Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssltsepc | Structured version Visualization version GIF version |
Description: Two elements of separated sets obey less than. (Contributed by Scott Fenton, 20-Aug-2024.) |
Ref | Expression |
---|---|
ssltsepc | ⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 <s 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltsep 33912 | . . 3 ⊢ (𝐴 <<s 𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) | |
2 | breq1 5073 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 <s 𝑦 ↔ 𝑋 <s 𝑦)) | |
3 | breq2 5074 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑋 <s 𝑦 ↔ 𝑋 <s 𝑌)) | |
4 | 2, 3 | rspc2va 3563 | . . . 4 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) → 𝑋 <s 𝑌) |
5 | 4 | ancoms 458 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → 𝑋 <s 𝑌) |
6 | 1, 5 | sylan 579 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → 𝑋 <s 𝑌) |
7 | 6 | 3impb 1113 | 1 ⊢ ((𝐴 <<s 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝑋 <s 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 <s cslt 33771 <<s csslt 33902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-sslt 33903 |
This theorem is referenced by: ssltsepcd 33915 ssltun1 33929 ssltun2 33930 ssltdisj 33942 cofcutr 34019 |
Copyright terms: Public domain | W3C validator |