Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh3dim3N Structured version   Visualization version   GIF version

Theorem dvh3dim3N 39010
Description: There is a vector that is outside of 2 spans. TODO: decide to use either this or dvh3dim2 39009 everywhere. If this one is needed, make dvh3dim2 39009 into a lemma. (Contributed by NM, 21-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
dvh3dim.y (𝜑𝑌𝑉)
dvh3dim2.z (𝜑𝑍𝑉)
dvh3dim3.t (𝜑𝑇𝑉)
Assertion
Ref Expression
dvh3dim3N (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌   𝑧,𝑍   𝜑,𝑧   𝑧,𝑇
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvh3dim3N
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2759 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
2 dvh3dim.n . . . . 5 𝑁 = (LSpan‘𝑈)
3 dvh3dim.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
4 dvh3dim.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 dvh3dim.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
63, 4, 5dvhlmod 38671 . . . . . 6 (𝜑𝑈 ∈ LMod)
76adantr 485 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑈 ∈ LMod)
8 dvh3dim.v . . . . . . 7 𝑉 = (Base‘𝑈)
9 dvh3dim2.z . . . . . . 7 (𝜑𝑍𝑉)
10 dvh3dim3.t . . . . . . 7 (𝜑𝑇𝑉)
118, 1, 2, 6, 9, 10lspprcl 19803 . . . . . 6 (𝜑 → (𝑁‘{𝑍, 𝑇}) ∈ (LSubSp‘𝑈))
1211adantr 485 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑍, 𝑇}) ∈ (LSubSp‘𝑈))
13 simpr 489 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑍, 𝑇}))
148, 2, 6, 9, 10lspprid2 19823 . . . . . 6 (𝜑𝑇 ∈ (𝑁‘{𝑍, 𝑇}))
1514adantr 485 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑇 ∈ (𝑁‘{𝑍, 𝑇}))
161, 2, 7, 12, 13, 15lspprss 19817 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌, 𝑇}) ⊆ (𝑁‘{𝑍, 𝑇}))
17 sspss 4001 . . . 4 ((𝑁‘{𝑌, 𝑇}) ⊆ (𝑁‘{𝑍, 𝑇}) ↔ ((𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇}) ∨ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})))
1816, 17sylib 221 . . 3 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → ((𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇}) ∨ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})))
193, 4, 5dvhlvec 38670 . . . . . . 7 (𝜑𝑈 ∈ LVec)
2019adantr 485 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → 𝑈 ∈ LVec)
21 dvh3dim.y . . . . . . . 8 (𝜑𝑌𝑉)
228, 1, 2, 6, 21, 10lspprcl 19803 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, 𝑇}) ∈ (LSubSp‘𝑈))
2322adantr 485 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌, 𝑇}) ∈ (LSubSp‘𝑈))
249adantr 485 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → 𝑍𝑉)
2510adantr 485 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → 𝑇𝑉)
26 simpr 489 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇}))
278, 1, 2, 20, 23, 24, 25, 26lspprat 19978 . . . . 5 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → ∃𝑤𝑉 (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤}))
2853ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
29 simp2 1135 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → 𝑤𝑉)
30 dvh3dim.x . . . . . . . . . 10 (𝜑𝑋𝑉)
31303ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → 𝑋𝑉)
3293ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → 𝑍𝑉)
333, 4, 8, 2, 28, 29, 31, 32dvh3dim2 39009 . . . . . . . 8 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑤, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑍})))
3463ad2ant1 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → 𝑈 ∈ LMod)
351lsssssubg 19783 . . . . . . . . . . . . . . 15 (𝑈 ∈ LMod → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
3634, 35syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
378, 1, 2lspsncl 19802 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
386, 30, 37syl2anc 588 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
39383ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
4036, 39sseldd 3889 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑈))
418, 1, 2lspsncl 19802 . . . . . . . . . . . . . . 15 ((𝑈 ∈ LMod ∧ 𝑤𝑉) → (𝑁‘{𝑤}) ∈ (LSubSp‘𝑈))
4234, 29, 41syl2anc 588 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ∈ (LSubSp‘𝑈))
4336, 42sseldd 3889 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ∈ (SubGrp‘𝑈))
44 prssi 4704 . . . . . . . . . . . . . . . . 17 ((𝑌𝑉𝑇𝑉) → {𝑌, 𝑇} ⊆ 𝑉)
4521, 10, 44syl2anc 588 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑌, 𝑇} ⊆ 𝑉)
46 snsspr1 4697 . . . . . . . . . . . . . . . . 17 {𝑌} ⊆ {𝑌, 𝑇}
4746a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑌} ⊆ {𝑌, 𝑇})
