Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundjiunlem Structured version   Visualization version   GIF version

Theorem iundjiunlem 43098
Description: The sets in the sequence 𝐹 are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
iundjiunlem.z 𝑍 = (ℤ𝑁)
iundjiunlem.f 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
iundjiunlem.j (𝜑𝐽𝑍)
iundjiunlem.k (𝜑𝐾𝑍)
iundjiunlem.lt (𝜑𝐽 < 𝐾)
Assertion
Ref Expression
iundjiunlem (𝜑 → ((𝐹𝐽) ∩ (𝐹𝐾)) = ∅)
Distinct variable groups:   𝑖,𝐸,𝑛   𝑖,𝐽,𝑛   𝑖,𝐾,𝑛   𝑖,𝑁,𝑛   𝑛,𝑍
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝐹(𝑖,𝑛)   𝑍(𝑖)

Proof of Theorem iundjiunlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 incom 4128 . 2 ((𝐹𝐽) ∩ (𝐹𝐾)) = ((𝐹𝐾) ∩ (𝐹𝐽))
2 simpl 486 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹𝐾)) → 𝜑)
3 simpr 488 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐹𝐾)) → 𝑥 ∈ (𝐹𝐾))
4 iundjiunlem.k . . . . . . . . . . 11 (𝜑𝐾𝑍)
5 fveq2 6645 . . . . . . . . . . . . 13 (𝑛 = 𝐾 → (𝐸𝑛) = (𝐸𝐾))
6 oveq2 7143 . . . . . . . . . . . . . 14 (𝑛 = 𝐾 → (𝑁..^𝑛) = (𝑁..^𝐾))
76iuneq1d 4908 . . . . . . . . . . . . 13 (𝑛 = 𝐾 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) = 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖))
85, 7difeq12d 4051 . . . . . . . . . . . 12 (𝑛 = 𝐾 → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) = ((𝐸𝐾) ∖ 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖)))
9 iundjiunlem.f . . . . . . . . . . . 12 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
10 fvex 6658 . . . . . . . . . . . . 13 (𝐸𝐾) ∈ V
1110difexi 5196 . . . . . . . . . . . 12 ((𝐸𝐾) ∖ 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖)) ∈ V
128, 9, 11fvmpt 6745 . . . . . . . . . . 11 (𝐾𝑍 → (𝐹𝐾) = ((𝐸𝐾) ∖ 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖)))
134, 12syl 17 . . . . . . . . . 10 (𝜑 → (𝐹𝐾) = ((𝐸𝐾) ∖ 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖)))
1413adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐹𝐾)) → (𝐹𝐾) = ((𝐸𝐾) ∖ 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖)))
153, 14eleqtrd 2892 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐹𝐾)) → 𝑥 ∈ ((𝐸𝐾) ∖ 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖)))
