Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhdimlem Structured version   Visualization version   GIF version

Theorem dvhdimlem 41439
Description: Lemma for dvh2dim 41440 and dvh3dim 41441. TODO: make this obsolete and use dvh4dimlem 41438 directly? (Contributed by NM, 24-Apr-2015.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh3dim.n 𝑁 = (LSpan‘𝑈)
dvh3dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dvh3dim.x (𝜑𝑋𝑉)
dvhdim.y (𝜑𝑌𝑉)
dvhdim.o 0 = (0g𝑈)
dvhdim.x (𝜑𝑋0 )
dvhdimlem.y (𝜑𝑌0 )
Assertion
Ref Expression
dvhdimlem (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
Distinct variable groups:   𝑧,𝑁   𝑧, 0   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝑧,𝑌   𝜑,𝑧
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvhdimlem
StepHypRef Expression
1 dvh3dim.h . . 3 𝐻 = (LHyp‘𝐾)
2 dvh3dim.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 dvh3dim.v . . 3 𝑉 = (Base‘𝑈)
4 dvh3dim.n . . 3 𝑁 = (LSpan‘𝑈)
5 dvh3dim.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 dvh3dim.x . . 3 (𝜑𝑋𝑉)
7 dvhdim.y . . 3 (𝜑𝑌𝑉)
8 dvhdim.o . . 3 0 = (0g𝑈)
9 dvhdim.x . . 3 (𝜑𝑋0 )
10 dvhdimlem.y . . 3 (𝜑𝑌0 )
111, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 10dvh4dimlem 41438 . 2 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑌}))
121, 2, 5dvhlmod 41105 . . . . 5 (𝜑𝑈 ∈ LMod)
13 df-tp 4637 . . . . . 6 {𝑋, 𝑌, 𝑌} = ({𝑋, 𝑌} ∪ {𝑌})
14 prssi 4827 . . . . . . . 8 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
156, 7, 14syl2anc 584 . . . . . . 7 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
167snssd 4815 . . . . . . 7 (𝜑 → {𝑌} ⊆ 𝑉)
1715, 16unssd 4203 . . . . . 6 (𝜑 → ({𝑋, 𝑌} ∪ {𝑌}) ⊆ 𝑉)
1813, 17eqsstrid 4045 . . . . 5 (𝜑 → {𝑋, 𝑌, 𝑌} ⊆ 𝑉)
19 ssun1 4189 . . . . . . 7 {𝑋, 𝑌} ⊆ ({𝑋, 𝑌} ∪ {𝑌})
2019, 13sseqtrri 4034 . . . . . 6 {𝑋, 𝑌} ⊆ {𝑋, 𝑌, 𝑌}
2120a1i 11 . . . . 5 (𝜑 → {𝑋, 𝑌} ⊆ {𝑋, 𝑌, 𝑌})
223, 4lspss 21006 . . . . 5 ((𝑈 ∈ LMod ∧ {𝑋, 𝑌, 𝑌} ⊆ 𝑉 ∧ {𝑋, 𝑌} ⊆ {𝑋, 𝑌, 𝑌}) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑌, 𝑌}))
2312, 18, 21, 22syl3anc 1371 . . . 4 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑌, 𝑌}))
2423ssneld 3998 . . 3 (𝜑 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
2524reximdv 3169 . 2 (𝜑 → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌, 𝑌}) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
2611, 25mpd 15 1 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1538  wcel 2107  wne 2939  wrex 3069  cun 3962  wss 3964  {csn 4632  {cpr 4634  {ctp 4636  cfv 6566  Basecbs 17251  0gc0g 17492  LModclmod 20881  LSpanclspn 20993  HLchlt 39344  LHypclh 39979  DVecHcdvh 41073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-riotaBAD 38947
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-1st 8019  df-2nd 8020  df-tpos 8256  df-undef 8303  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-er 8750  df-map 8873  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-nn 12271  df-2 12333  df-3 12334  df-4 12335  df-5 12336  df-6 12337  df-n0 12531  df-z 12618  df-uz 12883  df-fz 13551  df-struct 17187  df-sets 17204  df-slot 17222  df-ndx 17234  df-base 17252  df-ress 17281  df-plusg 17317  df-mulr 17318  df-sca 17320  df-vsca 17321  df-0g 17494  df-proset 18358  df-poset 18377  df-plt 18394  df-lub 18410  df-glb 18411  df-join 18412  df-meet 18413  df-p0 18489  df-p1 18490  df-lat 18496  df-clat 18563  df-mgm 18672  df-sgrp 18751  df-mnd 18767  df-submnd 18816  df-grp 18973  df-minusg 18974  df-sbg 18975  df-subg 19160  df-cntz 19354  df-lsm 19675  df-cmn 19821  df-abl 19822  df-mgp 20159  df-rng 20177  df-ur 20206  df-ring 20259  df-oppr 20357  df-dvdsr 20380  df-unit 20381  df-invr 20411  df-dvr 20424  df-drng 20754  df-lmod 20883  df-lss 20954  df-lsp 20994  df-lvec 21126  df-lsatoms 38970  df-oposet 39170  df-ol 39172  df-oml 39173  df-covers 39260  df-ats 39261  df-atl 39292  df-cvlat 39316  df-hlat 39345  df-llines 39493  df-lplanes 39494  df-lvols 39495  df-lines 39496  df-psubsp 39498  df-pmap 39499  df-padd 39791  df-lhyp 39983  df-laut 39984  df-ldil 40099  df-ltrn 40100  df-trl 40154  df-tgrp 40738  df-tendo 40750  df-edring 40752  df-dveca 40998  df-disoa 41024  df-dvech 41074  df-dib 41134  df-dic 41168  df-dih 41224  df-doch 41343  df-djh 41390
This theorem is referenced by:  dvh2dim  41440  dvh3dim  41441
  Copyright terms: Public domain W3C validator