| Metamath
Proof Explorer Theorem List (p. 276 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | pntibndlem2a 27501* | Lemma for pntibndlem2 27502. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝐾 = (exp‘(𝐵 / (𝐸 / 2))) & ⊢ 𝐶 = ((2 · 𝐵) + (log‘2)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ (𝜑 → 𝑍 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ ((𝜑 ∧ 𝑢 ∈ (𝑁[,]((1 + (𝐿 · 𝐸)) · 𝑁))) → (𝑢 ∈ ℝ ∧ 𝑁 ≤ 𝑢 ∧ 𝑢 ≤ ((1 + (𝐿 · 𝐸)) · 𝑁))) | ||
| Theorem | pntibndlem2 27502* | Lemma for pntibnd 27504. The main work, after eliminating all the quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝐾 = (exp‘(𝐵 / (𝐸 / 2))) & ⊢ 𝐶 = ((2 · 𝐵) + (log‘2)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ (𝜑 → 𝑍 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ (1(,)+∞)∀𝑦 ∈ (𝑥[,](2 · 𝑥))((ψ‘𝑦) − (ψ‘𝑥)) ≤ ((2 · (𝑦 − 𝑥)) + (𝑇 · (𝑥 / (log‘𝑥))))) & ⊢ 𝑋 = ((exp‘(𝑇 / (𝐸 / 4))) + 𝑍) & ⊢ (𝜑 → 𝑀 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)) & ⊢ (𝜑 → 𝑌 ∈ (𝑋(,)+∞)) & ⊢ (𝜑 → ((𝑌 < 𝑁 ∧ 𝑁 ≤ ((𝑀 / 2) · 𝑌)) ∧ (abs‘((𝑅‘𝑁) / 𝑁)) ≤ (𝐸 / 2))) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ ℝ+ ((𝑌 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑀 · 𝑌)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) | ||
| Theorem | pntibndlem3 27503* | Lemma for pntibnd 27504. Package up pntibndlem2 27502 in quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ 𝐿 = ((1 / 4) / (𝐴 + 3)) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝐾 = (exp‘(𝐵 / (𝐸 / 2))) & ⊢ 𝐶 = ((2 · 𝐵) + (log‘2)) & ⊢ (𝜑 → 𝐸 ∈ (0(,)1)) & ⊢ (𝜑 → 𝑍 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑚 ∈ (𝐾[,)+∞)∀𝑣 ∈ (𝑍(,)+∞)∃𝑖 ∈ ℕ ((𝑣 < 𝑖 ∧ 𝑖 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅‘𝑖) / 𝑖)) ≤ (𝐸 / 2))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) | ||
| Theorem | pntibnd 27504* | Lemma for pnt 27525. Establish smallness of 𝑅 on an interval. Lemma 10.6.2 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) ⇒ ⊢ ∃𝑐 ∈ ℝ+ ∃𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒) | ||
| Theorem | pntlemd 27505 | Lemma for pnt 27525. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝐴 is C^*, 𝐵 is c1, 𝐿 is λ, 𝐷 is c2, and 𝐹 is c3. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) ⇒ ⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+)) | ||
| Theorem | pntlemc 27506* | Lemma for pnt 27525. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑈 is α, 𝐸 is ε, and 𝐾 is K. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) ⇒ ⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈ ℝ+))) | ||
| Theorem | pntlema 27507* | Lemma for pnt 27525. Closure for the constants used in the proof. The mammoth expression 𝑊 is a number large enough to satisfy all the lower bounds needed for 𝑍. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑌 is x2, 𝑋 is x1, 𝐶 is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and 𝑊 is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) ⇒ ⊢ (𝜑 → 𝑊 ∈ ℝ+) | ||
| Theorem | pntlemb 27508* | Lemma for pnt 27525. Unpack all the lower bounds contained in 𝑊, in the form they will be used. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑍 is x. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) ⇒ ⊢ (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))))) | ||
| Theorem | pntlemg 27509* | Lemma for pnt 27525. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑀 is j^* and 𝑁 is ĵ. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) ⇒ ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀))) | ||
| Theorem | pntlemh 27510* | Lemma for pnt 27525. Bounds on the subintervals in the induction. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾↑𝐽) ∧ (𝐾↑𝐽) ≤ (√‘𝑍))) | ||
| Theorem | pntlemn 27511* | Lemma for pnt 27525. The "naive" base bound, which we will slightly improve. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) ⇒ ⊢ ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) · (log‘𝐽))) | ||
| Theorem | pntlemq 27512* | Lemma for pntlemj 27514. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝐽)))) & ⊢ (𝜑 → 𝑉 ∈ ℝ+) & ⊢ (𝜑 → (((𝐾↑𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾↑𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → 𝐽 ∈ (𝑀..^𝑁)) & ⊢ 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⇒ ⊢ (𝜑 → 𝐼 ⊆ 𝑂) | ||
