p. 276 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 2vmadivsumlem 27501* | Lemma for 2vmadivsum 27502. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘(Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) / 𝑖) − (log‘𝑦))) ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1)) | ||
| Theorem | 2vmadivsum 27502* | The sum Σ𝑚𝑛 ≤ 𝑥, Λ(𝑚)Λ(𝑛) / 𝑚𝑛 is asymptotic to log↑2(𝑥) / 2 + 𝑂(log𝑥). (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1) | ||
| Theorem | logsqvma 27503* | A formula for log↑2(𝑁) in terms of the primes. Equation 10.4.6 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.) |
| ⊢ (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2)) | ||
| Theorem | logsqvma2 27504* | The Möbius inverse of logsqvma 27503. Equation 10.4.8 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.) |
| ⊢ (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((μ‘𝑑) · ((log‘(𝑁 / 𝑑))↑2)) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (Λ‘(𝑁 / 𝑑))) + ((Λ‘𝑁) · (log‘𝑁)))) | ||
| Theorem | log2sumbnd 27505* | Bound on the difference between Σ𝑛 ≤ 𝐴, log↑2(𝑛) and the equivalent integral. (Contributed by Mario Carneiro, 20-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ≤ (((log‘𝐴)↑2) + 2)) | ||
| Theorem | selberglem1 27506* | Lemma for selberg 27509. Estimation of the asymptotic part of selberglem3 27508. (Contributed by Mario Carneiro, 20-May-2016.) |
| ⊢ 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛) ⇒ ⊢ (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) ∈ 𝑂(1) | ||
| Theorem | selberglem2 27507* | Lemma for selberg 27509. (Contributed by Mario Carneiro, 23-May-2016.) |
| ⊢ 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛) ⇒ ⊢ (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) | ||
| Theorem | selberglem3 27508* | Lemma for selberg 27509. Estimation of the left-hand side of logsqvma2 27504. (Contributed by Mario Carneiro, 23-May-2016.) |
| ⊢ (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((μ‘𝑑) · ((log‘(𝑛 / 𝑑))↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) | ||
| Theorem | selberg 27509* | Selberg's symmetry formula. The statement has many forms, and this one is equivalent to the statement that Σ𝑛 ≤ 𝑥, Λ(𝑛)log𝑛 + Σ𝑚 · 𝑛 ≤ 𝑥, Λ(𝑚)Λ(𝑛) = 2𝑥log𝑥 + 𝑂(𝑥). Equation 10.4.10 of [Shapiro], p. 419. (Contributed by Mario Carneiro, 23-May-2016.) |
| ⊢ (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) | ||
| Theorem | selbergb 27510* | Convert eventual boundedness in selberg 27509 to boundedness on [1, +∞). (We have to bound away from zero because the log terms diverge at zero.) (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1[,)+∞)(abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐 | ||
| Theorem | selberg2lem 27511* | Lemma for selberg2 27512. Equation 10.4.12 of [Shapiro], p. 420. (Contributed by Mario Carneiro, 23-May-2016.) |
| ⊢ (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (log‘𝑛)) − ((ψ‘𝑥) · (log‘𝑥))) / 𝑥)) ∈ 𝑂(1) | ||
| Theorem | selberg2 27512* | Selberg's symmetry formula, using the second Chebyshev function. Equation 10.4.14 of [Shapiro], p. 420. (Contributed by Mario Carneiro, 23-May-2016.) |
| ⊢ (𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) | ||
| Theorem | selberg2b 27513* | Convert eventual boundedness in selberg2 27512 to boundedness on any interval [𝐴, +∞). (We have to bound away from zero because the log terms diverge at zero.) (Contributed by Mario Carneiro, 25-May-2016.) |
| ⊢ ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐 | ||
| Theorem | chpdifbndlem1 27514* | Lemma for chpdifbnd 27516. (Contributed by Mario Carneiro, 25-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 1 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵) & ⊢ 𝐶 = ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) & ⊢ (𝜑 → 𝑋 ∈ (1(,)+∞)) & ⊢ (𝜑 → 𝑌 ∈ (𝑋[,](𝐴 · 𝑋))) ⇒ ⊢ (𝜑 → ((ψ‘𝑌) − (ψ‘𝑋)) ≤ ((2 · (𝑌 − 𝑋)) + (𝐶 · (𝑋 / (log‘𝑋))))) | ||
| Theorem | chpdifbndlem2 27515* | Lemma for chpdifbnd 27516. (Contributed by Mario Carneiro, 25-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 1 ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑧 ∈ (1[,)+∞)(abs‘(((((ψ‘𝑧) · (log‘𝑧)) + Σ𝑚 ∈ (1...(⌊‘𝑧))((Λ‘𝑚) · (ψ‘(𝑧 / 𝑚)))) / 𝑧) − (2 · (log‘𝑧)))) ≤ 𝐵) & ⊢ 𝐶 = ((𝐵 · (𝐴 + 1)) + ((2 · 𝐴) · (log‘𝐴))) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦 − 𝑥)) + (𝑐 · (𝑥 / (log‘𝑥))))) | ||
| Theorem | chpdifbnd 27516* | A bound on the difference of nearby ψ values. Theorem 10.5.2 of [Shapiro], p. 427. (Contributed by Mario Carneiro, 25-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](𝐴 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦 − 𝑥)) + (𝑐 · (𝑥 / (log‘𝑥))))) | ||
| Theorem | logdivbnd 27517* | A bound on a sum of logs, used in pntlemk 27567. This is not as precise as logdivsum 27494 in its asymptotic behavior, but it is valid for all 𝑁 and does not require a limit value. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ (𝑁 ∈ ℕ → Σ𝑛 ∈ (1...𝑁)((log‘𝑛) / 𝑛) ≤ ((((log‘𝑁) + 1)↑2) / 2)) | ||
| Theorem | selberg3lem1 27518* | Introduce a log weighting on the summands of Σ𝑚 · 𝑛 ≤ 𝑥, Λ(𝑚)Λ(𝑛), the core of selberg2 27512 (written here as Σ𝑛 ≤ 𝑥, Λ(𝑛)ψ(𝑥 / 𝑛)). Equation 10.4.21 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑘 ∈ (1...(⌊‘𝑦))((Λ‘𝑘) · (log‘𝑘)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1)) | ||
| Theorem | selberg3lem2 27519* | Lemma for selberg3 27520. Equation 10.4.21 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1) | ||
| Theorem | selberg3 27520* | Introduce a log weighting on the summands of Σ𝑚 · 𝑛 ≤ 𝑥, Λ(𝑚)Λ(𝑛), the core of selberg2 27512 (written here as Σ𝑛 ≤ 𝑥, Λ(𝑛)ψ(𝑥 / 𝑛)). Equation 10.6.7 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝑥 ∈ (1(,)+∞) ↦ (((((ψ‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) | ||
| Theorem | selberg4lem1 27521* | Lemma for selberg4 27522. Equation 10.4.20 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑦 / 𝑖)))) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · ((log‘𝑚) + (ψ‘((𝑥 / 𝑛) / 𝑚))))) / (𝑥 · (log‘𝑥))) − (log‘𝑥))) ∈ 𝑂(1)) | ||
| Theorem | selberg4 27522* | The Selberg symmetry formula for products of three primes, instead of two. The sum here can also be written in the symmetric form Σ𝑖𝑗𝑘 ≤ 𝑥, Λ(𝑖)Λ(𝑗)Λ(𝑘); we eliminate one of the nested sums by using the definition of ψ(𝑥) = Σ𝑘 ≤ 𝑥, Λ(𝑘). This statement can thus equivalently be written ψ(𝑥)log↑2(𝑥) = 2Σ𝑖𝑗𝑘 ≤ 𝑥, Λ(𝑖)Λ(𝑗)Λ(𝑘) + 𝑂(𝑥log𝑥). Equation 10.4.23 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝑥 ∈ (1(,)+∞) ↦ ((((ψ‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (ψ‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) ∈ 𝑂(1) | ||
| Theorem | pntrval 27523* | Define the residual of the second Chebyshev function. The goal is to have 𝑅(𝑥) ∈ 𝑜(𝑥), or 𝑅(𝑥) / 𝑥 ⇝𝑟 0. (Contributed by Mario Carneiro, 8-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ (𝐴 ∈ ℝ+ → (𝑅‘𝐴) = ((ψ‘𝐴) − 𝐴)) | ||
| Theorem | pntrf 27524 | Functionality of the residual. Lemma for pnt 27575. (Contributed by Mario Carneiro, 8-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ 𝑅:ℝ+⟶ℝ | ||
| Theorem | pntrmax 27525* | There is a bound on the residual valid for all 𝑥. (Contributed by Mario Carneiro, 9-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝑐 | ||
| Theorem | pntrsumo1 27526* | A bound on a sum over 𝑅. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 25-May-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘𝑛) / (𝑛 · (𝑛 + 1)))) ∈ 𝑂(1) | ||
| Theorem | pntrsumbnd 27527* | A bound on a sum over 𝑅. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 25-May-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ ∃𝑐 ∈ ℝ+ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅‘𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 | ||
| Theorem | pntrsumbnd2 27528* | A bound on a sum over 𝑅. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ ∃𝑐 ∈ ℝ+ ∀𝑘 ∈ ℕ ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑘...𝑚)((𝑅‘𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 | ||
