![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrissmrid | Structured version Visualization version GIF version |
Description: In a Moore system, subsets of independent sets are independent. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrissmrid.1 | β’ (π β π΄ β (Mooreβπ)) |
mrissmrid.2 | β’ π = (mrClsβπ΄) |
mrissmrid.3 | β’ πΌ = (mrIndβπ΄) |
mrissmrid.4 | β’ (π β π β πΌ) |
mrissmrid.5 | β’ (π β π β π) |
Ref | Expression |
---|---|
mrissmrid | β’ (π β π β πΌ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrissmrid.2 | . 2 β’ π = (mrClsβπ΄) | |
2 | mrissmrid.3 | . 2 β’ πΌ = (mrIndβπ΄) | |
3 | mrissmrid.1 | . 2 β’ (π β π΄ β (Mooreβπ)) | |
4 | mrissmrid.5 | . . 3 β’ (π β π β π) | |
5 | mrissmrid.4 | . . . 4 β’ (π β π β πΌ) | |
6 | 2, 3, 5 | mrissd 17579 | . . 3 β’ (π β π β π) |
7 | 4, 6 | sstrd 3992 | . 2 β’ (π β π β π) |
8 | 1, 2, 3, 6 | ismri2d 17576 | . . . 4 β’ (π β (π β πΌ β βπ₯ β π Β¬ π₯ β (πβ(π β {π₯})))) |
9 | 5, 8 | mpbid 231 | . . 3 β’ (π β βπ₯ β π Β¬ π₯ β (πβ(π β {π₯}))) |
10 | 4 | sseld 3981 | . . . . 5 β’ (π β (π₯ β π β π₯ β π)) |
11 | 4 | ssdifd 4140 | . . . . . . 7 β’ (π β (π β {π₯}) β (π β {π₯})) |
12 | 6 | ssdifssd 4142 | . . . . . . 7 β’ (π β (π β {π₯}) β π) |
13 | 3, 1, 11, 12 | mrcssd 17567 | . . . . . 6 β’ (π β (πβ(π β {π₯})) β (πβ(π β {π₯}))) |
14 | 13 | ssneld 3984 | . . . . 5 β’ (π β (Β¬ π₯ β (πβ(π β {π₯})) β Β¬ π₯ β (πβ(π β {π₯})))) |
15 | 10, 14 | imim12d 81 | . . . 4 β’ (π β ((π₯ β π β Β¬ π₯ β (πβ(π β {π₯}))) β (π₯ β π β Β¬ π₯ β (πβ(π β {π₯}))))) |
16 | 15 | ralimdv2 3163 | . . 3 β’ (π β (βπ₯ β π Β¬ π₯ β (πβ(π β {π₯})) β βπ₯ β π Β¬ π₯ β (πβ(π β {π₯})))) |
17 | 9, 16 | mpd 15 | . 2 β’ (π β βπ₯ β π Β¬ π₯ β (πβ(π β {π₯}))) |
18 | 1, 2, 3, 7, 17 | ismri2dd 17577 | 1 β’ (π β π β πΌ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 = wceq 1541 β wcel 2106 βwral 3061 β cdif 3945 β wss 3948 {csn 4628 βcfv 6543 Moorecmre 17525 mrClscmrc 17526 mrIndcmri 17527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-mre 17529 df-mrc 17530 df-mri 17531 |
This theorem is referenced by: mreexexlem2d 17588 acsfiindd 18505 |
Copyright terms: Public domain | W3C validator |