![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssneldd | Structured version Visualization version GIF version |
Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssneld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ssneldd.2 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
ssneldd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssneldd.2 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
2 | ssneld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 2 | ssneld 3996 | . 2 ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2105 ⊆ wss 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-clel 2813 df-ss 3979 |
This theorem is referenced by: 0nelrel0 5748 cantnfp1lem3 9717 fpwwe2lem12 10679 pwfseqlem3 10697 hashbclem 14487 sumrblem 15743 incexclem 15868 prodrblem 15961 fprodntriv 15974 ramub1lem2 17060 mreexmrid 17687 mreexexlem2d 17689 acsfiindd 18610 lbspss 21098 lbsextlem4 21180 lindfrn 21858 fclscmpi 24052 lhop2 26068 lhop 26069 dvcnvrelem1 26070 axlowdimlem17 28987 cyc3co2 33142 ssdifidlprm 33465 erdszelem8 35182 bj-fununsn1 37235 bj-fvsnun2 37238 poimirlem16 37622 osumcllem10N 39947 pexmidlem7N 39958 mapdindp2 41703 mapdindp3 41704 hdmapval3lemN 41819 hdmap11lem1 41823 fourierdlem80 46141 |
Copyright terms: Public domain | W3C validator |