| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssneld | Structured version Visualization version GIF version | ||
| Description: If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssneld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssneld | ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssneld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | sseld 3945 | . 2 ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| 3 | 2 | con3d 152 | 1 ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 df-ss 3931 |
| This theorem is referenced by: ssneldd 3949 kmlem2 10105 hashbclem 14417 prodss 15913 coprmproddvdslem 16632 mrissmrid 17602 mpfrcl 21992 onsuct0 36429 ftc1anc 37695 dvhdimlem 41438 dvh3dim2 41442 dvh3dim3N 41443 mapdh9a 41783 hdmapval0 41827 hdmap11lem2 41836 iundjiunlem 46457 elbigolo1 48546 |
| Copyright terms: Public domain | W3C validator |