Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh3dim3N Structured version   Visualization version   GIF version

Theorem dvh3dim3N 39390
Description: There is a vector that is outside of 2 spans. TODO: decide to use either this or dvh3dim2 39389 everywhere. If this one is needed, make dvh3dim2 39389 into a lemma. (Contributed by NM, 21-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
dvh3dim.y (𝜑𝑌𝑉)
dvh3dim2.z (𝜑𝑍𝑉)
dvh3dim3.t (𝜑𝑇𝑉)
Assertion
Ref Expression
dvh3dim3N (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌   𝑧,𝑍   𝜑,𝑧   𝑧,𝑇
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvh3dim3N
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
2 dvh3dim.n . . . . 5 𝑁 = (LSpan‘𝑈)
3 dvh3dim.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
4 dvh3dim.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 dvh3dim.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
63, 4, 5dvhlmod 39051 . . . . . 6 (𝜑𝑈 ∈ LMod)
76adantr 480 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑈 ∈ LMod)
8 dvh3dim.v . . . . . . 7 𝑉 = (Base‘𝑈)
9 dvh3dim2.z . . . . . . 7 (𝜑𝑍𝑉)
10 dvh3dim3.t . . . . . . 7 (𝜑𝑇𝑉)
118, 1, 2, 6, 9, 10lspprcl 20155 . . . . . 6 (𝜑 → (𝑁‘{𝑍, 𝑇}) ∈ (LSubSp‘𝑈))
1211adantr 480 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑍, 𝑇}) ∈ (LSubSp‘𝑈))
13 simpr 484 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑍, 𝑇}))
148, 2, 6, 9, 10lspprid2 20175 . . . . . 6 (𝜑𝑇 ∈ (𝑁‘{𝑍, 𝑇}))
1514adantr 480 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑇 ∈ (𝑁‘{𝑍, 𝑇}))
161, 2, 7, 12, 13, 15lspprss 20169 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌, 𝑇}) ⊆ (𝑁‘{𝑍, 𝑇}))
17 sspss 4030 . . . 4 ((𝑁‘{𝑌, 𝑇}) ⊆ (𝑁‘{𝑍, 𝑇}) ↔ ((𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇}) ∨ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})))
1816, 17sylib 217 . . 3 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → ((𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇}) ∨ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})))
193, 4, 5dvhlvec 39050 . . . . . . 7 (𝜑𝑈 ∈ LVec)
2019adantr 480 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → 𝑈 ∈ LVec)
21 dvh3dim.y . . . . . . . 8 (𝜑𝑌𝑉)
228, 1, 2, 6, 21, 10lspprcl 20155 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, 𝑇}) ∈ (LSubSp‘𝑈))
2322adantr 480 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌, 𝑇}) ∈ (LSubSp‘𝑈))
249adantr 480 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → 𝑍𝑉)
2510adantr 480 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → 𝑇𝑉)
26 simpr 484 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇}))
278, 1, 2, 20, 23, 24, 25, 26lspprat 20330 . . . . 5 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → ∃𝑤𝑉 (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤}))
2853ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
29 simp2 1135 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → 𝑤𝑉)
30 dvh3dim.x . . . . . . . . . 10 (𝜑𝑋𝑉)
31303ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → 𝑋𝑉)
3293ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → 𝑍𝑉)
333, 4, 8, 2, 28, 29, 31, 32dvh3dim2 39389 . . . . . . . 8 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑤, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑍})))
3463ad2ant1 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → 𝑈 ∈ LMod)
351lsssssubg 20135 . . . . . . . . . . . . . . 15 (𝑈 ∈ LMod → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
3634, 35syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
378, 1, 2lspsncl 20154 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
386, 30, 37syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
39383ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
4036, 39sseldd 3918 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑈))
418, 1, 2lspsncl 20154 . . . . . . . . . . . . . . 15 ((𝑈 ∈ LMod ∧ 𝑤𝑉) → (𝑁‘{𝑤}) ∈ (LSubSp‘𝑈))
4234, 29, 41syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ∈ (LSubSp‘𝑈))
4336, 42sseldd 3918 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ∈ (SubGrp‘𝑈))
44 prssi 4751 . . . . . . . . . . . . . . . . 17 ((𝑌𝑉𝑇𝑉) → {𝑌, 𝑇} ⊆ 𝑉)
4521, 10, 44syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑌, 𝑇} ⊆ 𝑉)
46 snsspr1 4744 . . . . . . . . . . . . . . . . 17 {𝑌} ⊆ {𝑌, 𝑇}
4746a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑌} ⊆ {𝑌, 𝑇})
488, 2lspss 20161 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ LMod ∧ {𝑌, 𝑇} ⊆ 𝑉 ∧ {𝑌} ⊆ {𝑌, 𝑇}) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑇}))
496, 45, 47, 48syl3anc 1369 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑇}))
50493ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑇}))
51 simp3 1136 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤}))
5250, 51sseqtrd 3957 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑤}))
53 eqid 2738 . . . . . . . . . . . . . 14 (LSSum‘𝑈) = (LSSum‘𝑈)
5453lsmless2 19181 . . . . . . . . . . . . 13 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{𝑤}) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑤})) → ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑤})))
5540, 43, 52, 54syl3anc 1369 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑤})))
568, 2, 53, 6, 30, 21lsmpr 20266 . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})))
