| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | hdmapval0.h | . . 3
⊢ 𝐻 = (LHyp‘𝐾) | 
| 2 |  | hdmapval0.u | . . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 3 |  | eqid 2736 | . . 3
⊢
(Base‘𝑈) =
(Base‘𝑈) | 
| 4 |  | eqid 2736 | . . 3
⊢
(LSpan‘𝑈) =
(LSpan‘𝑈) | 
| 5 |  | hdmapval0.k | . . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 6 |  | eqid 2736 | . . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 7 |  | eqid 2736 | . . . . 5
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | 
| 8 |  | hdmapval0.o | . . . . 5
⊢  0 =
(0g‘𝑈) | 
| 9 |  | eqid 2736 | . . . . 5
⊢ 〈( I
↾ (Base‘𝐾)), (
I ↾ ((LTrn‘𝐾)‘𝑊))〉 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 | 
| 10 | 1, 6, 7, 2, 3, 8, 9, 5 | dvheveccl 41115 | . . . 4
⊢ (𝜑 → 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 ∈ ((Base‘𝑈) ∖ { 0 })) | 
| 11 | 10 | eldifad 3962 | . . 3
⊢ (𝜑 → 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 ∈ (Base‘𝑈)) | 
| 12 | 1, 2, 5 | dvhlmod 41113 | . . . 4
⊢ (𝜑 → 𝑈 ∈ LMod) | 
| 13 | 3, 8 | lmod0vcl 20890 | . . . 4
⊢ (𝑈 ∈ LMod → 0 ∈
(Base‘𝑈)) | 
| 14 | 12, 13 | syl 17 | . . 3
⊢ (𝜑 → 0 ∈ (Base‘𝑈)) | 
| 15 | 1, 2, 3, 4, 5, 11,
14 | dvh3dim 41449 | . 2
⊢ (𝜑 → ∃𝑥 ∈ (Base‘𝑈) ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) | 
| 16 |  | hdmapval0.c | . . . . 5
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | 
| 17 |  | eqid 2736 | . . . . 5
⊢
(Base‘𝐶) =
(Base‘𝐶) | 
| 18 |  | eqid 2736 | . . . . 5
⊢
((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊) | 
| 19 |  | eqid 2736 | . . . . 5
⊢
((HDMap1‘𝐾)‘𝑊) = ((HDMap1‘𝐾)‘𝑊) | 
| 20 |  | hdmapval0.s | . . . . 5
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | 
| 21 | 5 | 3ad2ant1 1133 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 22 | 14 | 3ad2ant1 1133 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → 0 ∈
(Base‘𝑈)) | 
| 23 |  | simp2 1137 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → 𝑥 ∈ (Base‘𝑈)) | 
| 24 |  | eqid 2736 | . . . . . . . . . 10
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) | 
| 25 | 3, 24, 4, 12, 11, 14 | lspprcl 20977 | . . . . . . . . . 10
⊢ (𝜑 → ((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, 0 }) ∈
(LSubSp‘𝑈)) | 
| 26 | 3, 4, 12, 11, 14 | lspprid1 20996 | . . . . . . . . . 10
⊢ (𝜑 → 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 ∈ ((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, 0 })) | 
| 27 | 24, 4, 12, 25, 26 | ellspsn5 20995 | . . . . . . . . 9
⊢ (𝜑 → ((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉}) ⊆ ((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, 0 })) | 
| 28 | 3, 4, 12, 11, 14 | lspprid2 20997 | . . . . . . . . . 10
⊢ (𝜑 → 0 ∈ ((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, 0 })) | 
| 29 | 24, 4, 12, 25, 28 | ellspsn5 20995 | . . . . . . . . 9
⊢ (𝜑 → ((LSpan‘𝑈)‘{ 0 }) ⊆
((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) | 
| 30 | 27, 29 | unssd 4191 | . . . . . . . 8
⊢ (𝜑 → (((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉}) ∪ ((LSpan‘𝑈)‘{ 0 })) ⊆
((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) | 
| 31 | 30 | ssneld 3984 | . . . . . . 7
⊢ (𝜑 → (¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 }) → ¬ 𝑥 ∈ (((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉}) ∪ ((LSpan‘𝑈)‘{ 0 })))) | 
| 32 | 31 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈)) → (¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 }) → ¬ 𝑥 ∈ (((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉}) ∪ ((LSpan‘𝑈)‘{ 0 })))) | 
| 33 | 32 | 3impia 1117 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → ¬ 𝑥 ∈ (((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉}) ∪ ((LSpan‘𝑈)‘{ 0 }))) | 
| 34 | 1, 9, 2, 3, 4, 16,
17, 18, 19, 20, 21, 22, 23, 33 | hdmapval2 41835 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → (𝑆‘ 0 ) = (((HDMap1‘𝐾)‘𝑊)‘〈𝑥, (((HDMap1‘𝐾)‘𝑊)‘〈〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, (((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉), 𝑥〉), 0 〉)) | 
| 35 |  | hdmapval0.q | . . . . 5
⊢ 𝑄 = (0g‘𝐶) | 
| 36 |  | eqid 2736 | . . . . . 6
⊢
(LSpan‘𝐶) =
(LSpan‘𝐶) | 
| 37 |  | eqid 2736 | . . . . . 6
⊢
((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊) | 
| 38 | 1, 2, 3, 8, 16, 17, 35, 18, 5, 10 | hvmapcl2 41769 | . . . . . . . 8
⊢ (𝜑 → (((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉) ∈
((Base‘𝐶) ∖
{𝑄})) | 
| 39 | 38 | eldifad 3962 | . . . . . . 7
⊢ (𝜑 → (((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉) ∈
(Base‘𝐶)) | 
| 40 | 39 | 3ad2ant1 1133 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) →
(((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉) ∈
(Base‘𝐶)) | 
| 41 | 1, 2, 3, 8, 4, 16,
36, 37, 18, 5, 10 | mapdhvmap 41772 | . . . . . . 7
⊢ (𝜑 → (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉})) =
((LSpan‘𝐶)‘{(((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉)})) | 
| 42 | 41 | 3ad2ant1 1133 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) →
(((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉})) =
((LSpan‘𝐶)‘{(((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉)})) | 
| 43 | 1, 2, 5 | dvhlvec 41112 | . . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ LVec) | 
| 44 | 43 | 3ad2ant1 1133 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → 𝑈 ∈ LVec) | 
| 45 | 11 | 3ad2ant1 1133 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → 〈( I
↾ (Base‘𝐾)), (
I ↾ ((LTrn‘𝐾)‘𝑊))〉 ∈ (Base‘𝑈)) | 
| 46 |  | simp3 1138 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, 0 })) | 
| 47 | 3, 4, 44, 23, 45, 22, 46 | lspindpi 21135 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) →
(((LSpan‘𝑈)‘{𝑥}) ≠ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉}) ∧
((LSpan‘𝑈)‘{𝑥}) ≠ ((LSpan‘𝑈)‘{ 0 }))) | 
| 48 | 47 | simpld 494 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) →
((LSpan‘𝑈)‘{𝑥}) ≠ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉})) | 
| 49 | 48 | necomd 2995 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) →
((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉}) ≠
((LSpan‘𝑈)‘{𝑥})) | 
| 50 | 10 | 3ad2ant1 1133 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → 〈( I
↾ (Base‘𝐾)), (
I ↾ ((LTrn‘𝐾)‘𝑊))〉 ∈ ((Base‘𝑈) ∖ { 0 })) | 
| 51 | 1, 2, 3, 8, 4, 16,
17, 36, 37, 19, 21, 40, 42, 49, 50, 23 | hdmap1cl 41807 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) →
(((HDMap1‘𝐾)‘𝑊)‘〈〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, (((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉), 𝑥〉) ∈ (Base‘𝐶)) | 
| 52 | 1, 2, 3, 8, 16, 17, 35, 19, 21, 51, 23 | hdmap1val0 41802 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) →
(((HDMap1‘𝐾)‘𝑊)‘〈𝑥, (((HDMap1‘𝐾)‘𝑊)‘〈〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, (((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉), 𝑥〉), 0 〉) = 𝑄) | 
| 53 | 34, 52 | eqtrd 2776 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → (𝑆‘ 0 ) = 𝑄) | 
| 54 | 53 | rexlimdv3a 3158 | . 2
⊢ (𝜑 → (∃𝑥 ∈ (Base‘𝑈) ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 }) → (𝑆‘ 0 ) = 𝑄)) | 
| 55 | 15, 54 | mpd 15 | 1
⊢ (𝜑 → (𝑆‘ 0 ) = 𝑄) |