1615eldifbd 3894 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹𝐾)) → ¬ 𝑥 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖))
17 iundjiunlem.j . . . . . . . . . . 11 (𝜑𝐽𝑍)
18 iundjiunlem.z . . . . . . . . . . 11 𝑍 = (ℤ𝑁)
1917, 18eleqtrdi 2900 . . . . . . . . . 10 (𝜑𝐽 ∈ (ℤ𝑁))
2018, 4eluzelz2d 42050 . . . . . . . . . 10 (𝜑𝐾 ∈ ℤ)
21 iundjiunlem.lt . . . . . . . . . 10 (𝜑𝐽 < 𝐾)
2219, 20, 21elfzod 42037 . . . . . . . . 9 (𝜑𝐽 ∈ (𝑁..^𝐾))
23 fveq2 6645 . . . . . . . . . 10 (𝑖 = 𝐽 → (𝐸𝑖) = (𝐸𝐽))
2423ssiun2s 4935 . . . . . . . . 9 (𝐽 ∈ (𝑁..^𝐾) → (𝐸𝐽) ⊆ 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖))
2522, 24syl 17 . . . . . . . 8 (𝜑 → (𝐸𝐽) ⊆ 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖))
2625ssneld 3917 . . . . . . 7 (𝜑 → (¬ 𝑥 𝑖 ∈ (𝑁..^𝐾)(𝐸𝑖) → ¬ 𝑥 ∈ (𝐸𝐽)))
272, 16, 26sylc 65 . . . . . 6 ((𝜑𝑥 ∈ (𝐹𝐾)) → ¬ 𝑥 ∈ (𝐸𝐽))
28 eldifi 4054 . . . . . 6 (𝑥 ∈ ((𝐸𝐽) ∖ 𝑖 ∈ (𝑁..^𝐽)(𝐸𝑖)) → 𝑥 ∈ (𝐸𝐽))
2927, 28nsyl 142 . . . . 5 ((𝜑𝑥 ∈ (𝐹𝐾)) → ¬ 𝑥 ∈ ((𝐸𝐽) ∖ 𝑖 ∈ (𝑁..^𝐽)(𝐸𝑖)))
30 fveq2 6645 . . . . . . . . 9 (𝑛 = 𝐽 → (𝐸𝑛) = (𝐸𝐽))
31 oveq2 7143 . . . . . . . . . 10 (𝑛 = 𝐽 → (𝑁..^𝑛) = (𝑁..^𝐽))
3231iuneq1d 4908 . . . . . . . . 9 (𝑛 = 𝐽 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) = 𝑖 ∈ (𝑁..^𝐽)(𝐸𝑖))
3330, 32difeq12d 4051 . . . . . . . 8 (𝑛 = 𝐽 → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) = ((𝐸𝐽) ∖ 𝑖 ∈ (𝑁..^𝐽)(𝐸𝑖)))
34 fvex 6658 . . . . . . . . 9 (𝐸𝐽) ∈ V
3534difexi 5196 . . . . . . . 8 ((𝐸𝐽) ∖ 𝑖 ∈ (𝑁..^𝐽)(𝐸𝑖)) ∈ V
3633, 9, 35fvmpt 6745 . . . . . . 7 (𝐽𝑍 → (𝐹𝐽) = ((𝐸𝐽) ∖ 𝑖 ∈ (𝑁..^𝐽)(𝐸𝑖)))
3717, 36syl 17 . . . . . 6 (𝜑 → (𝐹𝐽) = ((𝐸𝐽) ∖ 𝑖 ∈ (𝑁..^𝐽)(𝐸𝑖)))
3837adantr 484 . . . . 5 ((𝜑𝑥 ∈ (𝐹𝐾)) → (𝐹𝐽) = ((𝐸𝐽) ∖ 𝑖 ∈ (𝑁..^𝐽)(𝐸𝑖)))
3929, 38neleqtrrd 2912 . . . 4 ((𝜑𝑥 ∈ (𝐹𝐾)) → ¬ 𝑥 ∈ (𝐹𝐽))
4039ralrimiva 3149 . . 3 (𝜑 → ∀𝑥 ∈ (𝐹𝐾) ¬ 𝑥 ∈ (𝐹𝐽))
41 disj 4355 . . 3 (((𝐹𝐾) ∩ (𝐹𝐽)) = ∅ ↔ ∀𝑥 ∈ (𝐹𝐾) ¬ 𝑥 ∈ (𝐹𝐽))
4240, 41sylibr 237 . 2 (𝜑 → ((𝐹𝐾) ∩ (𝐹𝐽)) = ∅)
431, 42syl5eq 2845 1 (𝜑 → ((𝐹𝐽) ∩ (𝐹𝐾)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  cdif 3878  cin 3880  wss 3881  c0 4243   ciun 4881   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135   < clt 10664  cuz 12231  ..^cfzo 13028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029
This theorem is referenced by:  iundjiun  43099
  Copyright terms: Public domain W3C validator