488, 2lspss 19809 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ LMod ∧ {𝑌, 𝑇} ⊆ 𝑉 ∧ {𝑌} ⊆ {𝑌, 𝑇}) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑇}))
496, 45, 47, 48syl3anc 1369 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑇}))
50493ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑇}))
51 simp3 1136 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤}))
5250, 51sseqtrd 3928 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑤}))
53 eqid 2759 . . . . . . . . . . . . . 14 (LSSum‘𝑈) = (LSSum‘𝑈)
5453lsmless2 18838 . . . . . . . . . . . . 13 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{𝑤}) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑤})) → ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑤})))
5540, 43, 52, 54syl3anc 1369 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑤})))
568, 2, 53, 6, 30, 21lsmpr 19914 . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})))
57563ad2ant1 1131 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})))
58 prcom 4618 . . . . . . . . . . . . . 14 {𝑤, 𝑋} = {𝑋, 𝑤}
5958fveq2i 6654 . . . . . . . . . . . . 13 (𝑁‘{𝑤, 𝑋}) = (𝑁‘{𝑋, 𝑤})
608, 2, 53, 34, 31, 29lsmpr 19914 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋, 𝑤}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑤})))
6159, 60syl5eq 2806 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑤, 𝑋}) = ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑤})))
6255, 57, 613sstr4d 3935 . . . . . . . . . . 11 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑤, 𝑋}))
6362ssneld 3890 . . . . . . . . . 10 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑋}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
648, 1, 2lspsncl 19802 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
656, 9, 64syl2anc 588 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
66653ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
6736, 66sseldd 3889 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑈))
68 snsspr2 4698 . . . . . . . . . . . . . . . . 17 {𝑇} ⊆ {𝑌, 𝑇}
6968a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑇} ⊆ {𝑌, 𝑇})
708, 2lspss 19809 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ LMod ∧ {𝑌, 𝑇} ⊆ 𝑉 ∧ {𝑇} ⊆ {𝑌, 𝑇}) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑇}))
716, 45, 69, 70syl3anc 1369 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑇}))
72713ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑇}))
7372, 51sseqtrd 3928 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑤}))
7453lsmless2 18838 . . . . . . . . . . . . 13 (((𝑁‘{𝑍}) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{𝑤}) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑤})) → ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑇})) ⊆ ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑤})))
7567, 43, 73, 74syl3anc 1369 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑇})) ⊆ ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑤})))
768, 2, 53, 6, 9, 10lsmpr 19914 . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑍, 𝑇}) = ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑇})))
77763ad2ant1 1131 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍, 𝑇}) = ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑇})))
78 prcom 4618 . . . . . . . . . . . . . 14 {𝑤, 𝑍} = {𝑍, 𝑤}
7978fveq2i 6654 . . . . . . . . . . . . 13 (𝑁‘{𝑤, 𝑍}) = (𝑁‘{𝑍, 𝑤})
808, 2, 53, 34, 32, 29lsmpr 19914 . . . . . . . . . . . . 13 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍, 𝑤}) = ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑤})))
8179, 80syl5eq 2806 . . . . . . . . . . . 12 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑤, 𝑍}) = ((𝑁‘{𝑍})(LSSum‘𝑈)(𝑁‘{𝑤})))
8275, 77, 813sstr4d 3935 . . . . . . . . . . 11 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (𝑁‘{𝑍, 𝑇}) ⊆ (𝑁‘{𝑤, 𝑍}))
8382ssneld 3890 . . . . . . . . . 10 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑍}) → ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
8463, 83anim12d 612 . . . . . . . . 9 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ((¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑍})) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
8584reximdv 3195 . . . . . . . 8 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → (∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑤, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑤, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
