MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssneld Structured version   Visualization version   GIF version

Theorem ssneld 4010
Description: If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
ssneld.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
ssneld (𝜑 → (¬ 𝐶𝐵 → ¬ 𝐶𝐴))

Proof of Theorem ssneld
StepHypRef Expression
1 ssneld.1 . . 3 (𝜑𝐴𝐵)
21sseld 4007 . 2 (𝜑 → (𝐶𝐴𝐶𝐵))
32con3d 152 1 (𝜑 → (¬ 𝐶𝐵 → ¬ 𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-clel 2819  df-ss 3993
This theorem is referenced by:  ssneldd  4011  kmlem2  10221  hashbclem  14501  prodss  15995  coprmproddvdslem  16709  mrissmrid  17699  mpfrcl  22132  onsuct0  36407  ftc1anc  37661  dvhdimlem  41401  dvh3dim2  41405  dvh3dim3N  41406  mapdh9a  41746  hdmapval0  41790  hdmap11lem2  41799  iundjiunlem  46380  elbigolo1  48291
  Copyright terms: Public domain W3C validator