57563ad2ant1 1131 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})))
58 prcom 4665 . . . . . . . . . . . . . 14 {𝑤, 𝑋} = {𝑋, 𝑤}
5958fveq2i 6759 . . . . . . . . . . . . 13 (𝑁‘{𝑤, 𝑋}) = (𝑁‘{𝑋, 𝑤})
608, 2, 53, 34, 31, 29lsmpr 20266 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋, 𝑤}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑤})))
6159, 60syl5eq 2791 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑤, 𝑋}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑤})))
6255, 57, 613sstr4d 3964 . . . . . . . . . . 11 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑤, 𝑋}))
6362ssneld 3919 . . . . . . . . . 10 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑋}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
648, 1, 2lspsncl 20154 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
656, 9, 64syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
66653ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
6736, 66sseldd 3918 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑈))
68 snsspr2 4745 . . . . . . . . . . . . . . . . 17 {𝑇} ⊆ {𝑌, 𝑇}
6968a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑇} ⊆ {𝑌, 𝑇})
708, 2lspss 20161 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ LMod ∧ {𝑌, 𝑇} ⊆ 𝑉 ∧ {𝑇} ⊆ {𝑌, 𝑇}) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑇}))
716, 45, 69, 70syl3anc 1369 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑇}))
72713ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑇}))
7372, 51sseqtrd 3957 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑤}))
7453lsmless2 19181 . . . . . . . . . . . . 13 (((𝑁‘{𝑍}) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{𝑤}) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑤})) → ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑇})) ⊆ ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑤})))
7567, 43, 73, 74syl3anc 1369 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑇})) ⊆ ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑤})))
768, 2, 53, 6, 9, 10lsmpr 20266 . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑍, 𝑇}) = ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑇})))
77763ad2ant1 1131 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍, 𝑇}) = ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑇})))
78 prcom 4665 . . . . . . . . . . . . . 14 {𝑤, 𝑍} = {𝑍, 𝑤}
7978fveq2i 6759 . . . . . . . . . . . . 13 (𝑁‘{𝑤, 𝑍}) = (𝑁‘{𝑍, 𝑤})
808, 2, 53, 34, 32, 29lsmpr 20266 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍, 𝑤}) = ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑤})))
8179, 80syl5eq 2791 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑤, 𝑍}) = ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑤})))
8275, 77, 813sstr4d 3964 . . . . . . . . . . 11 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍, 𝑇}) ⊆ (𝑁‘{𝑤, 𝑍}))
8382ssneld 3919 . . . . . . . . . 10 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑍}) → ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
8463, 83anim12d 608 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ((¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑍})) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
8584reximdv 3201 . . . . . . . 8 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑤, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
8633, 85mpd 15 . . . . . . 7 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
8786rexlimdv3a 3214 . . . . . 6 (𝜑 → (∃𝑤𝑉 (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
8887adantr 480 . . . . 5 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → (∃𝑤𝑉 (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
8927, 88mpd 15 . . . 4 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
903, 4, 8, 2, 5, 21, 30, 10dvh3dim2 39389 . . . . . 6 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})))
9190adantr 480 . . . . 5 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})))
92 simpr 484 . . . . . . 7 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}))
93 prcom 4665 . . . . . . . . . . . 12 {𝑌, 𝑋} = {𝑋, 𝑌}
9493fveq2i 6759 . . . . . . . . . . 11 (𝑁‘{𝑌, 𝑋}) = (𝑁‘{𝑋, 𝑌})
9594eleq2i 2830 . . . . . . . . . 10 (𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
9695notbii 319 . . . . . . . . 9 𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
9796a1i 11 . . . . . . . 8 ((𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}) → (¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
98 eleq2 2827 . . . . . . . . 9 ((𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}) → (𝑧 ∈ (𝑁‘{𝑌, 𝑇}) ↔ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
9998notbid 317 . . . . . . . 8 ((𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}) → (¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
10097, 99anbi12d 630 . . . . . . 7 ((𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}) → ((¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})) ↔ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
10192, 100syl 17 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → ((¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})) ↔ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
102101rexbidv 3225 . . . . 5 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → (∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})) ↔ ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