8633, 85mpd 15 . . . . . . 7 ((𝜑𝑤𝑉 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
8786rexlimdv3a 3208 . . . . . 6 (𝜑 → (∃𝑤𝑉 (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
8887adantr 485 . . . . 5 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → (∃𝑤𝑉 (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑤}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
8927, 88mpd 15 . . . 4 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
903, 4, 8, 2, 5, 21, 30, 10dvh3dim2 39009 . . . . . 6 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})))
9190adantr 485 . . . . 5 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})))
92 simpr 489 . . . . . . 7 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}))
93 prcom 4618 . . . . . . . . . . . 12 {𝑌, 𝑋} = {𝑋, 𝑌}
9493fveq2i 6654 . . . . . . . . . . 11 (𝑁‘{𝑌, 𝑋}) = (𝑁‘{𝑋, 𝑌})
9594eleq2i 2842 . . . . . . . . . 10 (𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ↔ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
9695notbii 324 . . . . . . . . 9 𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
9796a1i 11 . . . . . . . 8 ((𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}) → (¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
98 eleq2 2839 . . . . . . . . 9 ((𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}) → (𝑧 ∈ (𝑁‘{𝑌, 𝑇}) ↔ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
9998notbid 322 . . . . . . . 8 ((𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}) → (¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇}) ↔ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
10097, 99anbi12d 634 . . . . . . 7 ((𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}) → ((¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})) ↔ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
10192, 100syl 17 . . . . . 6 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → ((¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})) ↔ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
102101rexbidv 3219 . . . . 5 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → (∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑌, 𝑇})) ↔ ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
10391, 102mpbid 235 . . . 4 ((𝜑 ∧ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
10489, 103jaodan 956 . . 3 ((𝜑 ∧ ((𝑁‘{𝑌, 𝑇}) ⊊ (𝑁‘{𝑍, 𝑇}) ∨ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑍, 𝑇}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
10518, 104syldan 595 . 2 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
1063, 4, 8, 2, 5, 21, 30, 10dvh3dim2 39009 . . . 4 (𝜑 → ∃𝑤𝑉𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇})))
107106adantr 485 . . 3 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑤𝑉𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇})))
108 simpl1l 1222 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝜑)
109108, 6syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑈 ∈ LMod)
110 simpl2 1190 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑤𝑉)
111108, 21syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌𝑉)
112 eqid 2759 . . . . . . . 8 (+g𝑈) = (+g𝑈)
1138, 112lmodvacl 19701 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑤𝑉𝑌𝑉) → (𝑤(+g𝑈)𝑌) ∈ 𝑉)
114109, 110, 111, 113syl3anc 1369 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑤(+g𝑈)𝑌) ∈ 𝑉)
1158, 1, 2, 6, 30, 21lspprcl 19803 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
116108, 115syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
1178, 2, 6, 30, 21lspprid2 19823 . . . . . . . 8 (𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑌}))
118108, 117syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑋, 𝑌}))
119 simpl3l 1226 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}))
12094eleq2i 2842 . . . . . . . 8 (𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
121119, 120sylnib 332 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
1228, 112, 1, 109, 116, 118, 110, 121lssvancl2 19770 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}))
123108, 11syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑍, 𝑇}) ∈ (LSubSp‘𝑈))
124 simpr 489 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑤 ∈ (𝑁‘{𝑍, 𝑇}))
125 simpl1r 1223 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇}))
1268, 112, 1, 109, 123, 124, 111, 125lssvancl1 19769 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇}))