| Theorem | pntlemr 27513* | Lemma for pntlemj 27514. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝐽)))) & ⊢ (𝜑 → 𝑉 ∈ ℝ+) & ⊢ (𝜑 → (((𝐾↑𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾↑𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → 𝐽 ∈ (𝑀..^𝑁)) & ⊢ 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⇒ ⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ ((♯‘𝐼) · ((𝑈 − 𝐸) · ((log‘(𝑍 / 𝑉)) / (𝑍 / 𝑉))))) | ||
| Theorem | pntlemj 27514* | Lemma for pnt 27525. The induction step. Using pntibnd 27504, we find an interval in 𝐾↑𝐽...𝐾↑(𝐽 + 1) which is sufficiently large and has a much smaller value, 𝑅(𝑧) / 𝑧 ≤ 𝐸 (instead of our original bound 𝑅(𝑧) / 𝑧 ≤ 𝑈). (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝐽)))) & ⊢ (𝜑 → 𝑉 ∈ ℝ+) & ⊢ (𝜑 → (((𝐾↑𝐽) < 𝑉 ∧ ((1 + (𝐿 · 𝐸)) · 𝑉) < (𝐾 · (𝐾↑𝐽))) ∧ ∀𝑢 ∈ (𝑉[,]((1 + (𝐿 · 𝐸)) · 𝑉))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → 𝐽 ∈ (𝑀..^𝑁)) & ⊢ 𝐼 = (((⌊‘(𝑍 / ((1 + (𝐿 · 𝐸)) · 𝑉))) + 1)...(⌊‘(𝑍 / 𝑉))) ⇒ ⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ 𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) | ||
| Theorem | pntlemi 27515* | Lemma for pnt 27525. Eliminate some assumptions from pntlemj 27514. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ 𝑂 = (((⌊‘(𝑍 / (𝐾↑(𝐽 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝐽)))) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ (𝑀..^𝑁)) → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ 𝑂 (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) | ||
| Theorem | pntlemf 27516* | Lemma for pnt 27525. Add up the pieces in pntlemi 27515 to get an estimate slightly better than the naive lower bound 0. (Contributed by Mario Carneiro, 13-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) ⇒ ⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) | ||
| Theorem | pntlemk 27517* | Lemma for pnt 27525. Evaluate the naive part of the estimate. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) ⇒ ⊢ (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍))) | ||
| Theorem | pntlemo 27518* | Lemma for pnt 27525. Combine all the estimates to establish a smaller eventual bound on 𝑅(𝑍) / 𝑍. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) & ⊢ 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) & ⊢ 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶) ⇒ ⊢ (𝜑 → (abs‘((𝑅‘𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) | ||
| Theorem | pntleme 27519* | Lemma for pnt 27525. Package up pntlemo 27518 in quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) & ⊢ (𝜑 → ∀𝑘 ∈ (𝐾[,)+∞)∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) & ⊢ (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅‘𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) | ||
| Theorem | pntlem3 27520* | Lemma for pnt 27525. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 8-Apr-2016.) (Proof shortened by AV, 27-Sep-2020.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ 𝑇 = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡} & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1) | ||
| Theorem | pntlemp 27521* | Lemma for pnt 27525. Wrapping up more quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒)) & ⊢ (𝜑 → 𝑈 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ 𝐸 = (𝑈 / 𝐷) & ⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) & ⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌)) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅‘𝑣) / 𝑣)) ≤ (𝑈 − (𝐹 · (𝑈↑3)))) | ||
| Theorem | pntleml 27522* | Lemma for pnt 27525. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 14-Apr-2016.) |
| ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐿 ∈ (0(,)1)) & ⊢ 𝐷 = (𝐴 + 1) & ⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) & ⊢ (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+ ∀𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝑒)) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1) | ||
| Theorem | pnt3 27523 | The Prime Number Theorem, version 3: the second Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.) |
