![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrissmrid | Structured version Visualization version GIF version |
Description: In a Moore system, subsets of independent sets are independent. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrissmrid.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mrissmrid.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mrissmrid.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
mrissmrid.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
mrissmrid.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
Ref | Expression |
---|---|
mrissmrid | ⊢ (𝜑 → 𝑇 ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrissmrid.2 | . 2 ⊢ 𝑁 = (mrCls‘𝐴) | |
2 | mrissmrid.3 | . 2 ⊢ 𝐼 = (mrInd‘𝐴) | |
3 | mrissmrid.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
4 | mrissmrid.5 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
5 | mrissmrid.4 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
6 | 2, 3, 5 | mrissd 17694 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
7 | 4, 6 | sstrd 4019 | . 2 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
8 | 1, 2, 3, 6 | ismri2d 17691 | . . . 4 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
9 | 5, 8 | mpbid 232 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) |
10 | 4 | sseld 4007 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑆)) |
11 | 4 | ssdifd 4168 | . . . . . . 7 ⊢ (𝜑 → (𝑇 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥})) |
12 | 6 | ssdifssd 4170 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ∖ {𝑥}) ⊆ 𝑋) |
13 | 3, 1, 11, 12 | mrcssd 17682 | . . . . . 6 ⊢ (𝜑 → (𝑁‘(𝑇 ∖ {𝑥})) ⊆ (𝑁‘(𝑆 ∖ {𝑥}))) |
14 | 13 | ssneld 4010 | . . . . 5 ⊢ (𝜑 → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥})))) |
15 | 10, 14 | imim12d 81 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑆 → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) → (𝑥 ∈ 𝑇 → ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥}))))) |
16 | 15 | ralimdv2 3169 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ∀𝑥 ∈ 𝑇 ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥})))) |
17 | 9, 16 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑇 ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥}))) |
18 | 1, 2, 3, 7, 17 | ismri2dd 17692 | 1 ⊢ (𝜑 → 𝑇 ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∖ cdif 3973 ⊆ wss 3976 {csn 4648 ‘cfv 6573 Moorecmre 17640 mrClscmrc 17641 mrIndcmri 17642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-mre 17644 df-mrc 17645 df-mri 17646 |
This theorem is referenced by: mreexexlem2d 17703 acsfiindd 18623 |
Copyright terms: Public domain | W3C validator |