| Theorem | selbergr 27529* | Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.2 of [Shapiro], p. 428. (Contributed by Mario Carneiro, 16-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ (𝑥 ∈ ℝ+ ↦ ((((𝑅‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥)) ∈ 𝑂(1) | ||
| Theorem | selberg3r 27530* | Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.8 of [Shapiro], p. 429. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ 𝑂(1) | ||
| Theorem | selberg4r 27531* | Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.11 of [Shapiro], p. 430. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) · (𝑅‘((𝑥 / 𝑛) / 𝑚)))))) / 𝑥)) ∈ 𝑂(1) | ||
| Theorem | selberg34r 27532* | The sum of selberg3r 27530 and selberg4r 27531. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅‘𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) ∈ 𝑂(1) | ||
| Theorem | pntsval 27533* | Define the "Selberg function", whose asymptotic behavior is the content of selberg 27509. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) ⇒ ⊢ (𝐴 ∈ ℝ → (𝑆‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛))))) | ||
| Theorem | pntsf 27534* | Functionality of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) ⇒ ⊢ 𝑆:ℝ⟶ℝ | ||
| Theorem | selbergs 27535* | Selberg's symmetry formula, using the definition of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) ⇒ ⊢ (𝑥 ∈ ℝ+ ↦ (((𝑆‘𝑥) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) | ||
| Theorem | selbergsb 27536* | Selberg's symmetry formula, using the definition of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) ⇒ ⊢ ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1[,)+∞)(abs‘(((𝑆‘𝑥) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐 | ||
| Theorem | pntsval2 27537* | The Selberg function can be expressed using the convolution product of the von Mangoldt function with itself. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) ⇒ ⊢ (𝐴 ∈ ℝ → (𝑆‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))) | ||
| Theorem | pntrlog2bndlem1 27538* | The sum of selberg3r 27530 and selberg4r 27531. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) & ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆‘𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥)) ∈ ≤𝑂(1) | ||
| Theorem | pntrlog2bndlem2 27539* | Lemma for pntrlog2bnd 27545. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) & ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝐴 · 𝑦)) ⇒ ⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1)) | ||
| Theorem | pntrlog2bndlem3 27540* | Lemma for pntrlog2bnd 27545. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) & ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆‘𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆‘𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1)) | ||
| Theorem | pntrlog2bndlem4 27541* | Lemma for pntrlog2bnd 27545. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) & ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) ⇒ ⊢ (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1) | ||
| Theorem | pntrlog2bndlem5 27542* | Lemma for pntrlog2bnd 27545. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) & ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1)) | ||
| Theorem | pntrlog2bndlem6a 27543* | Lemma for pntrlog2bndlem6 27544. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) & ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) | ||
| Theorem | pntrlog2bndlem6 27544* | Lemma for pntrlog2bnd 27545. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) & ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1)) | ||
| Theorem | pntrlog2bnd 27545* | A bound on 𝑅(𝑥)log↑2(𝑥). Equation 10.6.15 of [Shapiro], p. 431. (Contributed by Mario Carneiro, 1-Jun-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ 𝑐) | ||
| Theorem | pntpbnd1a 27546* | Lemma for pntpbnd 27549. (Contributed by Mario Carneiro, 11-Apr-2016.) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ 𝑋 = (exp‘(2 / 𝐸)) & ⊢ (𝜑 → 𝑌 ∈ (𝑋(,)+∞)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝑌 < 𝑁 ∧ 𝑁 ≤ (𝐾 · 𝑌))) & ⊢ (𝜑 → (abs‘(𝑅‘𝑁)) ≤ (abs‘((𝑅‘(𝑁 + 1)) − (𝑅‘𝑁)))) ⇒ ⊢ (𝜑 → (abs‘((𝑅‘𝑁) / 𝑁)) ≤ 𝐸) | ||
| Theorem | pntpbnd1 27547* | Lemma for pntpbnd 27549. (Contributed by Mario Carneiro, 11-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ 𝑋 = (exp‘(2 / 𝐸)) & ⊢ (𝜑 → 𝑌 ∈ (𝑋(,)+∞)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅‘𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴) & ⊢ 𝐶 = (𝐴 + 2) & ⊢ (𝜑 → 𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) & ⊢ (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦 ∧ 𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐸)) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅‘𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴) | ||
| Theorem | pntpbnd2 27548* | Lemma for pntpbnd 27549. (Contributed by Mario Carneiro, 11-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ 𝑋 = (exp‘(2 / 𝐸)) & ⊢ (𝜑 → 𝑌 ∈ (𝑋(,)+∞)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅‘𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴) & ⊢ 𝐶 = (𝐴 + 2) & ⊢ (𝜑 → 𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) & ⊢ (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦 ∧ 𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐸)) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | pntpbnd 27549* | Lemma for pnt 27575. Establish smallness of 𝑅 at a point. Lemma 10.6.1 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ ∃𝑐 ∈ ℝ+ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛 ∧ 𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ 𝑒) | ||
| Theorem | pntibndlem1 27550 | Lemma for pntibnd 27554. (Contributed by Mario Carneiro, 10-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) ⇒ ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | ||
| Theorem | pntibndlem2a 27551* | Lemma for pntibndlem2 27552. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝐾 = (exp‘(𝐵 / (𝐸 / 2))) & ⊢ 𝐶 = ((2 · 𝐵) + (log‘2)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ (𝜑 → 𝑍 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ ((𝜑 ∧ 𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))) | ||
| Theorem | pntibndlem2 27552* | Lemma for pntibnd 27554. The main work, after eliminating all the quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝐾 = (exp‘(𝐵 / (𝐸 / 2))) & ⊢ 𝐶 = ((2 · 𝐵) + (log‘2)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ (𝜑 → 𝑍 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](2 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦 − 𝑥)) + (𝑇 · (𝑥 / (log‘𝑥))))) & ⊢ 𝑋 = ((exp‘(𝑇 / (𝐸 / 4))) + 𝑍) & ⊢ (𝜑 → 𝑀 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) & ⊢ (𝜑 → 𝑌 ∈ (𝑋(,)+∞)) & ⊢ (𝜑 → ((𝑌 < 𝑁 ∧ 𝑁 ≤ ((𝑀 / 2) · 𝑌)) ∧ (abs‘((𝑅‘𝑁) / 𝑁)) ≤ (𝐸 / 2))) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ ℝ+ ((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) | ||
| Theorem | pntibndlem3 27553* | Lemma for pntibnd 27554. Package up pntibndlem2 27552 in quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝐾 = (exp‘(𝐵 / (𝐸 / 2))) & ⊢ 𝐶 = ((2 · 𝐵) + (log‘2)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ (𝜑 → 𝑍 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖 ∧ 𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅‘𝑖) / 𝑖)) ≤ (𝐸 / 2))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) | ||
| Theorem | pntibnd 27554* | Lemma for pnt 27575. Establish smallness of 𝑅 on an interval. Lemma 10.6.2 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ ∃𝑐 ∈ ℝ+ ∃𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒) | ||
| Theorem | pntlemd 27555 | Lemma for pnt 27575. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝐴 is C^*, 𝐵 is c1, 𝐿 is λ, 𝐷 is c2, and 𝐹 is c3. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) ⇒ ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) | ||
