MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltsepc Structured version   Visualization version   GIF version

Theorem ssltsepc 27294
Description: Two elements of separated sets obey less-than. (Contributed by Scott Fenton, 20-Aug-2024.)
Assertion
Ref Expression
ssltsepc ((𝐴 <<s 𝐵𝑋𝐴𝑌𝐵) → 𝑋 <s 𝑌)

Proof of Theorem ssltsepc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltsep 27292 . . 3 (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
2 breq1 5152 . . . . 5 (𝑥 = 𝑋 → (𝑥 <s 𝑦𝑋 <s 𝑦))
3 breq2 5153 . . . . 5 (𝑦 = 𝑌 → (𝑋 <s 𝑦𝑋 <s 𝑌))
42, 3rspc2va 3624 . . . 4 (((𝑋𝐴𝑌𝐵) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦) → 𝑋 <s 𝑌)
54ancoms 460 . . 3 ((∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ∧ (𝑋𝐴𝑌𝐵)) → 𝑋 <s 𝑌)
61, 5sylan 581 . 2 ((𝐴 <<s 𝐵 ∧ (𝑋𝐴𝑌𝐵)) → 𝑋 <s 𝑌)
763impb 1116 1 ((𝐴 <<s 𝐵𝑋𝐴𝑌𝐵) → 𝑋 <s 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088  wcel 2107  wral 3062   class class class wbr 5149   <s cslt 27144   <<s csslt 27282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-sslt 27283
This theorem is referenced by:  ssltsepcd  27295  ssltun1  27309  ssltun2  27310  ssltdisj  27322  cofcutr  27411
  Copyright terms: Public domain W3C validator