| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltsepc | Structured version Visualization version GIF version | ||
| Description: Two elements of separated sets obey less-than. (Contributed by Scott Fenton, 20-Aug-2024.) |
| Ref | Expression |
|---|---|
| ssltsepc | ⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 <s 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltsep 27709 | . . 3 ⊢ (𝐴 <<s 𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) | |
| 2 | breq1 5113 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 <s 𝑦 ↔ 𝑋 <s 𝑦)) | |
| 3 | breq2 5114 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑋 <s 𝑦 ↔ 𝑋 <s 𝑌)) | |
| 4 | 2, 3 | rspc2va 3603 | . . . 4 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) → 𝑋 <s 𝑌) |
| 5 | 4 | ancoms 458 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → 𝑋 <s 𝑌) |
| 6 | 1, 5 | sylan 580 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → 𝑋 <s 𝑌) |
| 7 | 6 | 3impb 1114 | 1 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 <s 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3045 class class class wbr 5110 <s cslt 27559 <<s csslt 27699 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-sslt 27700 |
| This theorem is referenced by: ssltsepcd 27713 ssltun1 27727 ssltun2 27728 ssltdisj 27740 cofcutr 27839 |
| Copyright terms: Public domain | W3C validator |