MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssneld Structured version   Visualization version   GIF version

Theorem ssneld 3927
Description: If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
ssneld.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
ssneld (𝜑 → (¬ 𝐶𝐵 → ¬ 𝐶𝐴))

Proof of Theorem ssneld
StepHypRef Expression
1 ssneld.1 . . 3 (𝜑𝐴𝐵)
21sseld 3924 . 2 (𝜑 → (𝐶𝐴𝐶𝐵))
32con3d 152 1 (𝜑 → (¬ 𝐶𝐵 → ¬ 𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  wss 3891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-in 3898  df-ss 3908
This theorem is referenced by:  ssneldd  3928  kmlem2  9891  hashbclem  14145  prodss  15638  coprmproddvdslem  16348  mrissmrid  17331  mpfrcl  21276  onsuct0  34609  ftc1anc  35837  dvhdimlem  39437  dvh3dim2  39441  dvh3dim3N  39442  mapdh9a  39782  hdmapval0  39826  hdmap11lem2  39835  iundjiunlem  43951  elbigolo1  45855
  Copyright terms: Public domain W3C validator