Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrissmrid | Structured version Visualization version GIF version |
Description: In a Moore system, subsets of independent sets are independent. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrissmrid.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mrissmrid.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mrissmrid.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
mrissmrid.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
mrissmrid.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
Ref | Expression |
---|---|
mrissmrid | ⊢ (𝜑 → 𝑇 ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrissmrid.2 | . 2 ⊢ 𝑁 = (mrCls‘𝐴) | |
2 | mrissmrid.3 | . 2 ⊢ 𝐼 = (mrInd‘𝐴) | |
3 | mrissmrid.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
4 | mrissmrid.5 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
5 | mrissmrid.4 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
6 | 2, 3, 5 | mrissd 17345 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
7 | 4, 6 | sstrd 3931 | . 2 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
8 | 1, 2, 3, 6 | ismri2d 17342 | . . . 4 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
9 | 5, 8 | mpbid 231 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) |
10 | 4 | sseld 3920 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑆)) |
11 | 4 | ssdifd 4075 | . . . . . . 7 ⊢ (𝜑 → (𝑇 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥})) |
12 | 6 | ssdifssd 4077 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ∖ {𝑥}) ⊆ 𝑋) |
13 | 3, 1, 11, 12 | mrcssd 17333 | . . . . . 6 ⊢ (𝜑 → (𝑁‘(𝑇 ∖ {𝑥})) ⊆ (𝑁‘(𝑆 ∖ {𝑥}))) |
14 | 13 | ssneld 3923 | . . . . 5 ⊢ (𝜑 → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥})))) |
15 | 10, 14 | imim12d 81 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑆 → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) → (𝑥 ∈ 𝑇 → ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥}))))) |
16 | 15 | ralimdv2 3107 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ∀𝑥 ∈ 𝑇 ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥})))) |
17 | 9, 16 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑇 ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥}))) |
18 | 1, 2, 3, 7, 17 | ismri2dd 17343 | 1 ⊢ (𝜑 → 𝑇 ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∖ cdif 3884 ⊆ wss 3887 {csn 4561 ‘cfv 6433 Moorecmre 17291 mrClscmrc 17292 mrIndcmri 17293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-mre 17295 df-mrc 17296 df-mri 17297 |
This theorem is referenced by: mreexexlem2d 17354 acsfiindd 18271 |
Copyright terms: Public domain | W3C validator |