| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssneldd | Structured version Visualization version GIF version | ||
| Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssneld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssneldd.2 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssneldd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssneldd.2 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
| 2 | ssneld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 2 | ssneld 3965 | . 2 ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2107 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-clel 2808 df-ss 3948 |
| This theorem is referenced by: 0nelrel0 5725 cantnfp1lem3 9702 fpwwe2lem12 10664 pwfseqlem3 10682 hashbclem 14473 sumrblem 15729 incexclem 15854 prodrblem 15947 fprodntriv 15960 ramub1lem2 17047 mreexmrid 17657 mreexexlem2d 17659 acsfiindd 18567 lbspss 21049 lbsextlem4 21131 lindfrn 21795 fclscmpi 23983 lhop2 25990 lhop 25991 dvcnvrelem1 25992 axlowdimlem17 28903 cyc3co2 33099 ssdifidlprm 33421 erdszelem8 35162 bj-fununsn1 37213 bj-fvsnun2 37216 poimirlem16 37602 osumcllem10N 39926 pexmidlem7N 39937 mapdindp2 41682 mapdindp3 41683 hdmapval3lemN 41798 hdmap11lem1 41802 fourierdlem80 46158 |
| Copyright terms: Public domain | W3C validator |