| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssneldd | Structured version Visualization version GIF version | ||
| Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssneld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssneldd.2 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssneldd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssneldd.2 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
| 2 | ssneld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 2 | ssneld 3936 | . 2 ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2806 df-ss 3919 |
| This theorem is referenced by: 0nelrel0 5676 cantnfp1lem3 9570 fpwwe2lem12 10533 pwfseqlem3 10551 hashbclem 14359 sumrblem 15618 incexclem 15743 prodrblem 15836 fprodntriv 15849 ramub1lem2 16939 mreexmrid 17549 mreexexlem2d 17551 acsfiindd 18459 lbspss 21017 lbsextlem4 21099 lindfrn 21759 fclscmpi 23945 lhop2 25948 lhop 25949 dvcnvrelem1 25950 axlowdimlem17 28937 cyc3co2 33107 ssdifidlprm 33421 erdszelem8 35240 bj-fununsn1 37293 bj-fvsnun2 37296 poimirlem16 37682 osumcllem10N 40010 pexmidlem7N 40021 mapdindp2 41766 mapdindp3 41767 hdmapval3lemN 41882 hdmap11lem1 41886 fourierdlem80 46230 |
| Copyright terms: Public domain | W3C validator |