Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh3dim2 Structured version   Visualization version   GIF version

Theorem dvh3dim2 39911
Description: There is a vector that is outside of 2 spans with a common vector. (Contributed by NM, 13-May-2015.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
dvh3dim.y (𝜑𝑌𝑉)
dvh3dim2.z (𝜑𝑍𝑉)
Assertion
Ref Expression
dvh3dim2 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
Distinct variable groups:   𝑧,𝑁   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌   𝑧,𝑍   𝜑,𝑧
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvh3dim2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dvh3dim.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvh3dim.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 dvh3dim.v . . . . 5 𝑉 = (Base‘𝑈)
4 dvh3dim.n . . . . 5 𝑁 = (LSpan‘𝑈)
5 dvh3dim.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 dvh3dim.x . . . . 5 (𝜑𝑋𝑉)
7 dvh3dim2.z . . . . 5 (𝜑𝑍𝑉)
81, 2, 3, 4, 5, 6, 7dvh3dim 39909 . . . 4 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))
98adantr 481 . . 3 ((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))
10 eqid 2736 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
111, 2, 5dvhlmod 39573 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
1211ad2antrr 724 . . . . . . 7 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → 𝑈 ∈ LMod)
133, 10, 4, 11, 6, 7lspprcl 20439 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑈))
1413ad2antrr 724 . . . . . . 7 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑈))
153, 4, 11, 6, 7lspprid1 20458 . . . . . . . 8 (𝜑𝑋 ∈ (𝑁‘{𝑋, 𝑍}))
1615ad2antrr 724 . . . . . . 7 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → 𝑋 ∈ (𝑁‘{𝑋, 𝑍}))
17 simplr 767 . . . . . . 7 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))
1810, 4, 12, 14, 16, 17lspprss 20453 . . . . . 6 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑍}))
1918ssneld 3946 . . . . 5 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
2019ancrd 552 . . . 4 (((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))))
2120reximdva 3165 . . 3 ((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))))
229, 21mpd 15 . 2 ((𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
23 dvh3dim.y . . . . 5 (𝜑𝑌𝑉)
241, 2, 3, 4, 5, 6, 23dvh3dim 39909 . . . 4 (𝜑 → ∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
2524adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
26 simpl1l 1224 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝜑)
2726, 11syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑈 ∈ LMod)
28 simpl2 1192 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑤𝑉)
2926, 23syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑌𝑉)
30 eqid 2736 . . . . . . . 8 (+g𝑈) = (+g𝑈)
313, 30lmodvacl 20336 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑤𝑉𝑌𝑉) → (𝑤(+g𝑈)𝑌) ∈ 𝑉)
3227, 28, 29, 31syl3anc 1371 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → (𝑤(+g𝑈)𝑌) ∈ 𝑉)
333, 10, 4, 11, 6, 23lspprcl 20439 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
3426, 33syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
353, 4, 11, 6, 23lspprid2 20459 . . . . . . . 8 (𝜑𝑌 ∈ (𝑁‘{𝑋, 𝑌}))
3626, 35syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑌 ∈ (𝑁‘{𝑋, 𝑌}))
37 simpl3 1193 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
383, 30, 10, 27, 34, 36, 28, 37lssvancl2 20406 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}))
3926, 13syl 17 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → (𝑁‘{𝑋, 𝑍}) ∈ (LSubSp‘𝑈))
40 simpr 485 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))
41 simpl1r 1225 . . . . . . 7 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))
423, 30, 10, 27, 39, 40, 29, 41lssvancl1 20405 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍}))
43 eleq1 2825 . . . . . . . . 9 (𝑧 = (𝑤(+g𝑈)𝑌) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌})))
4443notbid 317 . . . . . . . 8 (𝑧 = (𝑤(+g𝑈)𝑌) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌})))
45 eleq1 2825 . . . . . . . . 9 (𝑧 = (𝑤(+g𝑈)𝑌) → (𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍})))
4645notbid 317 . . . . . . . 8 (𝑧 = (𝑤(+g𝑈)𝑌) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍})))
4744, 46anbi12d 631 . . . . . . 7 (𝑧 = (𝑤(+g𝑈)𝑌) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})) ↔ (¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍}))))
4847rspcev 3581 . . . . . 6 (((𝑤(+g𝑈)𝑌) ∈ 𝑉 ∧ (¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑤(+g𝑈)𝑌) ∈ (𝑁‘{𝑋, 𝑍}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
4932, 38, 42, 48syl12anc 835 . . . . 5 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
50 simpl2 1192 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → 𝑤𝑉)
51 simpl3 1193 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
52 simpr 485 . . . . . 6 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))
53 eleq1 2825 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
5453notbid 317 . . . . . . . 8 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
55 eleq1 2825 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})))
5655notbid 317 . . . . . . . 8 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})))
5754, 56anbi12d 631 . . . . . . 7 (𝑧 = 𝑤 → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})) ↔ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))))
5857rspcev 3581 . . . . . 6 ((𝑤𝑉 ∧ (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
5950, 51, 52, 58syl12anc 835 . . . . 5 ((((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
6049, 59pm2.61dan 811 . . . 4 (((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) ∧ 𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
6160rexlimdv3a 3156 . . 3 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → (∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍}))))
6225, 61mpd 15 . 2 ((𝜑 ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
6322, 62pm2.61dan 811 1 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑍})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  {cpr 4588  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  LModclmod 20322  LSubSpclss 20392  LSpanclspn 20432  HLchlt 37812  LHypclh 38447  DVecHcdvh 39541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-undef 8204  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-0g 17323  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564  df-lsatoms 37438  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tgrp 39206  df-tendo 39218  df-edring 39220  df-dveca 39466  df-disoa 39492  df-dvech 39542  df-dib 39602  df-dic 39636  df-dih 39692  df-doch 39811  df-djh 39858
This theorem is referenced by:  dvh3dim3N  39912  mapdh8ad  40242
  Copyright terms: Public domain W3C validator