MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssneld Structured version   Visualization version   GIF version

Theorem ssneld 3939
Description: If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
ssneld.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
ssneld (𝜑 → (¬ 𝐶𝐵 → ¬ 𝐶𝐴))

Proof of Theorem ssneld
StepHypRef Expression
1 ssneld.1 . . 3 (𝜑𝐴𝐵)
21sseld 3936 . 2 (𝜑 → (𝐶𝐴𝐶𝐵))
32con3d 152 1 (𝜑 → (¬ 𝐶𝐵 → ¬ 𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  wss 3905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2803  df-ss 3922
This theorem is referenced by:  ssneldd  3940  kmlem2  10065  hashbclem  14377  prodss  15872  coprmproddvdslem  16591  mrissmrid  17565  mpfrcl  22008  onsuct0  36417  ftc1anc  37683  dvhdimlem  41426  dvh3dim2  41430  dvh3dim3N  41431  mapdh9a  41771  hdmapval0  41815  hdmap11lem2  41824  iundjiunlem  46444  elbigolo1  48546
  Copyright terms: Public domain W3C validator