Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssneldd | Structured version Visualization version GIF version |
Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssneld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ssneldd.2 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
ssneldd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssneldd.2 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
2 | ssneld.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 2 | ssneld 3927 | . 2 ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ⊆ wss 3891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ss 3908 |
This theorem is referenced by: 0nelrel0 5646 cantnfp1lem3 9399 fpwwe2lem12 10382 pwfseqlem3 10400 hashbclem 14145 sumrblem 15404 incexclem 15529 prodrblem 15620 fprodntriv 15633 ramub1lem2 16709 mreexmrid 17333 mreexexlem2d 17335 acsfiindd 18252 lbspss 20325 lbsextlem4 20404 lindfrn 21009 fclscmpi 23161 lhop2 25160 lhop 25161 dvcnvrelem1 25162 axlowdimlem17 27307 cyc3co2 31386 erdszelem8 33139 bj-fununsn1 35403 bj-fvsnun2 35406 poimirlem16 35772 osumcllem10N 37958 pexmidlem7N 37969 mapdindp2 39714 mapdindp3 39715 hdmapval3lemN 39830 hdmap11lem1 39834 fourierdlem80 43681 |
Copyright terms: Public domain | W3C validator |