Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrissmrid | Structured version Visualization version GIF version |
Description: In a Moore system, subsets of independent sets are independent. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrissmrid.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mrissmrid.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mrissmrid.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
mrissmrid.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
mrissmrid.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
Ref | Expression |
---|---|
mrissmrid | ⊢ (𝜑 → 𝑇 ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrissmrid.2 | . 2 ⊢ 𝑁 = (mrCls‘𝐴) | |
2 | mrissmrid.3 | . 2 ⊢ 𝐼 = (mrInd‘𝐴) | |
3 | mrissmrid.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
4 | mrissmrid.5 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
5 | mrissmrid.4 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
6 | 2, 3, 5 | mrissd 17442 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
7 | 4, 6 | sstrd 3942 | . 2 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
8 | 1, 2, 3, 6 | ismri2d 17439 | . . . 4 ⊢ (𝜑 → (𝑆 ∈ 𝐼 ↔ ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))) |
9 | 5, 8 | mpbid 231 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) |
10 | 4 | sseld 3931 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑆)) |
11 | 4 | ssdifd 4087 | . . . . . . 7 ⊢ (𝜑 → (𝑇 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥})) |
12 | 6 | ssdifssd 4089 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ∖ {𝑥}) ⊆ 𝑋) |
13 | 3, 1, 11, 12 | mrcssd 17430 | . . . . . 6 ⊢ (𝜑 → (𝑁‘(𝑇 ∖ {𝑥})) ⊆ (𝑁‘(𝑆 ∖ {𝑥}))) |
14 | 13 | ssneld 3934 | . . . . 5 ⊢ (𝜑 → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥})))) |
15 | 10, 14 | imim12d 81 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝑆 → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) → (𝑥 ∈ 𝑇 → ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥}))))) |
16 | 15 | ralimdv2 3156 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ∀𝑥 ∈ 𝑇 ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥})))) |
17 | 9, 16 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑇 ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥}))) |
18 | 1, 2, 3, 7, 17 | ismri2dd 17440 | 1 ⊢ (𝜑 → 𝑇 ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∖ cdif 3895 ⊆ wss 3898 {csn 4573 ‘cfv 6479 Moorecmre 17388 mrClscmrc 17389 mrIndcmri 17390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-fv 6487 df-mre 17392 df-mrc 17393 df-mri 17394 |
This theorem is referenced by: mreexexlem2d 17451 acsfiindd 18368 |
Copyright terms: Public domain | W3C validator |