| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dvh3dim.h | . . . . 5
⊢ 𝐻 = (LHyp‘𝐾) | 
| 2 |  | dvh3dim.u | . . . . 5
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 3 |  | dvh3dim.v | . . . . 5
⊢ 𝑉 = (Base‘𝑈) | 
| 4 |  | dvh3dim.n | . . . . 5
⊢ 𝑁 = (LSpan‘𝑈) | 
| 5 |  | dvh3dim.k | . . . . 5
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 6 |  | dvh3dim.x | . . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| 7 |  | dvh3dim2.z | . . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝑉) | 
| 8 | 1, 2, 3, 4, 5, 6, 7 | dvh3dim 41448 | . . . 4
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})) | 
| 9 | 8 | adantr 480 | . . 3
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})) | 
| 10 |  | eqid 2737 | . . . . . . 7
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) | 
| 11 | 1, 2, 5 | dvhlmod 41112 | . . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ LMod) | 
| 12 | 11 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧 ∈ 𝑉) → 𝑈 ∈ LMod) | 
| 13 | 3, 10, 4, 11, 6, 7 | lspprcl 20976 | . . . . . . . 8
⊢ (𝜑 → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑈)) | 
| 14 | 13 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧 ∈ 𝑉) → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑈)) | 
| 15 | 3, 4, 11, 6, 7 | lspprid1 20995 | . . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑋, 𝑍})) | 
| 16 | 15 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋, 𝑍})) | 
| 17 |  | simplr 769 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧 ∈ 𝑉) → 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) | 
| 18 | 10, 4, 12, 14, 16, 17 | lspprss 20990 | . . . . . 6
⊢ (((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧 ∈ 𝑉) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑍})) | 
| 19 | 18 | ssneld 3985 | . . . . 5
⊢ (((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧 ∈ 𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))) | 
| 20 | 19 | ancrd 551 | . . . 4
⊢ (((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧 ∈ 𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))) | 
| 21 | 20 | reximdva 3168 | . . 3
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))) | 
| 22 | 9, 21 | mpd 15 | . 2
⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))) | 
| 23 |  | dvh3dim.y | . . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑉) | 
| 24 | 1, 2, 3, 4, 5, 6, 23 | dvh3dim 41448 | . . . 4
⊢ (𝜑 → ∃𝑤 ∈ 𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | 
| 25 | 24 | adantr 480 | . . 3
⊢ ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑤 ∈ 𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | 
| 26 |  | simpl1l 1225 | . . . . . . . 8
⊢ ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝜑) | 
| 27 | 26, 11 | syl 17 | . . . . . . 7
⊢ ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑈 ∈ LMod) | 
| 28 |  | simpl2 1193 | . . . . . . 7
⊢ ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑤 ∈ 𝑉) | 
| 29 | 26, 23 | syl 17 | . . . . . . 7
⊢ ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑌 ∈ 𝑉) | 
| 30 |  | eqid 2737 | . . . . . . . 8
⊢
(+g‘𝑈) = (+g‘𝑈) | 
| 31 | 3, 30 | lmodvacl 20873 | . . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ 𝑤 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑤(+g‘𝑈)𝑌) ∈ 𝑉) | 
| 32 | 27, 28, 29, 31 | syl3anc 1373 | . . . . . 6
⊢ ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → (𝑤(+g‘𝑈)𝑌) ∈ 𝑉) | 
| 33 | 3, 10, 4, 11, 6, 23 | lspprcl 20976 | . . . . . . . 8
⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) | 
| 34 | 26, 33 | syl 17 | . . . . . . 7
⊢ ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) | 
| 35 | 3, 4, 11, 6, 23 | lspprid2 20996 | . . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋, 𝑌})) | 
| 36 | 26, 35 | syl 17 | . . . . . . 7
⊢ ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑌 ∈ (𝑁‘{𝑋, 𝑌})) | 
| 37 |  | simpl3 1194 | . . . . . . 7
⊢ ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | 
| 38 | 3, 30, 10, 27, 34, 36, 28, 37 | lssvancl2 20944 | . . . . . 6
⊢ ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ (𝑤(+g‘𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌})) | 
| 39 | 26, 13 | syl 17 | . . . . . . 7
⊢ ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑈)) | 
| 40 |  | simpr 484 | . . . . . . 7
⊢ ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) | 
| 41 |  | simpl1r 1226 | . . . . . . 7
⊢ ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) | 
| 42 | 3, 30, 10, 27, 39, 40, 29, 41 | lssvancl1 20943 | . . . . . 6
⊢ ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ (𝑤(+g‘𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍})) | 
| 43 |  | eleq1 2829 | . . . . . . . . 9
⊢ (𝑧 = (𝑤(+g‘𝑈)𝑌) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑤(+g‘𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}))) | 
| 44 | 43 | notbid 318 | . . . . . . . 8
⊢ (𝑧 = (𝑤(+g‘𝑈)𝑌) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ (𝑤(+g‘𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}))) | 
| 45 |  | eleq1 2829 | . . . . . . . . 9
⊢ (𝑧 = (𝑤(+g‘𝑈)𝑌) → (𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ (𝑤(+g‘𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍}))) | 
| 46 | 45 | notbid 318 | . . . . . . . 8
⊢ (𝑧 = (𝑤(+g‘𝑈)𝑌) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ¬ (𝑤(+g‘𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍}))) | 
| 47 | 44, 46 | anbi12d 632 | . . . . . . 7
⊢ (𝑧 = (𝑤(+g‘𝑈)𝑌) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})) ↔ (¬ (𝑤(+g‘𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑤(+g‘𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍})))) | 
| 48 | 47 | rspcev 3622 | . . . . . 6
⊢ (((𝑤(+g‘𝑈)𝑌) ∈ 𝑉 ∧ (¬ (𝑤(+g‘𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑤(+g‘𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍}))) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))) | 
| 49 | 32, 38, 42, 48 | syl12anc 837 | . . . . 5
⊢ ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))) | 
| 50 |  | simpl2 1193 | . . . . . 6
⊢ ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑤 ∈ 𝑉) | 
| 51 |  | simpl3 1194 | . . . . . 6
⊢ ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | 
| 52 |  | simpr 484 | . . . . . 6
⊢ ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) | 
| 53 |  | eleq1 2829 | . . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))) | 
| 54 | 53 | notbid 318 | . . . . . . . 8
⊢ (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))) | 
| 55 |  | eleq1 2829 | . . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) | 
| 56 | 55 | notbid 318 | . . . . . . . 8
⊢ (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) | 
| 57 | 54, 56 | anbi12d 632 | . . . . . . 7
⊢ (𝑧 = 𝑤 → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})) ↔ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})))) | 
| 58 | 57 | rspcev 3622 | . . . . . 6
⊢ ((𝑤 ∈ 𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))) | 
| 59 | 50, 51, 52, 58 | syl12anc 837 | . . . . 5
⊢ ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))) | 
| 60 | 49, 59 | pm2.61dan 813 | . . . 4
⊢ (((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))) | 
| 61 | 60 | rexlimdv3a 3159 | . . 3
⊢ ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → (∃𝑤 ∈ 𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))) | 
| 62 | 25, 61 | mpd 15 | . 2
⊢ ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))) | 
| 63 | 22, 62 | pm2.61dan 813 | 1
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))) |