Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapval0 Structured version   Visualization version   GIF version

Theorem hdmapval0 40509
Description: Value of map from vectors to functionals at zero. Note: we use dvh3dim 40122 for convenience, even though 3 dimensions aren't necessary at this point. TODO: I think either this or hdmapeq0 40520 could be derived from the other to shorten proof. (Contributed by NM, 17-May-2015.)
Hypotheses
Ref Expression
hdmapval0.h 𝐻 = (LHyp‘𝐾)
hdmapval0.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapval0.o 0 = (0g𝑈)
hdmapval0.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmapval0.q 𝑄 = (0g𝐶)
hdmapval0.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapval0.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
hdmapval0 (𝜑 → (𝑆0 ) = 𝑄)

Proof of Theorem hdmapval0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hdmapval0.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmapval0.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 eqid 2731 . . 3 (Base‘𝑈) = (Base‘𝑈)
4 eqid 2731 . . 3 (LSpan‘𝑈) = (LSpan‘𝑈)
5 hdmapval0.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 eqid 2731 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
7 eqid 2731 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
8 hdmapval0.o . . . . 5 0 = (0g𝑈)
9 eqid 2731 . . . . 5 ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
101, 6, 7, 2, 3, 8, 9, 5dvheveccl 39788 . . . 4 (𝜑 → ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ ((Base‘𝑈) ∖ { 0 }))
1110eldifad 3956 . . 3 (𝜑 → ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ (Base‘𝑈))
121, 2, 5dvhlmod 39786 . . . 4 (𝜑𝑈 ∈ LMod)
133, 8lmod0vcl 20450 . . . 4 (𝑈 ∈ LMod → 0 ∈ (Base‘𝑈))
1412, 13syl 17 . . 3 (𝜑0 ∈ (Base‘𝑈))
151, 2, 3, 4, 5, 11, 14dvh3dim 40122 . 2 (𝜑 → ∃𝑥 ∈ (Base‘𝑈) ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }))
16 hdmapval0.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
17 eqid 2731 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
18 eqid 2731 . . . . 5 ((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊)
19 eqid 2731 . . . . 5 ((HDMap1‘𝐾)‘𝑊) = ((HDMap1‘𝐾)‘𝑊)
20 hdmapval0.s . . . . 5 𝑆 = ((HDMap‘𝐾)‘𝑊)
2153ad2ant1 1133 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → (𝐾 ∈ HL ∧ 𝑊𝐻))
22143ad2ant1 1133 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → 0 ∈ (Base‘𝑈))
23 simp2 1137 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → 𝑥 ∈ (Base‘𝑈))
24 eqid 2731 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
253, 24, 4, 12, 11, 14lspprcl 20538 . . . . . . . . . 10 (𝜑 → ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }) ∈ (LSubSp‘𝑈))
263, 4, 12, 11, 14lspprid1 20557 . . . . . . . . . 10 (𝜑 → ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }))
2724, 4, 12, 25, 26lspsnel5a 20556 . . . . . . . . 9 (𝜑 → ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ⊆ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }))
283, 4, 12, 11, 14lspprid2 20558 . . . . . . . . . 10 (𝜑0 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }))
2924, 4, 12, 25, 28lspsnel5a 20556 . . . . . . . . 9 (𝜑 → ((LSpan‘𝑈)‘{ 0 }) ⊆ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }))
3027, 29unssd 4182 . . . . . . . 8 (𝜑 → (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{ 0 })) ⊆ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }))
3130ssneld 3980 . . . . . . 7 (𝜑 → (¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }) → ¬ 𝑥 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{ 0 }))))
3231adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑈)) → (¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }) → ¬ 𝑥 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{ 0 }))))
33323impia 1117 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → ¬ 𝑥 ∈ (((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∪ ((LSpan‘𝑈)‘{ 0 })))
341, 9, 2, 3, 4, 16, 17, 18, 19, 20, 21, 22, 23, 33hdmapval2 40508 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → (𝑆0 ) = (((HDMap1‘𝐾)‘𝑊)‘⟨𝑥, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑥⟩), 0 ⟩))
35 hdmapval0.q . . . . 5 𝑄 = (0g𝐶)
36 eqid 2731 . . . . . 6 (LSpan‘𝐶) = (LSpan‘𝐶)
37 eqid 2731 . . . . . 6 ((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊)
381, 2, 3, 8, 16, 17, 35, 18, 5, 10hvmapcl2 40442 . . . . . . . 8 (𝜑 → (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩) ∈ ((Base‘𝐶) ∖ {𝑄}))
3938eldifad 3956 . . . . . . 7 (𝜑 → (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩) ∈ (Base‘𝐶))
40393ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩) ∈ (Base‘𝐶))
411, 2, 3, 8, 4, 16, 36, 37, 18, 5, 10mapdhvmap 40445 . . . . . . 7 (𝜑 → (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩})) = ((LSpan‘𝐶)‘{(((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩)}))
42413ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩})) = ((LSpan‘𝐶)‘{(((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩)}))
431, 2, 5dvhlvec 39785 . . . . . . . . . 10 (𝜑𝑈 ∈ LVec)
44433ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → 𝑈 ∈ LVec)
45113ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ (Base‘𝑈))
46 simp3 1138 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }))
473, 4, 44, 23, 45, 22, 46lspindpi 20694 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → (((LSpan‘𝑈)‘{𝑥}) ≠ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ∧ ((LSpan‘𝑈)‘{𝑥}) ≠ ((LSpan‘𝑈)‘{ 0 })))
4847simpld 495 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → ((LSpan‘𝑈)‘{𝑥}) ≠ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
4948necomd 2995 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}) ≠ ((LSpan‘𝑈)‘{𝑥}))
50103ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ ((Base‘𝑈) ∖ { 0 }))
511, 2, 3, 8, 4, 16, 17, 36, 37, 19, 21, 40, 42, 49, 50, 23hdmap1cl 40480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑥⟩) ∈ (Base‘𝐶))
521, 2, 3, 8, 16, 17, 35, 19, 21, 51, 23hdmap1val0 40475 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → (((HDMap1‘𝐾)‘𝑊)‘⟨𝑥, (((HDMap1‘𝐾)‘𝑊)‘⟨⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, (((HVMap‘𝐾)‘𝑊)‘⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩), 𝑥⟩), 0 ⟩) = 𝑄)
5334, 52eqtrd 2771 . . 3 ((𝜑𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 })) → (𝑆0 ) = 𝑄)
5453rexlimdv3a 3158 . 2 (𝜑 → (∃𝑥 ∈ (Base‘𝑈) ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩, 0 }) → (𝑆0 ) = 𝑄))
5515, 54mpd 15 1 (𝜑 → (𝑆0 ) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wrex 3069  cdif 3941  cun 3942  {csn 4622  {cpr 4624  cop 4628  cotp 4630   I cid 5566  cres 5671  cfv 6532  Basecbs 17126  0gc0g 17367  LModclmod 20420  LSubSpclss 20491  LSpanclspn 20531  LVecclvec 20662  HLchlt 38025  LHypclh 38660  LTrncltrn 38777  DVecHcdvh 39754  LCDualclcd 40262  mapdcmpd 40300  HVMapchvm 40432  HDMap1chdma1 40467  HDMapchdma 40468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-riotaBAD 37628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-ot 4631  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-tpos 8193  df-undef 8240  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-n0 12455  df-z 12541  df-uz 12805  df-fz 13467  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17369  df-mre 17512  df-mrc 17513  df-acs 17515  df-proset 18230  df-poset 18248  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-submnd 18648  df-grp 18797  df-minusg 18798  df-sbg 18799  df-subg 18975  df-cntz 19147  df-oppg 19174  df-lsm 19468  df-cmn 19614  df-abl 19615  df-mgp 19947  df-ur 19964  df-ring 20016  df-oppr 20102  df-dvdsr 20123  df-unit 20124  df-invr 20154  df-dvr 20165  df-drng 20267  df-lmod 20422  df-lss 20492  df-lsp 20532  df-lvec 20663  df-lsatoms 37651  df-lshyp 37652  df-lcv 37694  df-lfl 37733  df-lkr 37761  df-ldual 37799  df-oposet 37851  df-ol 37853  df-oml 37854  df-covers 37941  df-ats 37942  df-atl 37973  df-cvlat 37997  df-hlat 38026  df-llines 38174  df-lplanes 38175  df-lvols 38176  df-lines 38177  df-psubsp 38179  df-pmap 38180  df-padd 38472  df-lhyp 38664  df-laut 38665  df-ldil 38780  df-ltrn 38781  df-trl 38835  df-tgrp 39419  df-tendo 39431  df-edring 39433  df-dveca 39679  df-disoa 39705  df-dvech 39755  df-dib 39815  df-dic 39849  df-dih 39905  df-doch 40024  df-djh 40071  df-lcdual 40263  df-mapd 40301  df-hvmap 40433  df-hdmap1 40469  df-hdmap 40470
This theorem is referenced by:  hdmapval3N  40514  hdmap10  40516  hdmaprnlem17N  40539  hdmap14lem2a  40543  hdmap14lem6  40549  hdmap14lem13  40556  hgmapval0  40568
  Copyright terms: Public domain W3C validator