![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhdimlem | Structured version Visualization version GIF version |
Description: Lemma for dvh2dim 40772 and dvh3dim 40773. TODO: make this obsolete and use dvh4dimlem 40770 directly? (Contributed by NM, 24-Apr-2015.) |
Ref | Expression |
---|---|
dvh3dim.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvh3dim.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvh3dim.v | ⊢ 𝑉 = (Base‘𝑈) |
dvh3dim.n | ⊢ 𝑁 = (LSpan‘𝑈) |
dvh3dim.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dvh3dim.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
dvhdim.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
dvhdim.o | ⊢ 0 = (0g‘𝑈) |
dvhdim.x | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
dvhdimlem.y | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
Ref | Expression |
---|---|
dvhdimlem | ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvh3dim.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dvh3dim.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | dvh3dim.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | dvh3dim.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
5 | dvh3dim.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | dvh3dim.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
7 | dvhdim.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
8 | dvhdim.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
9 | dvhdim.x | . . 3 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
10 | dvhdimlem.y | . . 3 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
11 | 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10 | dvh4dimlem 40770 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑌})) |
12 | 1, 2, 5 | dvhlmod 40437 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
13 | df-tp 4625 | . . . . . 6 ⊢ {𝑋, 𝑌, 𝑌} = ({𝑋, 𝑌} ∪ {𝑌}) | |
14 | prssi 4816 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ⊆ 𝑉) | |
15 | 6, 7, 14 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝑉) |
16 | 7 | snssd 4804 | . . . . . . 7 ⊢ (𝜑 → {𝑌} ⊆ 𝑉) |
17 | 15, 16 | unssd 4178 | . . . . . 6 ⊢ (𝜑 → ({𝑋, 𝑌} ∪ {𝑌}) ⊆ 𝑉) |
18 | 13, 17 | eqsstrid 4022 | . . . . 5 ⊢ (𝜑 → {𝑋, 𝑌, 𝑌} ⊆ 𝑉) |
19 | ssun1 4164 | . . . . . . 7 ⊢ {𝑋, 𝑌} ⊆ ({𝑋, 𝑌} ∪ {𝑌}) | |
20 | 19, 13 | sseqtrri 4011 | . . . . . 6 ⊢ {𝑋, 𝑌} ⊆ {𝑋, 𝑌, 𝑌} |
21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ {𝑋, 𝑌, 𝑌}) |
22 | 3, 4 | lspss 20816 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ {𝑋, 𝑌, 𝑌} ⊆ 𝑉 ∧ {𝑋, 𝑌} ⊆ {𝑋, 𝑌, 𝑌}) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑌, 𝑌})) |
23 | 12, 18, 21, 22 | syl3anc 1368 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑌, 𝑌})) |
24 | 23 | ssneld 3976 | . . 3 ⊢ (𝜑 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))) |
25 | 24 | reximdv 3162 | . 2 ⊢ (𝜑 → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑌}) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))) |
26 | 11, 25 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∃wrex 3062 ∪ cun 3938 ⊆ wss 3940 {csn 4620 {cpr 4622 {ctp 4624 ‘cfv 6533 Basecbs 17140 0gc0g 17381 LModclmod 20691 LSpanclspn 20803 HLchlt 38676 LHypclh 39311 DVecHcdvh 40405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-riotaBAD 38279 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-tpos 8206 df-undef 8253 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-0g 17383 df-proset 18247 df-poset 18265 df-plt 18282 df-lub 18298 df-glb 18299 df-join 18300 df-meet 18301 df-p0 18377 df-p1 18378 df-lat 18384 df-clat 18451 df-mgm 18560 df-sgrp 18639 df-mnd 18655 df-submnd 18701 df-grp 18853 df-minusg 18854 df-sbg 18855 df-subg 19035 df-cntz 19218 df-lsm 19541 df-cmn 19687 df-abl 19688 df-mgp 20025 df-rng 20043 df-ur 20072 df-ring 20125 df-oppr 20221 df-dvdsr 20244 df-unit 20245 df-invr 20275 df-dvr 20288 df-drng 20574 df-lmod 20693 df-lss 20764 df-lsp 20804 df-lvec 20936 df-lsatoms 38302 df-oposet 38502 df-ol 38504 df-oml 38505 df-covers 38592 df-ats 38593 df-atl 38624 df-cvlat 38648 df-hlat 38677 df-llines 38825 df-lplanes 38826 df-lvols 38827 df-lines 38828 df-psubsp 38830 df-pmap 38831 df-padd 39123 df-lhyp 39315 df-laut 39316 df-ldil 39431 df-ltrn 39432 df-trl 39486 df-tgrp 40070 df-tendo 40082 df-edring 40084 df-dveca 40330 df-disoa 40356 df-dvech 40406 df-dib 40466 df-dic 40500 df-dih 40556 df-doch 40675 df-djh 40722 |
This theorem is referenced by: dvh2dim 40772 dvh3dim 40773 |
Copyright terms: Public domain | W3C validator |