| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrissmrid | Structured version Visualization version GIF version | ||
| Description: In a Moore system, subsets of independent sets are independent. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| mrissmrid.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| mrissmrid.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| mrissmrid.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
| mrissmrid.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
| mrissmrid.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
| Ref | Expression |
|---|---|
| mrissmrid | ⊢ (𝜑 → 𝑇 ∈ 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrissmrid.2 | . 2 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 2 | mrissmrid.3 | . 2 ⊢ 𝐼 = (mrInd‘𝐴) | |
| 3 | mrissmrid.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
| 4 | mrissmrid.5 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
| 5 | mrissmrid.4 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
| 6 | 2, 3, 5 | mrissd 17542 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| 7 | 4, 6 | sstrd 3940 | . 2 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
| 8 | 1, 2, 3, 6 | ismri2d 17539 | . . . 4 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
| 9 | 5, 8 | mpbid 232 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) |
| 10 | 4 | sseld 3928 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑆)) |
| 11 | 4 | ssdifd 4092 | . . . . . . 7 ⊢ (𝜑 → (𝑇 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥})) |
| 12 | 6 | ssdifssd 4094 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ∖ {𝑥}) ⊆ 𝑋) |
| 13 | 3, 1, 11, 12 | mrcssd 17530 | . . . . . 6 ⊢ (𝜑 → (𝑁‘(𝑇 ∖ {𝑥})) ⊆ (𝑁‘(𝑆 ∖ {𝑥}))) |
| 14 | 13 | ssneld 3931 | . . . . 5 ⊢ (𝜑 → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥})))) |
| 15 | 10, 14 | imim12d 81 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑆 → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) → (𝑥 ∈ 𝑇 → ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥}))))) |
| 16 | 15 | ralimdv2 3141 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ∀𝑥 ∈ 𝑇 ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥})))) |
| 17 | 9, 16 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑇 ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥}))) |
| 18 | 1, 2, 3, 7, 17 | ismri2dd 17540 | 1 ⊢ (𝜑 → 𝑇 ∈ 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∖ cdif 3894 ⊆ wss 3897 {csn 4573 ‘cfv 6481 Moorecmre 17484 mrClscmrc 17485 mrIndcmri 17486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-mre 17488 df-mrc 17489 df-mri 17490 |
| This theorem is referenced by: mreexexlem2d 17551 acsfiindd 18459 |
| Copyright terms: Public domain | W3C validator |