| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssneldd | Structured version Visualization version GIF version | ||
| Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssneld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssneldd.2 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssneldd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssneldd.2 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
| 2 | ssneld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 2 | ssneld 3932 | . 2 ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2113 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2808 df-ss 3915 |
| This theorem is referenced by: 0nelrel0 5679 cantnfp1lem3 9577 fpwwe2lem12 10540 pwfseqlem3 10558 hashbclem 14361 sumrblem 15620 incexclem 15745 prodrblem 15838 fprodntriv 15851 ramub1lem2 16941 mreexmrid 17551 mreexexlem2d 17553 acsfiindd 18461 lbspss 21018 lbsextlem4 21100 lindfrn 21760 fclscmpi 23945 lhop2 25948 lhop 25949 dvcnvrelem1 25950 axlowdimlem17 28938 cyc3co2 33116 ssdifidlprm 33430 esplyind 33613 erdszelem8 35263 bj-fununsn1 37318 bj-fvsnun2 37321 poimirlem16 37697 osumcllem10N 40085 pexmidlem7N 40096 mapdindp2 41841 mapdindp3 41842 hdmapval3lemN 41957 hdmap11lem1 41961 fourierdlem80 46309 |
| Copyright terms: Public domain | W3C validator |