![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssneldd | Structured version Visualization version GIF version |
Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssneld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ssneldd.2 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
ssneldd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssneldd.2 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
2 | ssneld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 2 | ssneld 3984 | . 2 ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-ss 3965 |
This theorem is referenced by: 0nelrel0 5736 cantnfp1lem3 9677 fpwwe2lem12 10639 pwfseqlem3 10657 hashbclem 14415 sumrblem 15661 incexclem 15786 prodrblem 15877 fprodntriv 15890 ramub1lem2 16964 mreexmrid 17591 mreexexlem2d 17593 acsfiindd 18510 lbspss 20837 lbsextlem4 20919 lindfrn 21595 fclscmpi 23753 lhop2 25756 lhop 25757 dvcnvrelem1 25758 axlowdimlem17 28471 cyc3co2 32557 erdszelem8 34475 bj-fununsn1 36437 bj-fvsnun2 36440 poimirlem16 36807 osumcllem10N 39139 pexmidlem7N 39150 mapdindp2 40895 mapdindp3 40896 hdmapval3lemN 41011 hdmap11lem1 41015 fourierdlem80 45201 |
Copyright terms: Public domain | W3C validator |