Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssneldd | Structured version Visualization version GIF version |
Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssneld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ssneldd.2 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
ssneldd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssneldd.2 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
2 | ssneld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 2 | ssneld 3928 | . 2 ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2104 ⊆ wss 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-in 3899 df-ss 3909 |
This theorem is referenced by: 0nelrel0 5658 cantnfp1lem3 9482 fpwwe2lem12 10444 pwfseqlem3 10462 hashbclem 14209 sumrblem 15468 incexclem 15593 prodrblem 15684 fprodntriv 15697 ramub1lem2 16773 mreexmrid 17397 mreexexlem2d 17399 acsfiindd 18316 lbspss 20389 lbsextlem4 20468 lindfrn 21073 fclscmpi 23225 lhop2 25224 lhop 25225 dvcnvrelem1 25226 axlowdimlem17 27371 cyc3co2 31452 erdszelem8 33205 bj-fununsn1 35468 bj-fvsnun2 35471 poimirlem16 35837 osumcllem10N 38021 pexmidlem7N 38032 mapdindp2 39777 mapdindp3 39778 hdmapval3lemN 39893 hdmap11lem1 39897 fourierdlem80 43776 |
Copyright terms: Public domain | W3C validator |