MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrissmrid Structured version   Visualization version   GIF version

Theorem mrissmrid 16745
Description: In a Moore system, subsets of independent sets are independent. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrissmrid.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrissmrid.2 𝑁 = (mrCls‘𝐴)
mrissmrid.3 𝐼 = (mrInd‘𝐴)
mrissmrid.4 (𝜑𝑆𝐼)
mrissmrid.5 (𝜑𝑇𝑆)
Assertion
Ref Expression
mrissmrid (𝜑𝑇𝐼)

Proof of Theorem mrissmrid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mrissmrid.2 . 2 𝑁 = (mrCls‘𝐴)
2 mrissmrid.3 . 2 𝐼 = (mrInd‘𝐴)
3 mrissmrid.1 . 2 (𝜑𝐴 ∈ (Moore‘𝑋))
4 mrissmrid.5 . . 3 (𝜑𝑇𝑆)
5 mrissmrid.4 . . . 4 (𝜑𝑆𝐼)
62, 3, 5mrissd 16740 . . 3 (𝜑𝑆𝑋)
74, 6sstrd 3905 . 2 (𝜑𝑇𝑋)
81, 2, 3, 6ismri2d 16737 . . . 4 (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
95, 8mpbid 233 . . 3 (𝜑 → ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
104sseld 3894 . . . . 5 (𝜑 → (𝑥𝑇𝑥𝑆))
114ssdifd 4044 . . . . . . 7 (𝜑 → (𝑇 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥}))
126ssdifssd 4046 . . . . . . 7 (𝜑 → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
133, 1, 11, 12mrcssd 16728 . . . . . 6 (𝜑 → (𝑁‘(𝑇 ∖ {𝑥})) ⊆ (𝑁‘(𝑆 ∖ {𝑥})))
1413ssneld 3897 . . . . 5 (𝜑 → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥}))))
1510, 14imim12d 81 . . . 4 (𝜑 → ((𝑥𝑆 → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) → (𝑥𝑇 → ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥})))))
1615ralimdv2 3145 . . 3 (𝜑 → (∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ∀𝑥𝑇 ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥}))))
179, 16mpd 15 . 2 (𝜑 → ∀𝑥𝑇 ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥})))
181, 2, 3, 7, 17ismri2dd 16738 1 (𝜑𝑇𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1525  wcel 2083  wral 3107  cdif 3862  wss 3865  {csn 4478  cfv 6232  Moorecmre 16686  mrClscmrc 16687  mrIndcmri 16688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-int 4789  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-fv 6240  df-mre 16690  df-mrc 16691  df-mri 16692
This theorem is referenced by:  mreexexlem2d  16749  acsfiindd  17620
  Copyright terms: Public domain W3C validator