Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssltsepc Structured version   Visualization version   GIF version

Theorem ssltsepc 33987
Description: Two elements of separated sets obey less than. (Contributed by Scott Fenton, 20-Aug-2024.)
Assertion
Ref Expression
ssltsepc ((𝐴 <<s 𝐵𝑋𝐴𝑌𝐵) → 𝑋 <s 𝑌)

Proof of Theorem ssltsepc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltsep 33985 . . 3 (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
2 breq1 5077 . . . . 5 (𝑥 = 𝑋 → (𝑥 <s 𝑦𝑋 <s 𝑦))
3 breq2 5078 . . . . 5 (𝑦 = 𝑌 → (𝑋 <s 𝑦𝑋 <s 𝑌))
42, 3rspc2va 3571 . . . 4 (((𝑋𝐴𝑌𝐵) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) → 𝑋 <s 𝑌)
54ancoms 459 . . 3 ((∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ∧ (𝑋𝐴𝑌𝐵)) → 𝑋 <s 𝑌)
61, 5sylan 580 . 2 ((𝐴 <<s 𝐵 ∧ (𝑋𝐴𝑌𝐵)) → 𝑋 <s 𝑌)
763impb 1114 1 ((𝐴 <<s 𝐵𝑋𝐴𝑌𝐵) → 𝑋 <s 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2106  wral 3064   class class class wbr 5074   <s cslt 33844   <<s csslt 33975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-sslt 33976
This theorem is referenced by:  ssltsepcd  33988  ssltun1  34002  ssltun2  34003  ssltdisj  34015  cofcutr  34092
  Copyright terms: Public domain W3C validator