| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssneldd | Structured version Visualization version GIF version | ||
| Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssneld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssneldd.2 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssneldd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssneldd.2 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
| 2 | ssneld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 2 | ssneld 3939 | . 2 ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 df-ss 3922 |
| This theorem is referenced by: 0nelrel0 5683 cantnfp1lem3 9595 fpwwe2lem12 10555 pwfseqlem3 10573 hashbclem 14377 sumrblem 15636 incexclem 15761 prodrblem 15854 fprodntriv 15867 ramub1lem2 16957 mreexmrid 17567 mreexexlem2d 17569 acsfiindd 18477 lbspss 21004 lbsextlem4 21086 lindfrn 21746 fclscmpi 23932 lhop2 25936 lhop 25937 dvcnvrelem1 25938 axlowdimlem17 28921 cyc3co2 33095 ssdifidlprm 33405 erdszelem8 35170 bj-fununsn1 37226 bj-fvsnun2 37229 poimirlem16 37615 osumcllem10N 39944 pexmidlem7N 39955 mapdindp2 41700 mapdindp3 41701 hdmapval3lemN 41816 hdmap11lem1 41820 fourierdlem80 46168 |
| Copyright terms: Public domain | W3C validator |