| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssneldd | Structured version Visualization version GIF version | ||
| Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssneld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssneldd.2 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssneldd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssneldd.2 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
| 2 | ssneld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 2 | ssneld 3948 | . 2 ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 df-ss 3931 |
| This theorem is referenced by: 0nelrel0 5698 cantnfp1lem3 9633 fpwwe2lem12 10595 pwfseqlem3 10613 hashbclem 14417 sumrblem 15677 incexclem 15802 prodrblem 15895 fprodntriv 15908 ramub1lem2 16998 mreexmrid 17604 mreexexlem2d 17606 acsfiindd 18512 lbspss 20989 lbsextlem4 21071 lindfrn 21730 fclscmpi 23916 lhop2 25920 lhop 25921 dvcnvrelem1 25922 axlowdimlem17 28885 cyc3co2 33097 ssdifidlprm 33429 erdszelem8 35185 bj-fununsn1 37241 bj-fvsnun2 37244 poimirlem16 37630 osumcllem10N 39959 pexmidlem7N 39970 mapdindp2 41715 mapdindp3 41716 hdmapval3lemN 41831 hdmap11lem1 41835 fourierdlem80 46184 |
| Copyright terms: Public domain | W3C validator |