| Theorem | pntlemc 27556* | Lemma for pnt 27575. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑈 is α, 𝐸 is ε, and 𝐾 is K. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) ⇒ ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) | ||
| Theorem | pntlema 27557* | Lemma for pnt 27575. Closure for the constants used in the proof. The mammoth expression 𝑊 is a number large enough to satisfy all the lower bounds needed for 𝑍. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑌 is x2, 𝑋 is x1, 𝐶 is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and 𝑊 is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) ⇒ ⊢ (𝜑 → 𝑊 ∈ ℝ+) | ||
| Theorem | pntlemb 27558* | Lemma for pnt 27575. Unpack all the lower bounds contained in 𝑊, in the form they will be used. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑍 is x. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) ⇒ ⊢ (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))))) | ||
| Theorem | pntlemg 27559* | Lemma for pnt 27575. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑀 is j^* and 𝑁 is ĵ. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) ⇒ ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀))) | ||
| Theorem | pntlemh 27560* | Lemma for pnt 27575. Bounds on the subintervals in the induction. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾↑𝐽) ∧ (𝐾↑𝐽) ≤ (√‘𝑍))) | ||
| Theorem | pntlemn 27561* | Lemma for pnt 27575. The "naive" base bound, which we will slightly improve. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) ⇒ ⊢ ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) · (log‘𝐽))) | ||
| Theorem | pntlemq 27562* | Lemma for pntlemj 27564. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝐽)))) & ⊢ (𝜑 → 𝑉 ∈ ℝ+) & ⊢ (𝜑 → (((𝐾↑𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾↑𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → 𝐽 ∈ (𝑀..^𝑁)) & ⊢ 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⇒ ⊢ (𝜑 → 𝐼 ⊆ 𝑂) | ||
| Theorem | pntlemr 27563* | Lemma for pntlemj 27564. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝐽)))) & ⊢ (𝜑 → 𝑉 ∈ ℝ+) & ⊢ (𝜑 → (((𝐾↑𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾↑𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → 𝐽 ∈ (𝑀..^𝑁)) & ⊢ 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⇒ ⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((♯‘𝐼) · ((𝑈 − 𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))) | ||
| Theorem | pntlemj 27564* | Lemma for pnt 27575. The induction step. Using pntibnd 27554, we find an interval in 𝐾↑𝐽...𝐾↑(𝐽 + 1) which is sufficiently large and has a much smaller value, 𝑅(𝑧) / 𝑧 ≤ 𝐸 (instead of our original bound 𝑅(𝑧) / 𝑧 ≤ 𝑈). (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝐽)))) & ⊢ (𝜑 → 𝑉 ∈ ℝ+) & ⊢ (𝜑 → (((𝐾↑𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾↑𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → 𝐽 ∈ (𝑀..^𝑁)) & ⊢ 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⇒ ⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ 𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) | ||
| Theorem | pntlemi 27565* | Lemma for pnt 27575. Eliminate some assumptions from pntlemj 27564. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝐽)))) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀..^𝑁)) → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ 𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) | ||
| Theorem | pntlemf 27566* | Lemma for pnt 27575. Add up the pieces in pntlemi 27565 to get an estimate slightly better than the naive lower bound 0. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) ⇒ ⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) | ||
| Theorem | pntlemk 27567* | Lemma for pnt 27575. Evaluate the naive part of the estimate. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) ⇒ ⊢ (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍))) | ||
