MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssneld Structured version   Visualization version   GIF version

Theorem ssneld 3960
Description: If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
ssneld.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
ssneld (𝜑 → (¬ 𝐶𝐵 → ¬ 𝐶𝐴))

Proof of Theorem ssneld
StepHypRef Expression
1 ssneld.1 . . 3 (𝜑𝐴𝐵)
21sseld 3957 . 2 (𝜑 → (𝐶𝐴𝐶𝐵))
32con3d 152 1 (𝜑 → (¬ 𝐶𝐵 → ¬ 𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  wss 3926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2809  df-ss 3943
This theorem is referenced by:  ssneldd  3961  kmlem2  10166  hashbclem  14470  prodss  15963  coprmproddvdslem  16681  mrissmrid  17653  mpfrcl  22043  onsuct0  36459  ftc1anc  37725  dvhdimlem  41463  dvh3dim2  41467  dvh3dim3N  41468  mapdh9a  41808  hdmapval0  41852  hdmap11lem2  41861  iundjiunlem  46488  elbigolo1  48537
  Copyright terms: Public domain W3C validator