Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapval0 Structured version   Visualization version   GIF version

Theorem hdmapval0 38521
Description: Value of map from vectors to functionals at zero. Note: we use dvh3dim 38134 for convenience, even though 3 dimensions aren't necessary at this point. TODO: I think either this or hdmapeq0 38532 could be derived from the other to shorten proof. (Contributed by NM, 17-May-2015.)
Hypotheses
Ref Expression
hdmapval0.h 𝐻 = (LHyp‘𝐾)
hdmapval0.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapval0.o 0 = (0g𝑈)
hdmapval0.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmapval0.q 𝑄 = (0g𝐶)
hdmapval0.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapval0.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
hdmapval0 (𝜑 → (𝑆0 ) = 𝑄)

Proof of Theorem hdmapval0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hdmapval0.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmapval0.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 eqid 2797 . . 3 (Base‘𝑈) = (Base‘𝑈)
4 eqid 2797 . . 3 (LSpan‘𝑈) = (LSpan‘𝑈)
5 hdmapval0.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 eqid 2797 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
7 eqid 2797 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
8 hdmapval0.o . . . . 5 0 = (0g𝑈)
9 eqid 2797 . . . . 5 ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
101, 6, 7, 2, 3, 8, 9, 5dvheveccl 37800 . . . 4 (𝜑 → ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ ((Base‘𝑈) ∖ { 0 }))
1110eldifad 3877 . . 3 (𝜑 → ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ (Base‘𝑈))
121, 2, 5dvhlmod 37798 . . . 4 (𝜑𝑈 ∈ LMod)
133, 8lmod0vcl 19357 . . . 4 (𝑈 ∈ LMod → 0 ∈ (Base‘𝑈))
1412, 13syl 17 . . 3 (𝜑0 ∈ (Base‘𝑈))
151, 2, 3, 4, 5, 11, 14dvh3dim 38134 . 2 (𝜑 → ∃𝑥 ∈ (Base‘𝑈) ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }))
16 hdmapval0.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
17 eqid 2797 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
18 eqid 2797 . . . . 5 ((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊)
19 eqid 2797 . . . . 5 ((HDMap1‘𝐾)‘𝑊) = ((HDMap1‘𝐾)‘𝑊)
20 hdmapval0.s . . . . 5 𝑆 = ((HDMap‘𝐾)‘𝑊)
2153ad2ant1 1126 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → (𝐾 ∈ HL ∧ 𝑊𝐻))
22143ad2ant1 1126 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → 0 ∈ (Base‘𝑈))
23 simp2 1130 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → 𝑥 ∈ (Base‘𝑈))
24 eqid 2797 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
253, 24, 4, 12, 11, 14lspprcl 19444 . . . . . . . . . 10 (𝜑 → ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }) ∈ (LSubSp‘𝑈))
263, 4, 12, 11, 14lspprid1 19463 . . . . . . . . . 10 (𝜑 → ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }))
2724, 4, 12, 25, 26lspsnel5a 19462 . . . . . . . . 9 (𝜑 → ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ⊆ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }))
283, 4, 12, 11, 14lspprid2 19464 . . . . . . . . . 10 (𝜑0 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }))
2924, 4, 12, 25, 28lspsnel5a 19462 . . . . . . . . 9 (𝜑 → ((LSpan‘𝑈)‘{ 0 }) ⊆ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }))
3027, 29unssd 4089 . . . . . . . 8 (𝜑 → (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{ 0 })) ⊆ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }))
3130ssneld 3897 . . . . . . 7 (𝜑 → (¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }) → ¬ 𝑥 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{ 0 }))))
3231adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑈)) → (¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }) → ¬ 𝑥 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{ 0 }))))
33323impia 1110 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → ¬ 𝑥 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{ 0 })))
341, 9, 2, 3, 4, 16, 17, 18, 19, 20, 21, 22, 23, 33hdmapval2 38520 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → (𝑆0 ) = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑥, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑥⟩), 0 ⟩))
35 hdmapval0.q . . . . 5 𝑄 = (0g𝐶)
36 eqid 2797 . . . . . 6 (LSpan‘𝐶) = (LSpan‘𝐶)
37 eqid 2797 . . . . . 6 ((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊)
381, 2, 3, 8, 16, 17, 35, 18, 5, 10hvmapcl2 38454 . . . . . . . 8 (𝜑 → (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩) ∈ ((Base‘𝐶) ∖ {𝑄}))
3938eldifad 3877 . . . . . . 7 (𝜑 → (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩) ∈ (Base‘𝐶))
40393ad2ant1 1126 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩) ∈ (Base‘𝐶))
411, 2, 3, 8, 4, 16, 36, 37, 18, 5, 10mapdhvmap 38457 . . . . . . 7 (𝜑 → (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩})) = ((LSpan‘𝐶)‘{(((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩)}))
42413ad2ant1 1126 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩})) = ((LSpan‘𝐶)‘{(((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩)}))
431, 2, 5dvhlvec 37797 . . . . . . . . . 10 (𝜑𝑈 ∈ LVec)
44433ad2ant1 1126 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → 𝑈 ∈ LVec)
45113ad2ant1 1126 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ (Base‘𝑈))
46 simp3 1131 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }))
473, 4, 44, 23, 45, 22, 46lspindpi 19598 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → (((LSpan‘𝑈)‘{𝑥}) ≠ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∧ ((LSpan‘𝑈)‘{𝑥}) ≠ ((LSpan‘𝑈)‘{ 0 })))
4847simpld 495 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → ((LSpan‘𝑈)‘{𝑥}) ≠ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
4948necomd 3041 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ≠ ((LSpan‘𝑈)‘{𝑥}))
50103ad2ant1 1126 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ ((Base‘𝑈) ∖ { 0 }))
511, 2, 3, 8, 4, 16, 17, 36, 37, 19, 21, 40, 42, 49, 50, 23hdmap1cl 38492 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑥⟩) ∈ (Base‘𝐶))
521, 2, 3, 8, 16, 17, 35, 19, 21, 51, 23hdmap1val0 38487 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → (((HDMap1‘𝐾)‘𝑊)‘⟨𝑥, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑥⟩), 0 ⟩) = 𝑄)
5334, 52eqtrd 2833 . . 3 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → (𝑆0 ) = 𝑄)
5453rexlimdv3a 3251 . 2 (𝜑 → (∃𝑥 ∈ (Base‘𝑈) ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }) → (𝑆0 ) = 𝑄))
5515, 54mpd 15 1 (𝜑 → (𝑆0 ) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1080   = wceq 1525  wcel 2083  wne 2986  wrex 3108  cdif 3862  cun 3863  {csn 4478  {cpr 4480  cop 4484  cotp 4486   I cid 5354  cres 5452  cfv 6232  Basecbs 16316  0gc0g 16546  LModclmod 19328  LSubSpclss 19397  LSpanclspn 19437  LVecclvec 19568  HLchlt 36038  LHypclh 36672  LTrncltrn 36789  DVecHcdvh 37766  LCDualclcd 38274  mapdcmpd 38312  HVMapchvm 38444  HDMap1chdma1 38479  HDMapchdma 38480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-riotaBAD 35641
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-ot 4487  df-uni 4752  df-int 4789  df-iun 4833  df-iin 4834  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-of 7274  df-om 7444  df-1st 7552  df-2nd 7553  df-tpos 7750  df-undef 7797  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-map 8265  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-n0 11752  df-z 11836  df-uz 12098  df-fz 12747  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-mulr 16412  df-sca 16414  df-vsca 16415  df-0g 16548  df-mre 16690  df-mrc 16691  df-acs 16693  df-proset 17371  df-poset 17389  df-plt 17401  df-lub 17417  df-glb 17418  df-join 17419  df-meet 17420  df-p0 17482  df-p1 17483  df-lat 17489  df-clat 17551  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-submnd 17779  df-grp 17868  df-minusg 17869  df-sbg 17870  df-subg 18034  df-cntz 18192  df-oppg 18219  df-lsm 18495  df-cmn 18639  df-abl 18640  df-mgp 18934  df-ur 18946  df-ring 18993  df-oppr 19067  df-dvdsr 19085  df-unit 19086  df-invr 19116  df-dvr 19127  df-drng 19198  df-lmod 19330  df-lss 19398  df-lsp 19438  df-lvec 19569  df-lsatoms 35664  df-lshyp 35665  df-lcv 35707  df-lfl 35746  df-lkr 35774  df-ldual 35812  df-oposet 35864  df-ol 35866  df-oml 35867  df-covers 35954  df-ats 35955  df-atl 35986  df-cvlat 36010  df-hlat 36039  df-llines 36186  df-lplanes 36187  df-lvols 36188  df-lines 36189  df-psubsp 36191  df-pmap 36192  df-padd 36484  df-lhyp 36676  df-laut 36677  df-ldil 36792  df-ltrn 36793  df-trl 36847  df-tgrp 37431  df-tendo 37443  df-edring 37445  df-dveca 37691  df-disoa 37717  df-dvech 37767  df-dib 37827  df-dic 37861  df-dih 37917  df-doch 38036  df-djh 38083  df-lcdual 38275  df-mapd 38313  df-hvmap 38445  df-hdmap1 38481  df-hdmap 38482
This theorem is referenced by:  hdmapval3N  38526  hdmap10  38528  hdmaprnlem17N  38551  hdmap14lem2a  38555  hdmap14lem6  38561  hdmap14lem13  38568  hgmapval0  38580
  Copyright terms: Public domain W3C validator