![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssneldd | Structured version Visualization version GIF version |
Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssneld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ssneldd.2 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
ssneldd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssneldd.2 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
2 | ssneld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 2 | ssneld 3983 | . 2 ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3954 df-ss 3964 |
This theorem is referenced by: 0nelrel0 5734 cantnfp1lem3 9671 fpwwe2lem12 10633 pwfseqlem3 10651 hashbclem 14407 sumrblem 15653 incexclem 15778 prodrblem 15869 fprodntriv 15882 ramub1lem2 16956 mreexmrid 17583 mreexexlem2d 17585 acsfiindd 18502 lbspss 20685 lbsextlem4 20766 lindfrn 21367 fclscmpi 23524 lhop2 25523 lhop 25524 dvcnvrelem1 25525 axlowdimlem17 28205 cyc3co2 32286 erdszelem8 34177 bj-fununsn1 36122 bj-fvsnun2 36125 poimirlem16 36492 osumcllem10N 38824 pexmidlem7N 38835 mapdindp2 40580 mapdindp3 40581 hdmapval3lemN 40696 hdmap11lem1 40700 fourierdlem80 44888 |
Copyright terms: Public domain | W3C validator |