| ⊢ (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1 | ||
| Theorem | pnt2 27524 | The Prime Number Theorem, version 2: the first Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.) |
| ⊢ (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ⇝𝑟 1 | ||
| Theorem | pnt 27525 | The Prime Number Theorem: the number of prime numbers less than 𝑥 tends asymptotically to 𝑥 / log(𝑥) as 𝑥 goes to infinity. This is Metamath 100 proof #5. (Contributed by Mario Carneiro, 1-Jun-2016.) |
| ⊢ (𝑥 ∈ (1(,)+∞) ↦ ((π‘𝑥) / (𝑥 / (log‘𝑥)))) ⇝𝑟 1 | ||
| Theorem | abvcxp 27526* | Raising an absolute value to a power less than one yields another absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ ((𝐹‘𝑥)↑𝑐𝑆)) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑆 ∈ (0(,]1)) → 𝐺 ∈ 𝐴) | ||
| Theorem | padicfval 27527* | Value of the p-adic absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) ⇒ ⊢ (𝑃 ∈ ℙ → (𝐽‘𝑃) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥))))) | ||
| Theorem | padicval 27528* | Value of the p-adic absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝑋 ∈ ℚ) → ((𝐽‘𝑃)‘𝑋) = if(𝑋 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑋)))) | ||
| Theorem | ostth2lem1 27529* | Lemma for ostth2 27548, although it is just a simple statement about exponentials which does not involve any specifics of ostth2 27548. If a power is upper bounded by a linear term, the exponent must be less than one. Or in big-O notation, 𝑛 ∈ 𝑜(𝐴↑𝑛) for any 1 < 𝐴. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴↑𝑛) ≤ (𝑛 · 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ≤ 1) | ||
| Theorem | qrngbas 27530 | The base set of the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ ℚ = (Base‘𝑄) | ||
| Theorem | qdrng 27531 | The rationals form a division ring. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ 𝑄 ∈ DivRing | ||
| Theorem | qrng0 27532 | The zero element of the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ 0 = (0g‘𝑄) | ||
| Theorem | qrng1 27533 | The unity element of the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ 1 = (1r‘𝑄) | ||
| Theorem | qrngneg 27534 | The additive inverse in the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ (𝑋 ∈ ℚ → ((invg‘𝑄)‘𝑋) = -𝑋) | ||
| Theorem | qrngdiv 27535 | The division operation in the field of rationals. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) ⇒ ⊢ ((𝑋 ∈ ℚ ∧ 𝑌 ∈ ℚ ∧ 𝑌 ≠ 0) → (𝑋(/r‘𝑄)𝑌) = (𝑋 / 𝑌)) | ||
| Theorem | qabvle 27536 | By using induction on 𝑁, we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐹‘𝑁) ≤ 𝑁) | ||
| Theorem | qabvexp 27537 | Induct the product rule abvmul 20730 to find the absolute value of a power. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑀↑𝑁)) = ((𝐹‘𝑀)↑𝑁)) | ||
| Theorem | ostthlem1 27538* | Lemma for ostth 27550. If two absolute values agree on the positive integers greater than one, then they agree for all rational numbers and thus are equal as functions. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘2)) → (𝐹‘𝑛) = (𝐺‘𝑛)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | ostthlem2 27539* | Lemma for ostth 27550. Refine ostthlem1 27538 so that it is sufficient to only show equality on the primes. (Contributed by Mario Carneiro, 9-Sep-2014.) (Revised by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑝 ∈ ℙ) → (𝐹‘𝑝) = (𝐺‘𝑝)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | qabsabv 27540 | The regular absolute value function on the rationals is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) ⇒ ⊢ (abs ↾ ℚ) ∈ 𝐴 | ||
| Theorem | padicabv 27541* | The p-adic absolute value (with arbitrary base) is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐹 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥)))) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐹 ∈ 𝐴) | ||
| Theorem | padicabvf 27542* | The p-adic absolute value is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) ⇒ ⊢ 𝐽:ℙ⟶𝐴 | ||
| Theorem | padicabvcxp 27543* | All positive powers of the p-adic absolute value are absolute values. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽‘𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴) | ||
| Theorem | ostth1 27544* | - Lemma for ostth 27550: trivial case. (Not that the proof is trivial, but that we are proving that the function is trivial.) If 𝐹 is equal to 1 on the primes, then by complete induction and the multiplicative property abvmul 20730 of the absolute value, 𝐹 is equal to 1 on all the integers, and ostthlem1 27538 extends this to the other rational numbers. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) & ⊢ (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹‘𝑛) < 1) ⇒ ⊢ (𝜑 → 𝐹 = 𝐾) | ||
| Theorem | ostth2lem2 27545* | Lemma for ostth2 27548. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 1 < (𝐹‘𝑁)) & ⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ 𝑆 = ((log‘(𝐹‘𝑀)) / (log‘𝑀)) & ⊢ 𝑇 = if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ (0...((𝑀↑𝑋) − 1))) → (𝐹‘𝑌) ≤ ((𝑀 · 𝑋) · (𝑇↑𝑋))) | ||
| Theorem | ostth2lem3 27546* | Lemma for ostth2 27548. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 1 < (𝐹‘𝑁)) & ⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ 𝑆 = ((log‘(𝐹‘𝑀)) / (log‘𝑀)) & ⊢ 𝑇 = if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) & ⊢ 𝑈 = ((log‘𝑁) / (log‘𝑀)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ℕ) → (((𝐹‘𝑁) / (𝑇↑𝑐𝑈))↑𝑋) ≤ (𝑋 · ((𝑀 · 𝑇) · (𝑈 + 1)))) | ||
| Theorem | ostth2lem4 27547* | Lemma for ostth2 27548. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 1 < (𝐹‘𝑁)) & ⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ 𝑆 = ((log‘(𝐹‘𝑀)) / (log‘𝑀)) & ⊢ 𝑇 = if((𝐹‘𝑀) ≤ 1, 1, (𝐹‘𝑀)) & ⊢ 𝑈 = ((log‘𝑁) / (log‘𝑀)) ⇒ ⊢ (𝜑 → (1 < (𝐹‘𝑀) ∧ 𝑅 ≤ 𝑆)) | ||
| Theorem | ostth2 27548* | - Lemma for ostth 27550: regular case. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 1 < (𝐹‘𝑁)) & ⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎))) | ||
| Theorem | ostth3 27549* | - Lemma for ostth 27550: p-adic case. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (𝐹‘𝑃) < 1) & ⊢ 𝑅 = -((log‘(𝐹‘𝑃)) / (log‘𝑃)) & ⊢ 𝑆 = if((𝐹‘𝑃) ≤ (𝐹‘𝑝), (𝐹‘𝑝), (𝐹‘𝑃)) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽‘𝑃)‘𝑦)↑𝑐𝑎))) | ||
| Theorem | ostth 27550* | Ostrowski's theorem, which classifies all absolute values on ℚ. Any such absolute value must either be the trivial absolute value 𝐾, a constant exponent 0 < 𝑎 ≤ 1 times the regular absolute value, or a positive exponent times the p-adic absolute value. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝑄 = (ℂfld ↾s ℚ) & ⊢ 𝐴 = (AbsVal‘𝑄) & ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) & ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) ⇒ ⊢ (𝐹 ∈ 𝐴 ↔ (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+ ∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)))) | ||
The surreal numbers can be represented in several equivalent ways. In [Alling], Norman Alling made this notion explicit by giving a set of axioms that all representations admit, then proving that there is an order and birthday preserving bijection between any systems that satisfy these axioms. In this section, we start with the definition of surreal numbers given in [Gonshor] and derive Alling's axioms. After deriving them we no longer refer to the explicit definition of surreals. In particular, we never take advantage of the fact that the empty set is a surreal number under our definition. | ||
| Syntax | csur 27551 | Declare the class of all surreal numbers (see df-no 27554). |
| class No | ||
| Syntax | cslt 27552 | Declare the less-than relation over surreal numbers (see df-slt 27555). |
| class <s | ||
| Syntax | cbday 27553 | Declare the birthday function for surreal numbers (see df-bday 27556). |
| class bday | ||
| Definition | df-no 27554* |
Define the class of surreal numbers. The surreal numbers are a proper
class of numbers developed by John H. Conway and introduced by Donald
Knuth in 1975. They form a proper class into which all ordered fields
can be embedded. The approach we take to defining them was first
introduced by Hary Gonshor, and is based on the conception of a
"sign
expansion" of a surreal number. We define the surreals as
ordinal-indexed sequences of 1o and
2o, analogous to Gonshor's
( − ) and ( + ).