| Theorem | pntlemo 27568* | Lemma for pnt 27575. Combine all the estimates to establish a smaller eventual bound on 𝑅(𝑍) / 𝑍. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶) ⇒ ⊢ (𝜑 → (abs‘((𝑅‘𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) | ||
| Theorem | pntleme 27569* | Lemma for pnt 27575. Package up pntlemo 27568 in quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) | ||
| Theorem | pntlem3 27570* | Lemma for pnt 27575. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 8-Apr-2016.) (Proof shortened by AV, 27-Sep-2020.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ 𝑇 = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡} & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1) | ||
| Theorem | pntlemp 27571* | Lemma for pnt 27575. Wrapping up more quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒)) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) | ||
| Theorem | pntleml 27572* | Lemma for pnt 27575. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒)) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1) | ||
| Theorem | pnt3 27573 | The Prime Number Theorem, version 3: the second Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.) |
| ⊢ (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1 | ||
| Theorem | pnt2 27574 | The Prime Number Theorem, version 2: the first Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.) |
| ⊢ (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 | ||
| Theorem | pnt 27575 | The Prime Number Theorem: the number of prime numbers less than 𝑥 tends asymptotically to 𝑥 / log(𝑥) as 𝑥 goes to infinity. This is Metamath 100 proof #5. (Contributed by Mario Carneiro, 1-Jun-2016.) |
| ⊢ (𝑥 ∈ (1(,)+∞) ↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1 | ||
| Theorem | abvcxp 27576* | Raising an absolute value to a power less than one yields another absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ ((𝐹‘𝑥)↑𝑐𝑆)) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝐺 ∈ 𝐴) | ||
| Theorem | padicfval 27577* | Value of the p-adic absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) ⇒ ⊢ (𝑃 ∈ ℙ → (𝐽‘𝑃) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥))))) | ||
| Theorem | padicval 27578* | Value of the p-adic absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝑋 ∈ ℚ) → ((𝐽‘𝑃)‘𝑋) = if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋)))) | ||
| Theorem | ostth2lem1 27579* | Lemma for ostth2 27598, although it is just a simple statement about exponentials which does not involve any specifics of ostth2 27598. If a power is upper bounded by a linear term, the exponent must be less than one. Or in big-O notation, 𝑛 ∈ 𝑜(𝐴↑𝑛) for any 1 < 𝐴. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴↑𝑛) ≤ (𝑛 · 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ≤ 1) | ||
| Theorem | qrngbas 27580 | The base set of the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ ℚ = (Base‘𝑄) | ||
| Theorem | qdrng 27581 | The rationals form a division ring. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ 𝑄 ∈ DivRing | ||
| Theorem | qrng0 27582 | The zero element of the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ 0 = (0g‘𝑄) | ||
| Theorem | qrng1 27583 | The unity element of the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ 1 = (1r‘𝑄) | ||
| Theorem | qrngneg 27584 | The additive inverse in the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ (𝑋 ∈ ℚ → ((invg‘𝑄)‘𝑋) = -𝑋) | ||
| Theorem | qrngdiv 27585 | The division operation in the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ ((𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ ∧ 𝑌 ≠ 0) → (𝑋(/r‘𝑄)𝑌) = (𝑋 / 𝑌)) | ||
| Theorem | qabvle 27586 | By using induction on 𝑁, we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐹‘𝑁) ≤ 𝑁) | ||
| Theorem | qabvexp 27587 | Induct the product rule abvmul 20779 to find the absolute value of a power. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑀↑𝑁)) = ((𝐹‘𝑀)↑𝑁)) | ||
| Theorem | ostthlem1 27588* | Lemma for ostth 27600. If two absolute values agree on the positive integers greater than one, then they agree for all rational numbers and thus are equal as functions. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘2)) → (𝐹‘𝑛) = (𝐺‘𝑛)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | ostthlem2 27589* | Lemma for ostth 27600. Refine ostthlem1 27588 so that it is sufficient to only show equality on the primes. (Contributed by Mario Carneiro, 9-Sep-2014.) (Revised by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → (𝐹‘𝑝) = (𝐺‘𝑝)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | qabsabv 27590 | The regular absolute value function on the rationals is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) ⇒ ⊢ (abs ↾ ℚ) ∈ 𝐴 | ||
| Theorem | padicabv 27591* | The p-adic absolute value (with arbitrary base) is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐹 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥)))) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐹 ∈ 𝐴) | ||
| Theorem | padicabvf 27592* | The p-adic absolute value is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) ⇒ ⊢ 𝐽:ℙ⟶𝐴 | ||
| Theorem | padicabvcxp 27593* | All positive powers of the p-adic absolute value are absolute values. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽‘𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴) | ||
| Theorem | ostth1 27594* | - Lemma for ostth 27600: trivial case. (Not that the proof is trivial, but that we are proving that the function is trivial.) If 𝐹 is equal to 1 on the primes, then by complete induction and the multiplicative property abvmul 20779 of the absolute value, 𝐹 is equal to 1 on all the integers, and ostthlem1 27588 extends this to the other rational numbers. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) & ⊢ (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹‘𝑛) < 1) ⇒ ⊢ (𝜑 → 𝐹 = 𝐾) | ||
| Theorem | ostth2lem2 27595* | Lemma for ostth2 27598. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 1 < (𝐹‘𝑁)) & ⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ 𝑆 = ((log‘(𝐹‘𝑀)) / (log‘𝑀)) & ⊢ 𝑇 = if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ (0...((𝑀↑𝑋) − 1))) → (𝐹‘𝑌) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋))) | ||
| Theorem | ostth2lem3 27596* | Lemma for ostth2 27598. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 1 < (𝐹‘𝑁)) & ⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ 𝑆 = ((log‘(𝐹‘𝑀)) / (log‘𝑀)) & ⊢ 𝑇 = if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) & ⊢ 𝑈 = ((log‘𝑁) / (log‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ℕ) → (((𝐹‘𝑁) / (𝑇↑𝑐𝑈))↑𝑋) ≤ (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1)))) | ||
| Theorem | ostth2lem4 27597* | Lemma for ostth2 27598. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 1 < (𝐹‘𝑁)) & ⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ 𝑆 = ((log‘(𝐹‘𝑀)) / (log‘𝑀)) & ⊢ 𝑇 = if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) & ⊢ 𝑈 = ((log‘𝑁) / (log‘𝑀)) ⇒ ⊢ (𝜑 → (1 < (𝐹‘𝑀) ∧ 𝑅 ≤ 𝑆)) | ||
| Theorem | ostth2 27598* | - Lemma for ostth 27600: regular case. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 1 < (𝐹‘𝑁)) & ⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎))) | ||
| Theorem | ostth3 27599* | - Lemma for ostth 27600: p-adic case. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (𝐹‘𝑃) < 1) & ⊢ 𝑅 = -((log‘(𝐹‘𝑃)) / (log‘𝑃)) & ⊢ 𝑆 = if((𝐹‘𝑃) ≤ (𝐹‘𝑝), (𝐹‘𝑝), (𝐹‘𝑃)) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽‘𝑃)‘𝑦)↑𝑐𝑎))) | ||
| Theorem | ostth 27600* | Ostrowski's theorem, which classifies all absolute values on ℚ. Any such absolute value must either be the trivial absolute value 𝐾, a constant exponent 0 < 𝑎 ≤ 1 times the regular absolute value, or a positive exponent times the p-adic absolute value. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) ⇒ ⊢ (𝐹 ∈ 𝐴 ↔ (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+ ∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |