![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhdimlem | Structured version Visualization version GIF version |
Description: Lemma for dvh2dim 41440 and dvh3dim 41441. TODO: make this obsolete and use dvh4dimlem 41438 directly? (Contributed by NM, 24-Apr-2015.) |
Ref | Expression |
---|---|
dvh3dim.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvh3dim.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvh3dim.v | ⊢ 𝑉 = (Base‘𝑈) |
dvh3dim.n | ⊢ 𝑁 = (LSpan‘𝑈) |
dvh3dim.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dvh3dim.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
dvhdim.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
dvhdim.o | ⊢ 0 = (0g‘𝑈) |
dvhdim.x | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
dvhdimlem.y | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
Ref | Expression |
---|---|
dvhdimlem | ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvh3dim.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dvh3dim.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | dvh3dim.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | dvh3dim.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
5 | dvh3dim.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | dvh3dim.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
7 | dvhdim.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
8 | dvhdim.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
9 | dvhdim.x | . . 3 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
10 | dvhdimlem.y | . . 3 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
11 | 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10 | dvh4dimlem 41438 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑌})) |
12 | 1, 2, 5 | dvhlmod 41105 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
13 | df-tp 4637 | . . . . . 6 ⊢ {𝑋, 𝑌, 𝑌} = ({𝑋, 𝑌} ∪ {𝑌}) | |
14 | prssi 4827 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ⊆ 𝑉) | |
15 | 6, 7, 14 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝑉) |
16 | 7 | snssd 4815 | . . . . . . 7 ⊢ (𝜑 → {𝑌} ⊆ 𝑉) |
17 | 15, 16 | unssd 4203 | . . . . . 6 ⊢ (𝜑 → ({𝑋, 𝑌} ∪ {𝑌}) ⊆ 𝑉) |
18 | 13, 17 | eqsstrid 4045 | . . . . 5 ⊢ (𝜑 → {𝑋, 𝑌, 𝑌} ⊆ 𝑉) |
19 | ssun1 4189 | . . . . . . 7 ⊢ {𝑋, 𝑌} ⊆ ({𝑋, 𝑌} ∪ {𝑌}) | |
20 | 19, 13 | sseqtrri 4034 | . . . . . 6 ⊢ {𝑋, 𝑌} ⊆ {𝑋, 𝑌, 𝑌} |
21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ {𝑋, 𝑌, 𝑌}) |
22 | 3, 4 | lspss 21006 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ {𝑋, 𝑌, 𝑌} ⊆ 𝑉 ∧ {𝑋, 𝑌} ⊆ {𝑋, 𝑌, 𝑌}) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑌, 𝑌})) |
23 | 12, 18, 21, 22 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑌, 𝑌})) |
24 | 23 | ssneld 3998 | . . 3 ⊢ (𝜑 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))) |
25 | 24 | reximdv 3169 | . 2 ⊢ (𝜑 → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑌}) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))) |
26 | 11, 25 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1538 ∈ wcel 2107 ≠ wne 2939 ∃wrex 3069 ∪ cun 3962 ⊆ wss 3964 {csn 4632 {cpr 4634 {ctp 4636 ‘cfv 6566 Basecbs 17251 0gc0g 17492 LModclmod 20881 LSpanclspn 20993 HLchlt 39344 LHypclh 39979 DVecHcdvh 41073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-riotaBAD 38947 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-tpos 8256 df-undef 8303 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-er 8750 df-map 8873 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-n0 12531 df-z 12618 df-uz 12883 df-fz 13551 df-struct 17187 df-sets 17204 df-slot 17222 df-ndx 17234 df-base 17252 df-ress 17281 df-plusg 17317 df-mulr 17318 df-sca 17320 df-vsca 17321 df-0g 17494 df-proset 18358 df-poset 18377 df-plt 18394 df-lub 18410 df-glb 18411 df-join 18412 df-meet 18413 df-p0 18489 df-p1 18490 df-lat 18496 df-clat 18563 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-submnd 18816 df-grp 18973 df-minusg 18974 df-sbg 18975 df-subg 19160 df-cntz 19354 df-lsm 19675 df-cmn 19821 df-abl 19822 df-mgp 20159 df-rng 20177 df-ur 20206 df-ring 20259 df-oppr 20357 df-dvdsr 20380 df-unit 20381 df-invr 20411 df-dvr 20424 df-drng 20754 df-lmod 20883 df-lss 20954 df-lsp 20994 df-lvec 21126 df-lsatoms 38970 df-oposet 39170 df-ol 39172 df-oml 39173 df-covers 39260 df-ats 39261 df-atl 39292 df-cvlat 39316 df-hlat 39345 df-llines 39493 df-lplanes 39494 df-lvols 39495 df-lines 39496 df-psubsp 39498 df-pmap 39499 df-padd 39791 df-lhyp 39983 df-laut 39984 df-ldil 40099 df-ltrn 40100 df-trl 40154 df-tgrp 40738 df-tendo 40750 df-edring 40752 df-dveca 40998 df-disoa 41024 df-dvech 41074 df-dib 41134 df-dic 41168 df-dih 41224 df-doch 41343 df-djh 41390 |
This theorem is referenced by: dvh2dim 41440 dvh3dim 41441 |
Copyright terms: Public domain | W3C validator |