MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssneld Structured version   Visualization version   GIF version

Theorem ssneld 3951
Description: If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
ssneld.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
ssneld (𝜑 → (¬ 𝐶𝐵 → ¬ 𝐶𝐴))

Proof of Theorem ssneld
StepHypRef Expression
1 ssneld.1 . . 3 (𝜑𝐴𝐵)
21sseld 3948 . 2 (𝜑 → (𝐶𝐴𝐶𝐵))
32con3d 152 1 (𝜑 → (¬ 𝐶𝐵 → ¬ 𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2804  df-ss 3934
This theorem is referenced by:  ssneldd  3952  kmlem2  10112  hashbclem  14424  prodss  15920  coprmproddvdslem  16639  mrissmrid  17609  mpfrcl  21999  onsuct0  36436  ftc1anc  37702  dvhdimlem  41445  dvh3dim2  41449  dvh3dim3N  41450  mapdh9a  41790  hdmapval0  41834  hdmap11lem2  41843  iundjiunlem  46464  elbigolo1  48550
  Copyright terms: Public domain W3C validator