10391, 102mpbid 231 . . . 4 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
10489, 103jaodan 954 . . 3 ((𝜑 ∧ ((𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇}) ∨ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
10518, 104syldan 590 . 2 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
1063, 4, 8, 2, 5, 21, 30, 10dvh3dim2 39389 . . . 4 (𝜑 → ∃𝑤𝑉𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇})))
107106adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑤𝑉𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇})))
108 simpl1l 1222 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝜑)
109108, 6syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑈 ∈ LMod)
110 simpl2 1190 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑤𝑉)
111108, 21syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌𝑉)
112 eqid 2738 . . . . . . . 8 (+g𝑈) = (+g𝑈)
1138, 112lmodvacl 20052 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑤𝑉𝑌𝑉) → (𝑤(+g𝑈)𝑌) ∈ 𝑉)
114109, 110, 111, 113syl3anc 1369 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑤(+g𝑈)𝑌) ∈ 𝑉)
1158, 1, 2, 6, 30, 21lspprcl 20155 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
116108, 115syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
1178, 2, 6, 30, 21lspprid2 20175 . . . . . . . 8 (𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑌}))
118108, 117syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑋, 𝑌}))
119 simpl3l 1226 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}))
12094eleq2i 2830 . . . . . . . 8 (𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
121119, 120sylnib 327 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
1228, 112, 1, 109, 116, 118, 110, 121lssvancl2 20122 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}))
123108, 11syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑍, 𝑇}) ∈ (LSubSp‘𝑈))
124 simpr 484 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑤 ∈ (𝑁‘{𝑍, 𝑇}))
125 simpl1r 1223 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇}))
1268, 112, 1, 109, 123, 124, 111, 125lssvancl1 20121 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇}))
127 eleq1 2826 . . . . . . . . 9 (𝑧 = (𝑤(+g𝑈)𝑌) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌})))
128127notbid 317 . . . . . . . 8 (𝑧 = (𝑤(+g𝑈)𝑌) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌})))
129 eleq1 2826 . . . . . . . . 9 (𝑧 = (𝑤(+g𝑈)𝑌) → (𝑧 ∈ (𝑁‘{𝑍, 𝑇}) ↔ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇})))
130129notbid 317 . . . . . . . 8 (𝑧 = (𝑤(+g𝑈)𝑌) → (¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}) ↔ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇})))
131128, 130anbi12d 630 . . . . . . 7 (𝑧 = (𝑤(+g𝑈)𝑌) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})) ↔ (¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇}))))
132131rspcev 3552 . . . . . 6 (((𝑤(+g𝑈)𝑌) ∈ 𝑉 ∧ (¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
133114, 122, 126, 132syl12anc 833 . . . . 5 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
134 simpl2 1190 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑤𝑉)
135 simpl3l 1226 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}))
136135, 120sylnib 327 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
137 simpr 484 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇}))
138 eleq1 2826 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
139138notbid 317 . . . . . . . 8 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
140 eleq1 2826 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑍, 𝑇}) ↔ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})))
141140notbid 317 . . . . . . . 8 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})))
142139, 141anbi12d 630 . . . . . . 7 (𝑧 = 𝑤 → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})) ↔ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇}))))
143142rspcev 3552 . . . . . 6 ((𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
144134, 136, 137, 143syl12anc 833 . . . . 5 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
145133, 144pm2.61dan 809 . . . 4 (((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
146145rexlimdv3a 3214 . . 3 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → (∃𝑤𝑉𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
147107, 146mpd 15 . 2 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
148105, 147pm2.61dan 809 1 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  wss 3883  wpss 3884  {csn 4558  {cpr 4560  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  SubGrpcsubg 18664  LSSumclsm 19154  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LVecclvec 20279  HLchlt 37291  LHypclh 37925  DVecHcdvh 39019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-undef 8060  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-0g 17069  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280  df-lsatoms 36917  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100  df-tgrp 38684  df-tendo 38696  df-edring 38698  df-dveca 38944  df-disoa 38970  df-dvech 39020  df-dib 39080  df-dic 39114  df-dih 39170  df-doch 39289  df-djh 39336
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator