MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssneldd Structured version   Visualization version   GIF version

Theorem ssneldd 3966
Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ssneld.1 (𝜑𝐴𝐵)
ssneldd.2 (𝜑 → ¬ 𝐶𝐵)
Assertion
Ref Expression
ssneldd (𝜑 → ¬ 𝐶𝐴)

Proof of Theorem ssneldd
StepHypRef Expression
1 ssneldd.2 . 2 (𝜑 → ¬ 𝐶𝐵)
2 ssneld.1 . . 3 (𝜑𝐴𝐵)
32ssneld 3965 . 2 (𝜑 → (¬ 𝐶𝐵 → ¬ 𝐶𝐴))
41, 3mpd 15 1 (𝜑 → ¬ 𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2107  wss 3931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-clel 2808  df-ss 3948
This theorem is referenced by:  0nelrel0  5725  cantnfp1lem3  9702  fpwwe2lem12  10664  pwfseqlem3  10682  hashbclem  14473  sumrblem  15729  incexclem  15854  prodrblem  15947  fprodntriv  15960  ramub1lem2  17047  mreexmrid  17657  mreexexlem2d  17659  acsfiindd  18567  lbspss  21049  lbsextlem4  21131  lindfrn  21795  fclscmpi  23983  lhop2  25990  lhop  25991  dvcnvrelem1  25992  axlowdimlem17  28903  cyc3co2  33099  ssdifidlprm  33421  erdszelem8  35162  bj-fununsn1  37213  bj-fvsnun2  37216  poimirlem16  37602  osumcllem10N  39926  pexmidlem7N  39937  mapdindp2  41682  mapdindp3  41683  hdmapval3lemN  41798  hdmap11lem1  41802  fourierdlem80  46158
  Copyright terms: Public domain W3C validator