Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh3dim2 Structured version   Visualization version   GIF version

Theorem dvh3dim2 39767
Description: There is a vector that is outside of 2 spans with a common vector. (Contributed by NM, 13-May-2015.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
dvh3dim.y (𝜑𝑌𝑉)
dvh3dim2.z (𝜑𝑍𝑉)
Assertion
Ref Expression
dvh3dim2 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌   𝑧,𝑍   𝜑,𝑧
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvh3dim2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dvh3dim.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvh3dim.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 dvh3dim.v . . . . 5 𝑉 = (Base‘𝑈)
4 dvh3dim.n . . . . 5 𝑁 = (LSpan‘𝑈)
5 dvh3dim.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 dvh3dim.x . . . . 5 (𝜑𝑋𝑉)
7 dvh3dim2.z . . . . 5 (𝜑𝑍𝑉)
81, 2, 3, 4, 5, 6, 7dvh3dim 39765 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))
98adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))
10 eqid 2736 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
111, 2, 5dvhlmod 39429 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
1211ad2antrr 723 . . . . . . 7 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → 𝑈 ∈ LMod)
133, 10, 4, 11, 6, 7lspprcl 20347 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑈))
1413ad2antrr 723 . . . . . . 7 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑈))
153, 4, 11, 6, 7lspprid1 20366 . . . . . . . 8 (𝜑𝑋 ∈ (𝑁‘{𝑋, 𝑍}))
1615ad2antrr 723 . . . . . . 7 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → 𝑋 ∈ (𝑁‘{𝑋, 𝑍}))
17 simplr 766 . . . . . . 7 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))
1810, 4, 12, 14, 16, 17lspprss 20361 . . . . . 6 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑍}))
1918ssneld 3934 . . . . 5 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
2019ancrd 552 . . . 4 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))))
2120reximdva 3161 . . 3 ((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))))
229, 21mpd 15 . 2 ((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
23 dvh3dim.y . . . . 5 (𝜑𝑌𝑉)
241, 2, 3, 4, 5, 6, 23dvh3dim 39765 . . . 4 (𝜑 → ∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
2524adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
26 simpl1l 1223 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝜑)
2726, 11syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑈 ∈ LMod)
28 simpl2 1191 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑤𝑉)
2926, 23syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑌𝑉)
30 eqid 2736 . . . . . . . 8 (+g𝑈) = (+g𝑈)
313, 30lmodvacl 20244 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑤𝑉𝑌𝑉) → (𝑤(+g𝑈)𝑌) ∈ 𝑉)
3227, 28, 29, 31syl3anc 1370 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → (𝑤(+g𝑈)𝑌) ∈ 𝑉)
333, 10, 4, 11, 6, 23lspprcl 20347 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
3426, 33syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
353, 4, 11, 6, 23lspprid2 20367 . . . . . . . 8 (𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑌}))
3626, 35syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑌 ∈ (𝑁‘{𝑋, 𝑌}))
37 simpl3 1192 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
383, 30, 10, 27, 34, 36, 28, 37lssvancl2 20314 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}))
3926, 13syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑈))
40 simpr 485 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))
41 simpl1r 1224 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))
423, 30, 10, 27, 39, 40, 29, 41lssvancl1 20313 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍}))
43 eleq1 2824 . . . . . . . . 9 (𝑧 = (𝑤(+g𝑈)𝑌) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌})))
4443notbid 317 . . . . . . . 8 (𝑧 = (𝑤(+g𝑈)𝑌) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌})))
45 eleq1 2824 . . . . . . . . 9 (𝑧 = (𝑤(+g𝑈)𝑌) → (𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍})))
4645notbid 317 . . . . . . . 8 (𝑧 = (𝑤(+g𝑈)𝑌) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍})))
4744, 46anbi12d 631 . . . . . . 7 (𝑧 = (𝑤(+g𝑈)𝑌) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})) ↔ (¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍}))))
4847rspcev 3570 . . . . . 6 (((𝑤(+g𝑈)𝑌) ∈ 𝑉 ∧ (¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
4932, 38, 42, 48syl12anc 834 . . . . 5 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
50 simpl2 1191 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑤𝑉)
51 simpl3 1192 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
52 simpr 485 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))
53 eleq1 2824 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
5453notbid 317 . . . . . . . 8 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
55 eleq1 2824 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})))
5655notbid 317 . . . . . . . 8 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})))
5754, 56anbi12d 631 . . . . . . 7 (𝑧 = 𝑤 → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})) ↔ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))))
5857rspcev 3570 . . . . . 6 ((𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
5950, 51, 52, 58syl12anc 834 . . . . 5 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
6049, 59pm2.61dan 810 . . . 4 (((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
6160rexlimdv3a 3152 . . 3 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → (∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))))
6225, 61mpd 15 . 2 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
6322, 62pm2.61dan 810 1 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wrex 3070  {cpr 4576  cfv 6480  (class class class)co 7338  Basecbs 17010  +gcplusg 17060  LModclmod 20230  LSubSpclss 20300  LSpanclspn 20340  HLchlt 37668  LHypclh 38303  DVecHcdvh 39397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-cnex 11029  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050  ax-riotaBAD 37271
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4854  df-int 4896  df-iun 4944  df-iin 4945  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-om 7782  df-1st 7900  df-2nd 7901  df-tpos 8113  df-undef 8160  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-1o 8368  df-er 8570  df-map 8689  df-en 8806  df-dom 8807  df-sdom 8808  df-fin 8809  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-nn 12076  df-2 12138  df-3 12139  df-4 12140  df-5 12141  df-6 12142  df-n0 12336  df-z 12422  df-uz 12685  df-fz 13342  df-struct 16946  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-mulr 17074  df-sca 17076  df-vsca 17077  df-0g 17250  df-proset 18111  df-poset 18129  df-plt 18146  df-lub 18162  df-glb 18163  df-join 18164  df-meet 18165  df-p0 18241  df-p1 18242  df-lat 18248  df-clat 18315  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-submnd 18529  df-grp 18677  df-minusg 18678  df-sbg 18679  df-subg 18849  df-cntz 19020  df-lsm 19338  df-cmn 19484  df-abl 19485  df-mgp 19817  df-ur 19834  df-ring 19881  df-oppr 19958  df-dvdsr 19979  df-unit 19980  df-invr 20010  df-dvr 20021  df-drng 20096  df-lmod 20232  df-lss 20301  df-lsp 20341  df-lvec 20472  df-lsatoms 37294  df-oposet 37494  df-ol 37496  df-oml 37497  df-covers 37584  df-ats 37585  df-atl 37616  df-cvlat 37640  df-hlat 37669  df-llines 37817  df-lplanes 37818  df-lvols 37819  df-lines 37820  df-psubsp 37822  df-pmap 37823  df-padd 38115  df-lhyp 38307  df-laut 38308  df-ldil 38423  df-ltrn 38424  df-trl 38478  df-tgrp 39062  df-tendo 39074  df-edring 39076  df-dveca 39322  df-disoa 39348  df-dvech 39398  df-dib 39458  df-dic 39492  df-dih 39548  df-doch 39667  df-djh 39714
This theorem is referenced by:  dvh3dim3N  39768  mapdh8ad  40098
  Copyright terms: Public domain W3C validator