After introducing this definition, we will abstract away from it using axioms that Norman Alling developed in "Foundations of Analysis over Surreal Number Fields." This is done in an effort to be agnostic towards the exact implementation of surreals. (Contributed by Scott Fenton, 9-Jun-2011.) |
| ⊢ No = {𝑓 ∣ ∃𝑎 ∈ On 𝑓:𝑎⟶{1o, 2o}} | ||
| Definition | df-slt 27555* | Next, we introduce surreal less-than, a comparison relation over the surreals by lexicographically ordering them. (Contributed by Scott Fenton, 9-Jun-2011.) |
| ⊢ <s = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ No ∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝑔‘𝑥)))} | ||
| Definition | df-bday 27556 | Finally, we introduce the birthday function. This function maps each surreal to an ordinal. In our implementation, this is the domain of the sign function. The important properties of this function are established later. (Contributed by Scott Fenton, 11-Jun-2011.) |
| ⊢ bday = (𝑥 ∈ No ↦ dom 𝑥) | ||
| Theorem | elno 27557* | Membership in the surreals. (Contributed by Scott Fenton, 11-Jun-2011.) (Proof shortened by SF, 14-Apr-2012.) Avoid ax-rep 5234. (Revised by SN, 5-Jun-2025.) |
| ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | ||
| Theorem | elnoOLD 27558* | Obsolete version of elno 27557 as of 5-Jun-2025. (Contributed by Scott Fenton, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | ||
| Theorem | sltval 27559* | The value of the surreal less-than relation. (Contributed by Scott Fenton, 14-Jun-2011.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝐵‘𝑥)))) | ||
| Theorem | bdayval 27560 | The value of the birthday function within the surreals. (Contributed by Scott Fenton, 14-Jun-2011.) |
| ⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) | ||
| Theorem | nofun 27561 | A surreal is a function. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ (𝐴 ∈ No → Fun 𝐴) | ||
| Theorem | nodmon 27562 | The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | ||
| Theorem | norn 27563 | The range of a surreal is a subset of the surreal signs. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1o, 2o}) | ||
| Theorem | nofnbday 27564 | A surreal is a function over its birthday. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ (𝐴 ∈ No → 𝐴 Fn ( bday ‘𝐴)) | ||
| Theorem | nodmord 27565 | The domain of a surreal has the ordinal property. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ (𝐴 ∈ No → Ord dom 𝐴) | ||
| Theorem | elno2 27566 | An alternative condition for membership in No . (Contributed by Scott Fenton, 21-Mar-2012.) |
| ⊢ (𝐴 ∈ No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1o, 2o})) | ||
| Theorem | elno3 27567 | Another condition for membership in No . (Contributed by Scott Fenton, 14-Apr-2012.) |
| ⊢ (𝐴 ∈ No ↔ (𝐴:dom 𝐴⟶{1o, 2o} ∧ dom 𝐴 ∈ On)) | ||
| Theorem | sltval2 27568* | Alternate expression for surreal less-than. Two surreals obey surreal less-than iff they obey the sign ordering at the first place they differ. (Contributed by Scott Fenton, 17-Jun-2011.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 ↔ (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}))) | ||
| Theorem | nofv 27569 | The function value of a surreal is either a sign or the empty set. (Contributed by Scott Fenton, 22-Jun-2011.) |
| ⊢ (𝐴 ∈ No → ((𝐴‘𝑋) = ∅ ∨ (𝐴‘𝑋) = 1o ∨ (𝐴‘𝑋) = 2o)) | ||
| Theorem | nosgnn0 27570 | ∅ is not a surreal sign. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ ¬ ∅ ∈ {1o, 2o} | ||
