![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssneldd | Structured version Visualization version GIF version |
Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssneld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ssneldd.2 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
ssneldd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssneldd.2 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
2 | ssneld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 2 | ssneld 4010 | . 2 ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-clel 2819 df-ss 3993 |
This theorem is referenced by: 0nelrel0 5760 cantnfp1lem3 9749 fpwwe2lem12 10711 pwfseqlem3 10729 hashbclem 14501 sumrblem 15759 incexclem 15884 prodrblem 15977 fprodntriv 15990 ramub1lem2 17074 mreexmrid 17701 mreexexlem2d 17703 acsfiindd 18623 lbspss 21104 lbsextlem4 21186 lindfrn 21864 fclscmpi 24058 lhop2 26074 lhop 26075 dvcnvrelem1 26076 axlowdimlem17 28991 cyc3co2 33133 ssdifidlprm 33451 erdszelem8 35166 bj-fununsn1 37219 bj-fvsnun2 37222 poimirlem16 37596 osumcllem10N 39922 pexmidlem7N 39933 mapdindp2 41678 mapdindp3 41679 hdmapval3lemN 41794 hdmap11lem1 41798 fourierdlem80 46107 |
Copyright terms: Public domain | W3C validator |