Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhdimlem | Structured version Visualization version GIF version |
Description: Lemma for dvh2dim 39047 and dvh3dim 39048. TODO: make this obsolete and use dvh4dimlem 39045 directly? (Contributed by NM, 24-Apr-2015.) |
Ref | Expression |
---|---|
dvh3dim.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvh3dim.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvh3dim.v | ⊢ 𝑉 = (Base‘𝑈) |
dvh3dim.n | ⊢ 𝑁 = (LSpan‘𝑈) |
dvh3dim.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dvh3dim.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
dvhdim.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
dvhdim.o | ⊢ 0 = (0g‘𝑈) |
dvhdim.x | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
dvhdimlem.y | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
Ref | Expression |
---|---|
dvhdimlem | ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvh3dim.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dvh3dim.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | dvh3dim.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | dvh3dim.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
5 | dvh3dim.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | dvh3dim.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
7 | dvhdim.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
8 | dvhdim.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
9 | dvhdim.x | . . 3 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
10 | dvhdimlem.y | . . 3 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
11 | 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10 | dvh4dimlem 39045 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑌})) |
12 | 1, 2, 5 | dvhlmod 38712 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
13 | df-tp 4530 | . . . . . 6 ⊢ {𝑋, 𝑌, 𝑌} = ({𝑋, 𝑌} ∪ {𝑌}) | |
14 | prssi 4714 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ⊆ 𝑉) | |
15 | 6, 7, 14 | syl2anc 587 | . . . . . . 7 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝑉) |
16 | 7 | snssd 4702 | . . . . . . 7 ⊢ (𝜑 → {𝑌} ⊆ 𝑉) |
17 | 15, 16 | unssd 4093 | . . . . . 6 ⊢ (𝜑 → ({𝑋, 𝑌} ∪ {𝑌}) ⊆ 𝑉) |
18 | 13, 17 | eqsstrid 3942 | . . . . 5 ⊢ (𝜑 → {𝑋, 𝑌, 𝑌} ⊆ 𝑉) |
19 | ssun1 4079 | . . . . . . 7 ⊢ {𝑋, 𝑌} ⊆ ({𝑋, 𝑌} ∪ {𝑌}) | |
20 | 19, 13 | sseqtrri 3931 | . . . . . 6 ⊢ {𝑋, 𝑌} ⊆ {𝑋, 𝑌, 𝑌} |
21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ {𝑋, 𝑌, 𝑌}) |
22 | 3, 4 | lspss 19829 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ {𝑋, 𝑌, 𝑌} ⊆ 𝑉 ∧ {𝑋, 𝑌} ⊆ {𝑋, 𝑌, 𝑌}) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑌, 𝑌})) |
23 | 12, 18, 21, 22 | syl3anc 1368 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑌, 𝑌})) |
24 | 23 | ssneld 3896 | . . 3 ⊢ (𝜑 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))) |
25 | 24 | reximdv 3197 | . 2 ⊢ (𝜑 → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑌}) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))) |
26 | 11, 25 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∃wrex 3071 ∪ cun 3858 ⊆ wss 3860 {csn 4525 {cpr 4527 {ctp 4529 ‘cfv 6339 Basecbs 16546 0gc0g 16776 LModclmod 19707 LSpanclspn 19816 HLchlt 36952 LHypclh 37586 DVecHcdvh 38680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-riotaBAD 36555 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-tpos 7907 df-undef 7954 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-n0 11940 df-z 12026 df-uz 12288 df-fz 12945 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-sets 16553 df-ress 16554 df-plusg 16641 df-mulr 16642 df-sca 16644 df-vsca 16645 df-0g 16778 df-proset 17609 df-poset 17627 df-plt 17639 df-lub 17655 df-glb 17656 df-join 17657 df-meet 17658 df-p0 17720 df-p1 17721 df-lat 17727 df-clat 17789 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-submnd 18028 df-grp 18177 df-minusg 18178 df-sbg 18179 df-subg 18348 df-cntz 18519 df-lsm 18833 df-cmn 18980 df-abl 18981 df-mgp 19313 df-ur 19325 df-ring 19372 df-oppr 19449 df-dvdsr 19467 df-unit 19468 df-invr 19498 df-dvr 19509 df-drng 19577 df-lmod 19709 df-lss 19777 df-lsp 19817 df-lvec 19948 df-lsatoms 36578 df-oposet 36778 df-ol 36780 df-oml 36781 df-covers 36868 df-ats 36869 df-atl 36900 df-cvlat 36924 df-hlat 36953 df-llines 37100 df-lplanes 37101 df-lvols 37102 df-lines 37103 df-psubsp 37105 df-pmap 37106 df-padd 37398 df-lhyp 37590 df-laut 37591 df-ldil 37706 df-ltrn 37707 df-trl 37761 df-tgrp 38345 df-tendo 38357 df-edring 38359 df-dveca 38605 df-disoa 38631 df-dvech 38681 df-dib 38741 df-dic 38775 df-dih 38831 df-doch 38950 df-djh 38997 |
This theorem is referenced by: dvh2dim 39047 dvh3dim 39048 |
Copyright terms: Public domain | W3C validator |