127 eleq1 2838 . . . . . . . . 9 (𝑧 = (𝑤(+g𝑈)𝑌) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌})))
128127notbid 322 . . . . . . . 8 (𝑧 = (𝑤(+g𝑈)𝑌) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌})))
129 eleq1 2838 . . . . . . . . 9 (𝑧 = (𝑤(+g𝑈)𝑌) → (𝑧 ∈ (𝑁‘{𝑍, 𝑇}) ↔ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇})))
130129notbid 322 . . . . . . . 8 (𝑧 = (𝑤(+g𝑈)𝑌) → (¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}) ↔ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇})))
131128, 130anbi12d 634 . . . . . . 7 (𝑧 = (𝑤(+g𝑈)𝑌) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})) ↔ (¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇}))))
132131rspcev 3539 . . . . . 6 (((𝑤(+g𝑈)𝑌) ∈ 𝑉 ∧ (¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑍, 𝑇}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
133114, 122, 126, 132syl12anc 836 . . . . 5 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
134 simpl2 1190 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑤𝑉)
135 simpl3l 1226 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}))
136135, 120sylnib 332 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
137 simpr 489 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇}))
138 eleq1 2838 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
139138notbid 322 . . . . . . . 8 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
140 eleq1 2838 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑍, 𝑇}) ↔ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})))
141140notbid 322 . . . . . . . 8 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})))
142139, 141anbi12d 634 . . . . . . 7 (𝑧 = 𝑤 → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})) ↔ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇}))))
143142rspcev 3539 . . . . . 6 ((𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
144134, 136, 137, 143syl12anc 836 . . . . 5 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
145133, 144pm2.61dan 813 . . . 4 (((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) ∧ 𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
146145rexlimdv3a 3208 . . 3 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → (∃𝑤𝑉𝑤 ∈ (𝑁‘{𝑌, 𝑋}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑌, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇}))))
147107, 146mpd 15 . 2 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
148105, 147pm2.61dan 813 1 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑍, 𝑇})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  wo 845  w3a 1085   = wceq 1539  wcel 2112  wrex 3069  wss 3854  wpss 3855  {csn 4515  {cpr 4517  cfv 6328  (class class class)co 7143  Basecbs 16526  +gcplusg 16608  SubGrpcsubg 18325  LSSumclsm 18811  LModclmod 19687  LSubSpclss 19756  LSpanclspn 19796  LVecclvec 19927  HLchlt 36911  LHypclh 37545  DVecHcdvh 38639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637  ax-riotaBAD 36514
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-iin 4879  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-tpos 7895  df-undef 7942  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-3 11723  df-4 11724  df-5 11725  df-6 11726  df-n0 11920  df-z 12006  df-uz 12268  df-fz 12925  df-struct 16528  df-ndx 16529  df-slot 16530  df-base 16532  df-sets 16533  df-ress 16534  df-plusg 16621  df-mulr 16622  df-sca 16624  df-vsca 16625  df-0g 16758  df-proset 17589  df-poset 17607  df-plt 17619  df-lub 17635  df-glb 17636  df-join 17637  df-meet 17638  df-p0 17700  df-p1 17701  df-lat 17707  df-clat 17769  df-mgm 17903  df-sgrp 17952  df-mnd 17963  df-submnd 18008  df-grp 18157  df-minusg 18158  df-sbg 18159  df-subg 18328  df-cntz 18499  df-lsm 18813  df-cmn 18960  df-abl 18961  df-mgp 19293  df-ur 19305  df-ring 19352  df-oppr 19429  df-dvdsr 19447  df-unit 19448  df-invr 19478  df-dvr 19489  df-drng 19557  df-lmod 19689  df-lss 19757  df-lsp 19797  df-lvec 19928  df-lsatoms 36537  df-oposet 36737  df-ol 36739  df-oml 36740  df-covers 36827  df-ats 36828  df-atl 36859  df-cvlat 36883  df-hlat 36912  df-llines 37059  df-lplanes 37060  df-lvols 37061  df-lines 37062  df-psubsp 37064  df-pmap 37065  df-padd 37357  df-lhyp 37549  df-laut 37550  df-ldil 37665  df-ltrn 37666  df-trl 37720  df-tgrp 38304  df-tendo 38316  df-edring 38318  df-dveca 38564  df-disoa 38590  df-dvech 38640  df-dib 38700  df-dic 38734  df-dih 38790  df-doch 38909  df-djh 38956
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator