| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssneldd | Structured version Visualization version GIF version | ||
| Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssneld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssneldd.2 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssneldd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssneldd.2 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
| 2 | ssneld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 2 | ssneld 3951 | . 2 ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2804 df-ss 3934 |
| This theorem is referenced by: 0nelrel0 5701 cantnfp1lem3 9640 fpwwe2lem12 10602 pwfseqlem3 10620 hashbclem 14424 sumrblem 15684 incexclem 15809 prodrblem 15902 fprodntriv 15915 ramub1lem2 17005 mreexmrid 17611 mreexexlem2d 17613 acsfiindd 18519 lbspss 20996 lbsextlem4 21078 lindfrn 21737 fclscmpi 23923 lhop2 25927 lhop 25928 dvcnvrelem1 25929 axlowdimlem17 28892 cyc3co2 33104 ssdifidlprm 33436 erdszelem8 35192 bj-fununsn1 37248 bj-fvsnun2 37251 poimirlem16 37637 osumcllem10N 39966 pexmidlem7N 39977 mapdindp2 41722 mapdindp3 41723 hdmapval3lemN 41838 hdmap11lem1 41842 fourierdlem80 46191 |
| Copyright terms: Public domain | W3C validator |