| Metamath
Proof Explorer Theorem List (p. 276 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | selbergs 27501* | Selberg's symmetry formula, using the definition of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) ⇒ ⊢ (𝑥 ∈ ℝ+ ↦ (((𝑆‘𝑥) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) | ||
| Theorem | selbergsb 27502* | Selberg's symmetry formula, using the definition of the Selberg function. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) ⇒ ⊢ ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1[,)+∞)(abs‘(((𝑆‘𝑥) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐 | ||
| Theorem | pntsval2 27503* | The Selberg function can be expressed using the convolution product of the von Mangoldt function with itself. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) ⇒ ⊢ (𝐴 ∈ ℝ → (𝑆‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))(((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))) | ||
| Theorem | pntrlog2bndlem1 27504* | The sum of selberg3r 27496 and selberg4r 27497. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) & ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆‘𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥)) ∈ ≤𝑂(1) | ||
| Theorem | pntrlog2bndlem2 27505* | Lemma for pntrlog2bnd 27511. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) & ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝐴 · 𝑦)) ⇒ ⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1)) | ||
| Theorem | pntrlog2bndlem3 27506* | Lemma for pntrlog2bnd 27511. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) & ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆‘𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆‘𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1)) | ||
| Theorem | pntrlog2bndlem4 27507* | Lemma for pntrlog2bnd 27511. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) & ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) ⇒ ⊢ (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑇‘𝑛) − (𝑇‘(𝑛 − 1)))))) / 𝑥)) ∈ ≤𝑂(1) | ||
| Theorem | pntrlog2bndlem5 27508* | Lemma for pntrlog2bnd 27511. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) & ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1)) | ||
| Theorem | pntrlog2bndlem6a 27509* | Lemma for pntrlog2bndlem6 27510. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) & ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) | ||
| Theorem | pntrlog2bndlem6 27510* | Lemma for pntrlog2bnd 27511. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.) |
| ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) & ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1)) | ||
| Theorem | pntrlog2bnd 27511* | A bound on 𝑅(𝑥)log↑2(𝑥). Equation 10.6.15 of [Shapiro], p. 431. (Contributed by Mario Carneiro, 1-Jun-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑐 ∈ ℝ+ ∀𝑥 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ 𝑐) | ||
| Theorem | pntpbnd1a 27512* | Lemma for pntpbnd 27515. (Contributed by Mario Carneiro, 11-Apr-2016.) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ 𝑋 = (exp‘(2 / 𝐸)) & ⊢ (𝜑 → 𝑌 ∈ (𝑋(,)+∞)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝑌 < 𝑁 ∧ 𝑁 ≤ (𝐾 · 𝑌))) & ⊢ (𝜑 → (abs‘(𝑅‘𝑁)) ≤ (abs‘((𝑅‘(𝑁 + 1)) − (𝑅‘𝑁)))) ⇒ ⊢ (𝜑 → (abs‘((𝑅‘𝑁) / 𝑁)) ≤ 𝐸) | ||
| Theorem | pntpbnd1 27513* | Lemma for pntpbnd 27515. (Contributed by Mario Carneiro, 11-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ 𝑋 = (exp‘(2 / 𝐸)) & ⊢ (𝜑 → 𝑌 ∈ (𝑋(,)+∞)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅‘𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴) & ⊢ 𝐶 = (𝐴 + 2) & ⊢ (𝜑 → 𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) & ⊢ (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦 ∧ 𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐸)) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅‘𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴) | ||
| Theorem | pntpbnd2 27514* | Lemma for pntpbnd 27515. (Contributed by Mario Carneiro, 11-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ 𝑋 = (exp‘(2 / 𝐸)) & ⊢ (𝜑 → 𝑌 ∈ (𝑋(,)+∞)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅‘𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴) & ⊢ 𝐶 = (𝐴 + 2) & ⊢ (𝜑 → 𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) & ⊢ (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦 ∧ 𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐸)) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | pntpbnd 27515* | Lemma for pnt 27541. Establish smallness of 𝑅 at a point. Lemma 10.6.1 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ ∃𝑐 ∈ ℝ+ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛 ∧ 𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅‘𝑛) / 𝑛)) ≤ 𝑒) | ||
| Theorem | pntibndlem1 27516 | Lemma for pntibnd 27520. (Contributed by Mario Carneiro, 10-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) ⇒ ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | ||
| Theorem | pntibndlem2a 27517* | Lemma for pntibndlem2 27518. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝐾 = (exp‘(𝐵 / (𝐸 / 2))) & ⊢ 𝐶 = ((2 · 𝐵) + (log‘2)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ (𝜑 → 𝑍 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ ((𝜑 ∧ 𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))) | ||
| Theorem | pntibndlem2 27518* | Lemma for pntibnd 27520. The main work, after eliminating all the quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝐾 = (exp‘(𝐵 / (𝐸 / 2))) & ⊢ 𝐶 = ((2 · 𝐵) + (log‘2)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ (𝜑 → 𝑍 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](2 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦 − 𝑥)) + (𝑇 · (𝑥 / (log‘𝑥))))) & ⊢ 𝑋 = ((exp‘(𝑇 / (𝐸 / 4))) + 𝑍) & ⊢ (𝜑 → 𝑀 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) & ⊢ (𝜑 → 𝑌 ∈ (𝑋(,)+∞)) & ⊢ (𝜑 → ((𝑌 < 𝑁 ∧ 𝑁 ≤ ((𝑀 / 2) · 𝑌)) ∧ (abs‘((𝑅‘𝑁) / 𝑁)) ≤ (𝐸 / 2))) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ ℝ+ ((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) | ||
| Theorem | pntibndlem3 27519* | Lemma for pntibnd 27520. Package up pntibndlem2 27518 in quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝐾 = (exp‘(𝐵 / (𝐸 / 2))) & ⊢ 𝐶 = ((2 · 𝐵) + (log‘2)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ (𝜑 → 𝑍 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖 ∧ 𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅‘𝑖) / 𝑖)) ≤ (𝐸 / 2))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) | ||
| Theorem | pntibnd 27520* | Lemma for pnt 27541. Establish smallness of 𝑅 on an interval. Lemma 10.6.2 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ ∃𝑐 ∈ ℝ+ ∃𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒) | ||
| Theorem | pntlemd 27521 | Lemma for pnt 27541. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝐴 is C^*, 𝐵 is c1, 𝐿 is λ, 𝐷 is c2, and 𝐹 is c3. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) ⇒ ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) | ||
| Theorem | pntlemc 27522* | Lemma for pnt 27541. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑈 is α, 𝐸 is ε, and 𝐾 is K. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) ⇒ ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) | ||
| Theorem | pntlema 27523* | Lemma for pnt 27541. Closure for the constants used in the proof. The mammoth expression 𝑊 is a number large enough to satisfy all the lower bounds needed for 𝑍. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑌 is x2, 𝑋 is x1, 𝐶 is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and 𝑊 is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) ⇒ ⊢ (𝜑 → 𝑊 ∈ ℝ+) | ||
| Theorem | pntlemb 27524* | Lemma for pnt 27541. Unpack all the lower bounds contained in 𝑊, in the form they will be used. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑍 is x. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) ⇒ ⊢ (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))))) | ||
| Theorem | pntlemg 27525* | Lemma for pnt 27541. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑀 is j^* and 𝑁 is ĵ. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) ⇒ ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀))) | ||
| Theorem | pntlemh 27526* | Lemma for pnt 27541. Bounds on the subintervals in the induction. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾↑𝐽) ∧ (𝐾↑𝐽) ≤ (√‘𝑍))) | ||
| Theorem | pntlemn 27527* | Lemma for pnt 27541. The "naive" base bound, which we will slightly improve. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) ⇒ ⊢ ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) · (log‘𝐽))) | ||
| Theorem | pntlemq 27528* | Lemma for pntlemj 27530. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝐽)))) & ⊢ (𝜑 → 𝑉 ∈ ℝ+) & ⊢ (𝜑 → (((𝐾↑𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾↑𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → 𝐽 ∈ (𝑀..^𝑁)) & ⊢ 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⇒ ⊢ (𝜑 → 𝐼 ⊆ 𝑂) | ||
| Theorem | pntlemr 27529* | Lemma for pntlemj 27530. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝐽)))) & ⊢ (𝜑 → 𝑉 ∈ ℝ+) & ⊢ (𝜑 → (((𝐾↑𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾↑𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → 𝐽 ∈ (𝑀..^𝑁)) & ⊢ 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⇒ ⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((♯‘𝐼) · ((𝑈 − 𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))) | ||
| Theorem | pntlemj 27530* | Lemma for pnt 27541. The induction step. Using pntibnd 27520, we find an interval in 𝐾↑𝐽...𝐾↑(𝐽 + 1) which is sufficiently large and has a much smaller value, 𝑅(𝑧) / 𝑧 ≤ 𝐸 (instead of our original bound 𝑅(𝑧) / 𝑧 ≤ 𝑈). (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝐽)))) & ⊢ (𝜑 → 𝑉 ∈ ℝ+) & ⊢ (𝜑 → (((𝐾↑𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾↑𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → 𝐽 ∈ (𝑀..^𝑁)) & ⊢ 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⇒ ⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ 𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) | ||
| Theorem | pntlemi 27531* | Lemma for pnt 27541. Eliminate some assumptions from pntlemj 27530. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝐽)))) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀..^𝑁)) → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ 𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) | ||
| Theorem | pntlemf 27532* | Lemma for pnt 27541. Add up the pieces in pntlemi 27531 to get an estimate slightly better than the naive lower bound 0. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) ⇒ ⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) | ||
| Theorem | pntlemk 27533* | Lemma for pnt 27541. Evaluate the naive part of the estimate. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) ⇒ ⊢ (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍))) | ||
| Theorem | pntlemo 27534* | Lemma for pnt 27541. Combine all the estimates to establish a smaller eventual bound on 𝑅(𝑍) / 𝑍. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶) ⇒ ⊢ (𝜑 → (abs‘((𝑅‘𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) | ||
| Theorem | pntleme 27535* | Lemma for pnt 27541. Package up pntlemo 27534 in quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) | ||
| Theorem | pntlem3 27536* | Lemma for pnt 27541. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 8-Apr-2016.) (Proof shortened by AV, 27-Sep-2020.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ 𝑇 = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡} & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1) | ||
| Theorem | pntlemp 27537* | Lemma for pnt 27541. Wrapping up more quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒)) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) | ||
| Theorem | pntleml 27538* | Lemma for pnt 27541. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒)) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1) | ||
| Theorem | pnt3 27539 | The Prime Number Theorem, version 3: the second Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.) |
| ⊢ (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1 | ||
| Theorem | pnt2 27540 | The Prime Number Theorem, version 2: the first Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.) |
| ⊢ (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 | ||
| Theorem | pnt 27541 | The Prime Number Theorem: the number of prime numbers less than 𝑥 tends asymptotically to 𝑥 / log(𝑥) as 𝑥 goes to infinity. This is Metamath 100 proof #5. (Contributed by Mario Carneiro, 1-Jun-2016.) |
| ⊢ (𝑥 ∈ (1(,)+∞) ↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1 | ||
| Theorem | abvcxp 27542* | Raising an absolute value to a power less than one yields another absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ ((𝐹‘𝑥)↑𝑐𝑆)) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝐺 ∈ 𝐴) | ||
| Theorem | padicfval 27543* | Value of the p-adic absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) ⇒ ⊢ (𝑃 ∈ ℙ → (𝐽‘𝑃) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥))))) | ||
| Theorem | padicval 27544* | Value of the p-adic absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝑋 ∈ ℚ) → ((𝐽‘𝑃)‘𝑋) = if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋)))) | ||
| Theorem | ostth2lem1 27545* | Lemma for ostth2 27564, although it is just a simple statement about exponentials which does not involve any specifics of ostth2 27564. If a power is upper bounded by a linear term, the exponent must be less than one. Or in big-O notation, 𝑛 ∈ 𝑜(𝐴↑𝑛) for any 1 < 𝐴. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴↑𝑛) ≤ (𝑛 · 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ≤ 1) | ||
| Theorem | qrngbas 27546 | The base set of the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ ℚ = (Base‘𝑄) | ||
| Theorem | qdrng 27547 | The rationals form a division ring. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ 𝑄 ∈ DivRing | ||
| Theorem | qrng0 27548 | The zero element of the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ 0 = (0g‘𝑄) | ||
| Theorem | qrng1 27549 | The unity element of the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ 1 = (1r‘𝑄) | ||
| Theorem | qrngneg 27550 | The additive inverse in the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ (𝑋 ∈ ℚ → ((invg‘𝑄)‘𝑋) = -𝑋) | ||
| Theorem | qrngdiv 27551 | The division operation in the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ ((𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ ∧ 𝑌 ≠ 0) → (𝑋(/r‘𝑄)𝑌) = (𝑋 / 𝑌)) | ||
| Theorem | qabvle 27552 | By using induction on 𝑁, we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐹‘𝑁) ≤ 𝑁) | ||
| Theorem | qabvexp 27553 | Induct the product rule abvmul 20724 to find the absolute value of a power. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑀↑𝑁)) = ((𝐹‘𝑀)↑𝑁)) | ||
| Theorem | ostthlem1 27554* | Lemma for ostth 27566. If two absolute values agree on the positive integers greater than one, then they agree for all rational numbers and thus are equal as functions. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘2)) → (𝐹‘𝑛) = (𝐺‘𝑛)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | ostthlem2 27555* | Lemma for ostth 27566. Refine ostthlem1 27554 so that it is sufficient to only show equality on the primes. (Contributed by Mario Carneiro, 9-Sep-2014.) (Revised by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → (𝐹‘𝑝) = (𝐺‘𝑝)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | qabsabv 27556 | The regular absolute value function on the rationals is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) ⇒ ⊢ (abs ↾ ℚ) ∈ 𝐴 | ||
| Theorem | padicabv 27557* | The p-adic absolute value (with arbitrary base) is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐹 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥)))) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐹 ∈ 𝐴) | ||
| Theorem | padicabvf 27558* | The p-adic absolute value is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) ⇒ ⊢ 𝐽:ℙ⟶𝐴 | ||
| Theorem | padicabvcxp 27559* | All positive powers of the p-adic absolute value are absolute values. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽‘𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴) | ||
| Theorem | ostth1 27560* | - Lemma for ostth 27566: trivial case. (Not that the proof is trivial, but that we are proving that the function is trivial.) If 𝐹 is equal to 1 on the primes, then by complete induction and the multiplicative property abvmul 20724 of the absolute value, 𝐹 is equal to 1 on all the integers, and ostthlem1 27554 extends this to the other rational numbers. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) & ⊢ (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹‘𝑛) < 1) ⇒ ⊢ (𝜑 → 𝐹 = 𝐾) | ||
| Theorem | ostth2lem2 27561* | Lemma for ostth2 27564. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 1 < (𝐹‘𝑁)) & ⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ 𝑆 = ((log‘(𝐹‘𝑀)) / (log‘𝑀)) & ⊢ 𝑇 = if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ (0...((𝑀↑𝑋) − 1))) → (𝐹‘𝑌) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋))) | ||
| Theorem | ostth2lem3 27562* | Lemma for ostth2 27564. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 1 < (𝐹‘𝑁)) & ⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ 𝑆 = ((log‘(𝐹‘𝑀)) / (log‘𝑀)) & ⊢ 𝑇 = if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) & ⊢ 𝑈 = ((log‘𝑁) / (log‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ℕ) → (((𝐹‘𝑁) / (𝑇↑𝑐𝑈))↑𝑋) ≤ (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1)))) | ||
| Theorem | ostth2lem4 27563* | Lemma for ostth2 27564. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 1 < (𝐹‘𝑁)) & ⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ 𝑆 = ((log‘(𝐹‘𝑀)) / (log‘𝑀)) & ⊢ 𝑇 = if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) & ⊢ 𝑈 = ((log‘𝑁) / (log‘𝑀)) ⇒ ⊢ (𝜑 → (1 < (𝐹‘𝑀) ∧ 𝑅 ≤ 𝑆)) | ||
| Theorem | ostth2 27564* | - Lemma for ostth 27566: regular case. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 1 < (𝐹‘𝑁)) & ⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎))) | ||
| Theorem | ostth3 27565* | - Lemma for ostth 27566: p-adic case. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (𝐹‘𝑃) < 1) & ⊢ 𝑅 = -((log‘(𝐹‘𝑃)) / (log‘𝑃)) & ⊢ 𝑆 = if((𝐹‘𝑃) ≤ (𝐹‘𝑝), (𝐹‘𝑝), (𝐹‘𝑃)) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽‘𝑃)‘𝑦)↑𝑐𝑎))) | ||
| Theorem | ostth 27566* | Ostrowski's theorem, which classifies all absolute values on ℚ. Any such absolute value must either be the trivial absolute value 𝐾, a constant exponent 0 < 𝑎 ≤ 1 times the regular absolute value, or a positive exponent times the p-adic absolute value. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) ⇒ ⊢ (𝐹 ∈ 𝐴 ↔ (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+ ∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)))) | ||
The surreal numbers can be represented in several equivalent ways. In [Alling], Norman Alling made this notion explicit by giving a set of axioms that all representations admit, then proving that there is an order and birthday preserving bijection between any systems that satisfy these axioms. In this section, we start with the definition of surreal numbers given in [Gonshor] and derive Alling's axioms. After deriving them we no longer refer to the explicit definition of surreals. In particular, we never take advantage of the fact that the empty set is a surreal number under our definition. | ||
| Syntax | csur 27567 | Declare the class of all surreal numbers (see df-no 27570). |
| class No | ||
| Syntax | cslt 27568 | Declare the less-than relation over surreal numbers (see df-slt 27571). |
| class <s | ||
| Syntax | cbday 27569 | Declare the birthday function for surreal numbers (see df-bday 27572). |
| class bday | ||
| Definition | df-no 27570* |
Define the class of surreal numbers. The surreal numbers are a proper
class of numbers developed by John H. Conway and introduced by Donald
Knuth in 1975. They form a proper class into which all ordered fields
can be embedded. The approach we take to defining them was first
introduced by Hary Gonshor, and is based on the conception of a
"sign
expansion" of a surreal number. We define the surreals as
ordinal-indexed sequences of 1o and
2o, analogous to Gonshor's
( − ) and ( + ).
After introducing this definition, we will abstract away from it using axioms that Norman Alling developed in "Foundations of Analysis over Surreal Number Fields." This is done in an effort to be agnostic towards the exact implementation of surreals. (Contributed by Scott Fenton, 9-Jun-2011.) |
| ⊢ No = {𝑓 ∣ ∃𝑎 ∈ On 𝑓:𝑎⟶{1o, 2o}} | ||
| Definition | df-slt 27571* | Next, we introduce surreal less-than, a comparison relation over the surreals by lexicographically ordering them. (Contributed by Scott Fenton, 9-Jun-2011.) |
| ⊢ <s = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ No ∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝑔‘𝑥)))} | ||
| Definition | df-bday 27572 | Finally, we introduce the birthday function. This function maps each surreal to an ordinal. In our implementation, this is the domain of the sign function. The important properties of this function are established later. (Contributed by Scott Fenton, 11-Jun-2011.) |
| ⊢ bday = (𝑥 ∈ No ↦ dom 𝑥) | ||
| Theorem | elno 27573* | Membership in the surreals. (Contributed by Scott Fenton, 11-Jun-2011.) (Proof shortened by SF, 14-Apr-2012.) Avoid ax-rep 5221. (Revised by SN, 5-Jun-2025.) |
| ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | ||
| Theorem | elnoOLD 27574* | Obsolete version of elno 27573 as of 5-Jun-2025. (Contributed by Scott Fenton, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | ||
| Theorem | sltval 27575* | The value of the surreal less-than relation. (Contributed by Scott Fenton, 14-Jun-2011.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝐵‘𝑥)))) | ||
| Theorem | bdayval 27576 | The value of the birthday function within the surreals. (Contributed by Scott Fenton, 14-Jun-2011.) |
| ⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) | ||
| Theorem | nofun 27577 | A surreal is a function. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ (𝐴 ∈ No → Fun 𝐴) | ||
| Theorem | nodmon 27578 | The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | ||
| Theorem | norn 27579 | The range of a surreal is a subset of the surreal signs. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) | ||
| Theorem | nofnbday 27580 | A surreal is a function over its birthday. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ (𝐴 ∈ No → 𝐴 Fn ( bday ‘𝐴)) | ||
| Theorem | nodmord 27581 | The domain of a surreal has the ordinal property. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ (𝐴 ∈ No → Ord dom 𝐴) | ||
| Theorem | elno2 27582 | An alternative condition for membership in No . (Contributed by Scott Fenton, 21-Mar-2012.) |
| ⊢ (𝐴 ∈ No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o})) | ||
| Theorem | elno3 27583 | Another condition for membership in No . (Contributed by Scott Fenton, 14-Apr-2012.) |
| ⊢ (𝐴 ∈ No ↔ (𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On)) | ||
| Theorem | sltval2 27584* | Alternate expression for surreal less-than. Two surreals obey surreal less-than iff they obey the sign ordering at the first place they differ. (Contributed by Scott Fenton, 17-Jun-2011.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}))) | ||
| Theorem | nofv 27585 | The function value of a surreal is either a sign or the empty set. (Contributed by Scott Fenton, 22-Jun-2011.) |
| ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) | ||
| Theorem | nosgnn0 27586 | ∅ is not a surreal sign. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ ¬ ∅ ∈ {1o, 2o} | ||
| Theorem | nosgnn0i 27587 | If 𝑋 is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011.) |
| ⊢ 𝑋 ∈ {1o, 2o} ⇒ ⊢ ∅ ≠ 𝑋 | ||
| Theorem | noreson 27588 | The restriction of a surreal to an ordinal is still a surreal. (Contributed by Scott Fenton, 4-Sep-2011.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ On) → (𝐴 ↾ 𝐵) ∈ No ) | ||
| Theorem | sltintdifex 27589* | If 𝐴 <s 𝐵, then the intersection of all the ordinals that have differing signs in 𝐴 and 𝐵 exists. (Contributed by Scott Fenton, 22-Feb-2012.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V)) | ||
| Theorem | sltres 27590 | If the restrictions of two surreals to a given ordinal obey surreal less-than, then so do the two surreals themselves. (Contributed by Scott Fenton, 4-Sep-2011.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) → ((𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋) → 𝐴 <s 𝐵)) | ||
| Theorem | noxp1o 27591 | The Cartesian product of an ordinal and {1o} is a surreal. (Contributed by Scott Fenton, 12-Jun-2011.) |
| ⊢ (𝐴 ∈ On → (𝐴 × {1o}) ∈ No ) | ||
| Theorem | noseponlem 27592* | Lemma for nosepon 27593. Consider a case of proper subset domain. (Contributed by Scott Fenton, 21-Sep-2020.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ ∀𝑥 ∈ On (𝐴‘𝑥) = (𝐵‘𝑥)) | ||
| Theorem | nosepon 27593* | Given two unequal surreals, the minimal ordinal at which they differ is an ordinal. (Contributed by Scott Fenton, 21-Sep-2020.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ On) | ||
| Theorem | noextend 27594 | Extending a surreal by one sign value results in a new surreal. (Contributed by Scott Fenton, 22-Nov-2021.) |
| ⊢ 𝑋 ∈ {1o, 2o} ⇒ ⊢ (𝐴 ∈ No → (𝐴 ∪ {〈dom 𝐴, 𝑋〉}) ∈ No ) | ||
| Theorem | noextendseq 27595 | Extend a surreal by a sequence of ordinals. (Contributed by Scott Fenton, 30-Nov-2021.) |
| ⊢ 𝑋 ∈ {1o, 2o} ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ On) → (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ∈ No ) | ||
| Theorem | noextenddif 27596* | Calculate the place where a surreal and its extension differ. (Contributed by Scott Fenton, 22-Nov-2021.) |
| ⊢ 𝑋 ∈ {1o, 2o} ⇒ ⊢ (𝐴 ∈ No → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑥)} = dom 𝐴) | ||
| Theorem | noextendlt 27597 | Extending a surreal with a negative sign results in a smaller surreal. (Contributed by Scott Fenton, 22-Nov-2021.) |
| ⊢ (𝐴 ∈ No → (𝐴 ∪ {〈dom 𝐴, 1o〉}) <s 𝐴) | ||
| Theorem | noextendgt 27598 | Extending a surreal with a positive sign results in a bigger surreal. (Contributed by Scott Fenton, 22-Nov-2021.) |
| ⊢ (𝐴 ∈ No → 𝐴 <s (𝐴 ∪ {〈dom 𝐴, 2o〉})) | ||
| Theorem | nolesgn2o 27599 | Given 𝐴 less-than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 2o, then 𝐵(𝑋) = 2o. (Contributed by Scott Fenton, 6-Dec-2021.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐵‘𝑋) = 2o) | ||
| Theorem | nolesgn2ores 27600 | Given 𝐴 less-than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 2o, then (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋). (Contributed by Scott Fenton, 6-Dec-2021.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |