![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssneld | Structured version Visualization version GIF version |
Description: If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssneld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssneld | ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssneld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 1 | sseld 4007 | . 2 ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
3 | 2 | con3d 152 | 1 ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-clel 2819 df-ss 3993 |
This theorem is referenced by: ssneldd 4011 kmlem2 10221 hashbclem 14501 prodss 15995 coprmproddvdslem 16709 mrissmrid 17699 mpfrcl 22132 onsuct0 36407 ftc1anc 37661 dvhdimlem 41401 dvh3dim2 41405 dvh3dim3N 41406 mapdh9a 41746 hdmapval0 41790 hdmap11lem2 41799 iundjiunlem 46380 elbigolo1 48291 |
Copyright terms: Public domain | W3C validator |