Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundjiunlem Structured version   Visualization version   GIF version

Theorem iundjiunlem 46415
Description: The sets in the sequence 𝐹 are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
iundjiunlem.z 𝑍 = (ℤ𝑁)
iundjiunlem.f 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
iundjiunlem.j (𝜑𝐽𝑍)
iundjiunlem.k (𝜑𝐾𝑍)
iundjiunlem.lt (𝜑𝐽 < 𝐾)
Assertion
Ref Expression
iundjiunlem (𝜑 → ((𝐹𝐽) ∩ (𝐹𝐾)) = ∅)
Distinct variable groups:   𝑖,𝐸,𝑛   𝑖,𝐽,𝑛   𝑖,𝐾,𝑛   𝑖,𝑁,𝑛   𝑛,𝑍
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝐹(𝑖,𝑛)   𝑍(𝑖)

Proof of Theorem iundjiunlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 incom 4217 . 2 ((𝐹𝐽) ∩ (𝐹𝐾)) = ((𝐹𝐾) ∩ (𝐹𝐽))
2 simpl 482 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹𝐾)) → 𝜑)
3 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐹𝐾)) → 𝑥 ∈ (𝐹𝐾))
4 iundjiunlem.k . . . . . . . . . . 11 (𝜑𝐾𝑍)
5 fveq2 6907 . . . . . . . . . . . . 13 (𝑛 = 𝐾 → (𝐸𝑛) = (𝐸𝐾))
6 oveq2 7439 . . . . . . . . . . . . . 14 (𝑛 = 𝐾 → (𝑁..^𝑛) = (𝑁..^𝐾))
76iuneq1d 5024 . . . . . . . . . . . . 13 (𝑛 = 𝐾 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) = 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖))
85, 7difeq12d 4137 . . . . . . . . . . . 12 (𝑛 = 𝐾 → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) = ((𝐸𝐾) ∖ 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖)))
9 iundjiunlem.f . . . . . . . . . . . 12 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
10 fvex 6920 . . . . . . . . . . . . 13 (𝐸𝐾) ∈ V
1110difexi 5336 . . . . . . . . . . . 12 ((𝐸𝐾) ∖ 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖)) ∈ V
128, 9, 11fvmpt 7016 . . . . . . . . . . 11 (𝐾𝑍 → (𝐹𝐾) = ((𝐸𝐾) ∖ 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖)))
134, 12syl 17 . . . . . . . . . 10 (𝜑 → (𝐹𝐾) = ((𝐸𝐾) ∖ 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖)))
1413adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐹𝐾)) → (𝐹𝐾) = ((𝐸𝐾) ∖ 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖)))
153, 14eleqtrd 2841 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐹𝐾)) → 𝑥 ∈ ((𝐸𝐾) ∖ 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖)))
1615eldifbd 3976 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹𝐾)) → ¬ 𝑥 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖))
17 iundjiunlem.j . . . . . . . . . . 11 (𝜑𝐽𝑍)
18 iundjiunlem.z . . . . . . . . . . 11 𝑍 = (ℤ𝑁)
1917, 18eleqtrdi 2849 . . . . . . . . . 10 (𝜑𝐽 ∈ (ℤ𝑁))
2018, 4eluzelz2d 45363 . . . . . . . . . 10 (𝜑𝐾 ∈ ℤ)
21 iundjiunlem.lt . . . . . . . . . 10 (𝜑𝐽 < 𝐾)
2219, 20, 21elfzod 45350 . . . . . . . . 9 (𝜑𝐽 ∈ (𝑁..^𝐾))
23 fveq2 6907 . . . . . . . . . 10 (𝑖 = 𝐽 → (𝐸𝑖) = (𝐸𝐽))
2423ssiun2s 5053 . . . . . . . . 9 (𝐽 ∈ (𝑁..^𝐾) → (𝐸𝐽) ⊆ 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖))
2522, 24syl 17 . . . . . . . 8 (𝜑 → (𝐸𝐽) ⊆ 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖))
2625ssneld 3997 . . . . . . 7 (𝜑 → (¬ 𝑥 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖) → ¬ 𝑥 ∈ (𝐸𝐽)))
272, 16, 26sylc 65 . . . . . 6 ((𝜑𝑥 ∈ (𝐹𝐾)) → ¬ 𝑥 ∈ (𝐸𝐽))
28 eldifi 4141 . . . . . 6 (𝑥 ∈ ((𝐸𝐽) ∖ 𝑖 ∈ (𝑁..^𝐽)(𝐸𝑖)) → 𝑥 ∈ (𝐸𝐽))
2927, 28nsyl 140 . . . . 5 ((𝜑𝑥 ∈ (𝐹𝐾)) → ¬ 𝑥 ∈ ((𝐸𝐽) ∖ 𝑖 ∈ (𝑁..^𝐽)(𝐸𝑖)))
30 fveq2 6907 . . . . . . . . 9 (𝑛 = 𝐽 → (𝐸𝑛) = (𝐸𝐽))
31 oveq2 7439 . . . . . . . . . 10 (𝑛 = 𝐽 → (𝑁..^𝑛) = (𝑁..^𝐽))
3231iuneq1d 5024 . . . . . . . . 9 (𝑛 = 𝐽 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) = 𝑖 ∈ (𝑁..^𝐽)(𝐸𝑖))
3330, 32difeq12d 4137 . . . . . . . 8 (𝑛 = 𝐽 → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) = ((𝐸𝐽) ∖ 𝑖 ∈ (𝑁..^𝐽)(𝐸𝑖)))
34 fvex 6920 . . . . . . . . 9 (𝐸𝐽) ∈ V
3534difexi 5336 . . . . . . . 8 ((𝐸𝐽) ∖ 𝑖 ∈ (𝑁..^𝐽)(𝐸𝑖)) ∈ V
3633, 9, 35fvmpt 7016 . . . . . . 7 (𝐽𝑍 → (𝐹𝐽) = ((𝐸𝐽) ∖ 𝑖 ∈ (𝑁..^𝐽)(𝐸𝑖)))
3717, 36syl 17 . . . . . 6 (𝜑 → (𝐹𝐽) = ((𝐸𝐽) ∖ 𝑖 ∈ (𝑁..^𝐽)(𝐸𝑖)))
3837adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐹𝐾)) → (𝐹𝐽) = ((𝐸𝐽) ∖ 𝑖 ∈ (𝑁..^𝐽)(𝐸𝑖)))
3929, 38neleqtrrd 2862 . . . 4 ((𝜑𝑥 ∈ (𝐹𝐾)) → ¬ 𝑥 ∈ (𝐹𝐽))
4039ralrimiva 3144 . . 3 (𝜑 → ∀𝑥 ∈ (𝐹𝐾) ¬ 𝑥 ∈ (𝐹𝐽))
41 disj 4456 . . 3 (((𝐹𝐾) ∩ (𝐹𝐽)) = ∅ ↔ ∀𝑥 ∈ (𝐹𝐾) ¬ 𝑥 ∈ (𝐹𝐽))
4240, 41sylibr 234 . 2 (𝜑 → ((𝐹𝐾) ∩ (𝐹𝐽)) = ∅)
431, 42eqtrid 2787 1 (𝜑 → ((𝐹𝐽) ∩ (𝐹𝐾)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  cdif 3960  cin 3962  wss 3963  c0 4339   ciun 4996   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431   < clt 11293  cuz 12876  ..^cfzo 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692
This theorem is referenced by:  iundjiun  46416
  Copyright terms: Public domain W3C validator