Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh3dim2 Structured version   Visualization version   GIF version

Theorem dvh3dim2 37469
Description: There is a vector that is outside of 2 spans with a common vector. (Contributed by NM, 13-May-2015.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
dvh3dim.y (𝜑𝑌𝑉)
dvh3dim2.z (𝜑𝑍𝑉)
Assertion
Ref Expression
dvh3dim2 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌   𝑧,𝑍   𝜑,𝑧
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvh3dim2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dvh3dim.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvh3dim.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 dvh3dim.v . . . . 5 𝑉 = (Base‘𝑈)
4 dvh3dim.n . . . . 5 𝑁 = (LSpan‘𝑈)
5 dvh3dim.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 dvh3dim.x . . . . 5 (𝜑𝑋𝑉)
7 dvh3dim2.z . . . . 5 (𝜑𝑍𝑉)
81, 2, 3, 4, 5, 6, 7dvh3dim 37467 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))
98adantr 473 . . 3 ((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))
10 eqid 2799 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
111, 2, 5dvhlmod 37131 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
1211ad2antrr 718 . . . . . . 7 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → 𝑈 ∈ LMod)
133, 10, 4, 11, 6, 7lspprcl 19299 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑈))
1413ad2antrr 718 . . . . . . 7 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑈))
153, 4, 11, 6, 7lspprid1 19318 . . . . . . . 8 (𝜑𝑋 ∈ (𝑁‘{𝑋, 𝑍}))
1615ad2antrr 718 . . . . . . 7 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → 𝑋 ∈ (𝑁‘{𝑋, 𝑍}))
17 simplr 786 . . . . . . 7 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))
1810, 4, 12, 14, 16, 17lspprss 19313 . . . . . 6 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑍}))
1918ssneld 3800 . . . . 5 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
2019ancrd 548 . . . 4 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))))
2120reximdva 3197 . . 3 ((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))))
229, 21mpd 15 . 2 ((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
23 dvh3dim.y . . . . 5 (𝜑𝑌𝑉)
241, 2, 3, 4, 5, 6, 23dvh3dim 37467 . . . 4 (𝜑 → ∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
2524adantr 473 . . 3 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
26 simpl1l 1294 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝜑)
2726, 11syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑈 ∈ LMod)
28 simpl2 1245 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑤𝑉)
2926, 23syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑌𝑉)
30 eqid 2799 . . . . . . . 8 (+g𝑈) = (+g𝑈)
313, 30lmodvacl 19195 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑤𝑉𝑌𝑉) → (𝑤(+g𝑈)𝑌) ∈ 𝑉)
3227, 28, 29, 31syl3anc 1491 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → (𝑤(+g𝑈)𝑌) ∈ 𝑉)
333, 10, 4, 11, 6, 23lspprcl 19299 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
3426, 33syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
353, 4, 11, 6, 23lspprid2 19319 . . . . . . . 8 (𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑌}))
3626, 35syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑌 ∈ (𝑁‘{𝑋, 𝑌}))
37 simpl3 1247 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
383, 30, 10, 27, 34, 36, 28, 37lssvancl2 19264 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}))
3926, 13syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑈))
40 simpr 478 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))
41 simpl1r 1296 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))
423, 30, 10, 27, 39, 40, 29, 41lssvancl1 19263 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍}))
43 eleq1 2866 . . . . . . . . 9 (𝑧 = (𝑤(+g𝑈)𝑌) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌})))
4443notbid 310 . . . . . . . 8 (𝑧 = (𝑤(+g𝑈)𝑌) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌})))
45 eleq1 2866 . . . . . . . . 9 (𝑧 = (𝑤(+g𝑈)𝑌) → (𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍})))
4645notbid 310 . . . . . . . 8 (𝑧 = (𝑤(+g𝑈)𝑌) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍})))
4744, 46anbi12d 625 . . . . . . 7 (𝑧 = (𝑤(+g𝑈)𝑌) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})) ↔ (¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍}))))
4847rspcev 3497 . . . . . 6 (((𝑤(+g𝑈)𝑌) ∈ 𝑉 ∧ (¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
4932, 38, 42, 48syl12anc 866 . . . . 5 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
50 simpl2 1245 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑤𝑉)
51 simpl3 1247 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
52 simpr 478 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))
53 eleq1 2866 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
5453notbid 310 . . . . . . . 8 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
55 eleq1 2866 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})))
5655notbid 310 . . . . . . . 8 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})))
5754, 56anbi12d 625 . . . . . . 7 (𝑧 = 𝑤 → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})) ↔ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))))
5857rspcev 3497 . . . . . 6 ((𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
5950, 51, 52, 58syl12anc 866 . . . . 5 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
6049, 59pm2.61dan 848 . . . 4 (((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
6160rexlimdv3a 3214 . . 3 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → (∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))))
6225, 61mpd 15 . 2 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
6322, 62pm2.61dan 848 1 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wrex 3090  {cpr 4370  cfv 6101  (class class class)co 6878  Basecbs 16184  +gcplusg 16267  LModclmod 19181  LSubSpclss 19250  LSpanclspn 19292  HLchlt 35371  LHypclh 36005  DVecHcdvh 37099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-riotaBAD 34974
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-tpos 7590  df-undef 7637  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-sca 16283  df-vsca 16284  df-0g 16417  df-proset 17243  df-poset 17261  df-plt 17273  df-lub 17289  df-glb 17290  df-join 17291  df-meet 17292  df-p0 17354  df-p1 17355  df-lat 17361  df-clat 17423  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-submnd 17651  df-grp 17741  df-minusg 17742  df-sbg 17743  df-subg 17904  df-cntz 18062  df-lsm 18364  df-cmn 18510  df-abl 18511  df-mgp 18806  df-ur 18818  df-ring 18865  df-oppr 18939  df-dvdsr 18957  df-unit 18958  df-invr 18988  df-dvr 18999  df-drng 19067  df-lmod 19183  df-lss 19251  df-lsp 19293  df-lvec 19424  df-lsatoms 34997  df-oposet 35197  df-ol 35199  df-oml 35200  df-covers 35287  df-ats 35288  df-atl 35319  df-cvlat 35343  df-hlat 35372  df-llines 35519  df-lplanes 35520  df-lvols 35521  df-lines 35522  df-psubsp 35524  df-pmap 35525  df-padd 35817  df-lhyp 36009  df-laut 36010  df-ldil 36125  df-ltrn 36126  df-trl 36180  df-tgrp 36764  df-tendo 36776  df-edring 36778  df-dveca 37024  df-disoa 37050  df-dvech 37100  df-dib 37160  df-dic 37194  df-dih 37250  df-doch 37369  df-djh 37416
This theorem is referenced by:  dvh3dim3N  37470  mapdh8ad  37800
  Copyright terms: Public domain W3C validator