| Theorem | nosgnn0i 27571 | If 𝑋 is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011.) |
| ⊢ 𝑋 ∈ {1o, 2o} ⇒ ⊢ ∅ ≠ 𝑋 | ||
| Theorem | noreson 27572 | The restriction of a surreal to an ordinal is still a surreal. (Contributed by Scott Fenton, 4-Sep-2011.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ On) → (𝐴 ↾ 𝐵) ∈ No ) | ||
| Theorem | sltintdifex 27573* | If 𝐴 <s 𝐵, then the intersection of all the ordinals that have differing signs in 𝐴 and 𝐵 exists. (Contributed by Scott Fenton, 22-Feb-2012.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 <s 𝐵 → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ V)) | ||
| Theorem | sltres 27574 | If the restrictions of two surreals to a given ordinal obey surreal less-than, then so do the two surreals themselves. (Contributed by Scott Fenton, 4-Sep-2011.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) → ((𝐴 ↾ 𝑋) <s (𝐵 ↾ 𝑋) → 𝐴 <s 𝐵)) | ||
| Theorem | noxp1o 27575 | The Cartesian product of an ordinal and {1o} is a surreal. (Contributed by Scott Fenton, 12-Jun-2011.) |
| ⊢ (𝐴 ∈ On → (𝐴 × {1o}) ∈ No ) | ||
| Theorem | noseponlem 27576* | Lemma for nosepon 27577. Consider a case of proper subset domain. (Contributed by Scott Fenton, 21-Sep-2020.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ ∀𝑥 ∈ On (𝐴‘𝑥) = (𝐵‘𝑥)) | ||
| Theorem | nosepon 27577* | Given two unequal surreals, the minimal ordinal at which they differ is an ordinal. (Contributed by Scott Fenton, 21-Sep-2020.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ On) | ||
| Theorem | noextend 27578 | Extending a surreal by one sign value results in a new surreal. (Contributed by Scott Fenton, 22-Nov-2021.) |
| ⊢ 𝑋 ∈ {1o, 2o} ⇒ ⊢ (𝐴 ∈ No → (𝐴 ∪ {〈dom 𝐴, 𝑋〉}) ∈ No ) | ||
| Theorem | noextendseq 27579 | Extend a surreal by a sequence of ordinals. (Contributed by Scott Fenton, 30-Nov-2021.) |
| ⊢ 𝑋 ∈ {1o, 2o} ⇒ ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ On) → (𝐴 ∪ ((𝐵 ∖ dom 𝐴) × {𝑋})) ∈ No ) | ||
| Theorem | noextenddif 27580* | Calculate the place where a surreal and its extension differ. (Contributed by Scott Fenton, 22-Nov-2021.) |
| ⊢ 𝑋 ∈ {1o, 2o} ⇒ ⊢ (𝐴 ∈ No → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑥)} = dom 𝐴) | ||
| Theorem | noextendlt 27581 | Extending a surreal with a negative sign results in a smaller surreal. (Contributed by Scott Fenton, 22-Nov-2021.) |
| ⊢ (𝐴 ∈ No → (𝐴 ∪ {〈dom 𝐴, 1o〉}) <s 𝐴) | ||
| Theorem | noextendgt 27582 | Extending a surreal with a positive sign results in a bigger surreal. (Contributed by Scott Fenton, 22-Nov-2021.) |
| ⊢ (𝐴 ∈ No → 𝐴 <s (𝐴 ∪ {〈dom 𝐴, 2o〉})) | ||
| Theorem | nolesgn2o 27583 | Given 𝐴 less-than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 2o, then 𝐵(𝑋) = 2o. (Contributed by Scott Fenton, 6-Dec-2021.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐵‘𝑋) = 2o) | ||
| Theorem | nolesgn2ores 27584 | Given 𝐴 less-than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 2o, then (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋). (Contributed by Scott Fenton, 6-Dec-2021.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋)) | ||
| Theorem | nogesgn1o 27585 | Given 𝐴 greater than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 1o, then 𝐵(𝑋) = 1o. (Contributed by Scott Fenton, 9-Aug-2024.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝐵‘𝑋) = 1o) | ||
| Theorem | nogesgn1ores 27586 | Given 𝐴 greater than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 1o, then (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋). (Contributed by Scott Fenton, 6-Dec-2021.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋)) | ||
| Theorem | sltsolem1 27587 | Lemma for sltso 27588. The "sign expansion" binary relation totally orders the surreal signs. (Contributed by Scott Fenton, 8-Jun-2011.) |
| ⊢ {〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} Or ({1o, 2o} ∪ {∅}) | ||
| Theorem | sltso 27588 | Less-than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.) |
| ⊢ <s Or No | ||
| Theorem | bdayfo 27589 | The birthday function maps the surreals onto the ordinals. Axiom B of [Alling] p. 184. (Proof shortened on 14-Apr-2012 by SF). (Contributed by Scott Fenton, 11-Jun-2011.) |
| ⊢ bday : No –onto→On | ||
| Theorem | fvnobday 27590 | The value of a surreal at its birthday is ∅. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by SF, 14-Apr-2012.) |
| ⊢ (𝐴 ∈ No → (𝐴‘( bday ‘𝐴)) = ∅) | ||
| Theorem | nosepnelem 27591* | Lemma for nosepne 27592. (Contributed by Scott Fenton, 24-Nov-2021.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 <s 𝐵) → (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) ≠ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)})) | ||
| Theorem | nosepne 27592* | The value of two non-equal surreals at the first place they differ is different. (Contributed by Scott Fenton, 24-Nov-2021.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) ≠ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)})) | ||
| Theorem | nosep1o 27593* | If the value of a surreal at a separator is 1o then the surreal is lesser. (Contributed by Scott Fenton, 7-Dec-2021.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = 1o) → 𝐴 <s 𝐵) | ||
| Theorem | nosep2o 27594* | If the value of a surreal at a separator is 2o then the surreal is greater. (Contributed by Scott Fenton, 7-Dec-2021.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)}) = 2o) → 𝐵 <s 𝐴) | ||
| Theorem | nosepdmlem 27595* | Lemma for nosepdm 27596. (Contributed by Scott Fenton, 24-Nov-2021.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 <s 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) | ||
| Theorem | nosepdm 27596* | The first place two surreals differ is an element of the larger of their domains. (Contributed by Scott Fenton, 24-Nov-2021.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) | ||
| Theorem | nosepeq 27597* | The values of two surreals at a point less than their separators are equal. (Contributed by Scott Fenton, 6-Dec-2021.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐴‘𝑋) = (𝐵‘𝑋)) | ||
| Theorem | nosepssdm 27598* | Given two non-equal surreals, their separator is less-than or equal to the domain of one of them. Part of Lemma 2.1.1 of [Lipparini] p. 3. (Contributed by Scott Fenton, 6-Dec-2021.) |
| ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ⊆ dom 𝐴) | ||
| Theorem | nodenselem4 27599* | Lemma for nodense 27604. Show that a particular abstraction is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ On) | ||
| Theorem | nodenselem5 27600* | Lemma for nodense 27604. If the birthdays of two distinct surreals are equal, then the ordinal from nodenselem4 27599 is an element of that birthday. (Contributed by Scott Fenton, 16-Jun-2011.) |
| ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (( bday ‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday ‘𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |