| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssneldd | Structured version Visualization version GIF version | ||
| Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssneld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssneldd.2 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssneldd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssneldd.2 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
| 2 | ssneld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 2 | ssneld 3960 | . 2 ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2809 df-ss 3943 |
| This theorem is referenced by: 0nelrel0 5714 cantnfp1lem3 9694 fpwwe2lem12 10656 pwfseqlem3 10674 hashbclem 14470 sumrblem 15727 incexclem 15852 prodrblem 15945 fprodntriv 15958 ramub1lem2 17047 mreexmrid 17655 mreexexlem2d 17657 acsfiindd 18563 lbspss 21040 lbsextlem4 21122 lindfrn 21781 fclscmpi 23967 lhop2 25972 lhop 25973 dvcnvrelem1 25974 axlowdimlem17 28937 cyc3co2 33151 ssdifidlprm 33473 erdszelem8 35220 bj-fununsn1 37271 bj-fvsnun2 37274 poimirlem16 37660 osumcllem10N 39984 pexmidlem7N 39995 mapdindp2 41740 mapdindp3 41741 hdmapval3lemN 41856 hdmap11lem1 41860 fourierdlem80 46215 |
| Copyright terms: Public domain | W3C validator |