Step | Hyp | Ref
| Expression |
1 | | hdmapval0.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | hdmapval0.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
3 | | eqid 2758 |
. . 3
⊢
(Base‘𝑈) =
(Base‘𝑈) |
4 | | eqid 2758 |
. . 3
⊢
(LSpan‘𝑈) =
(LSpan‘𝑈) |
5 | | hdmapval0.k |
. . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
6 | | eqid 2758 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
7 | | eqid 2758 |
. . . . 5
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
8 | | hdmapval0.o |
. . . . 5
⊢ 0 =
(0g‘𝑈) |
9 | | eqid 2758 |
. . . . 5
⊢ 〈( I
↾ (Base‘𝐾)), (
I ↾ ((LTrn‘𝐾)‘𝑊))〉 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 |
10 | 1, 6, 7, 2, 3, 8, 9, 5 | dvheveccl 38688 |
. . . 4
⊢ (𝜑 → 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 ∈ ((Base‘𝑈) ∖ { 0 })) |
11 | 10 | eldifad 3870 |
. . 3
⊢ (𝜑 → 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 ∈ (Base‘𝑈)) |
12 | 1, 2, 5 | dvhlmod 38686 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ LMod) |
13 | 3, 8 | lmod0vcl 19731 |
. . . 4
⊢ (𝑈 ∈ LMod → 0 ∈
(Base‘𝑈)) |
14 | 12, 13 | syl 17 |
. . 3
⊢ (𝜑 → 0 ∈ (Base‘𝑈)) |
15 | 1, 2, 3, 4, 5, 11,
14 | dvh3dim 39022 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ (Base‘𝑈) ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) |
16 | | hdmapval0.c |
. . . . 5
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
17 | | eqid 2758 |
. . . . 5
⊢
(Base‘𝐶) =
(Base‘𝐶) |
18 | | eqid 2758 |
. . . . 5
⊢
((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊) |
19 | | eqid 2758 |
. . . . 5
⊢
((HDMap1‘𝐾)‘𝑊) = ((HDMap1‘𝐾)‘𝑊) |
20 | | hdmapval0.s |
. . . . 5
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
21 | 5 | 3ad2ant1 1130 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
22 | 14 | 3ad2ant1 1130 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → 0 ∈
(Base‘𝑈)) |
23 | | simp2 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → 𝑥 ∈ (Base‘𝑈)) |
24 | | eqid 2758 |
. . . . . . . . . 10
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
25 | 3, 24, 4, 12, 11, 14 | lspprcl 19818 |
. . . . . . . . . 10
⊢ (𝜑 → ((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, 0 }) ∈
(LSubSp‘𝑈)) |
26 | 3, 4, 12, 11, 14 | lspprid1 19837 |
. . . . . . . . . 10
⊢ (𝜑 → 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 ∈ ((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, 0 })) |
27 | 24, 4, 12, 25, 26 | lspsnel5a 19836 |
. . . . . . . . 9
⊢ (𝜑 → ((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉}) ⊆ ((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, 0 })) |
28 | 3, 4, 12, 11, 14 | lspprid2 19838 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈ ((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, 0 })) |
29 | 24, 4, 12, 25, 28 | lspsnel5a 19836 |
. . . . . . . . 9
⊢ (𝜑 → ((LSpan‘𝑈)‘{ 0 }) ⊆
((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) |
30 | 27, 29 | unssd 4091 |
. . . . . . . 8
⊢ (𝜑 → (((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉}) ∪ ((LSpan‘𝑈)‘{ 0 })) ⊆
((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) |
31 | 30 | ssneld 3894 |
. . . . . . 7
⊢ (𝜑 → (¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 }) → ¬ 𝑥 ∈ (((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉}) ∪ ((LSpan‘𝑈)‘{ 0 })))) |
32 | 31 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈)) → (¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 }) → ¬ 𝑥 ∈ (((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉}) ∪ ((LSpan‘𝑈)‘{ 0 })))) |
33 | 32 | 3impia 1114 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → ¬ 𝑥 ∈ (((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉}) ∪ ((LSpan‘𝑈)‘{ 0 }))) |
34 | 1, 9, 2, 3, 4, 16,
17, 18, 19, 20, 21, 22, 23, 33 | hdmapval2 39408 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → (𝑆‘ 0 ) = (((HDMap1‘𝐾)‘𝑊)‘〈𝑥, (((HDMap1‘𝐾)‘𝑊)‘〈〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, (((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉), 𝑥〉), 0 〉)) |
35 | | hdmapval0.q |
. . . . 5
⊢ 𝑄 = (0g‘𝐶) |
36 | | eqid 2758 |
. . . . . 6
⊢
(LSpan‘𝐶) =
(LSpan‘𝐶) |
37 | | eqid 2758 |
. . . . . 6
⊢
((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊) |
38 | 1, 2, 3, 8, 16, 17, 35, 18, 5, 10 | hvmapcl2 39342 |
. . . . . . . 8
⊢ (𝜑 → (((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉) ∈
((Base‘𝐶) ∖
{𝑄})) |
39 | 38 | eldifad 3870 |
. . . . . . 7
⊢ (𝜑 → (((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉) ∈
(Base‘𝐶)) |
40 | 39 | 3ad2ant1 1130 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) →
(((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉) ∈
(Base‘𝐶)) |
41 | 1, 2, 3, 8, 4, 16,
36, 37, 18, 5, 10 | mapdhvmap 39345 |
. . . . . . 7
⊢ (𝜑 → (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉})) =
((LSpan‘𝐶)‘{(((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉)})) |
42 | 41 | 3ad2ant1 1130 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) →
(((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉})) =
((LSpan‘𝐶)‘{(((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉)})) |
43 | 1, 2, 5 | dvhlvec 38685 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ LVec) |
44 | 43 | 3ad2ant1 1130 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → 𝑈 ∈ LVec) |
45 | 11 | 3ad2ant1 1130 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → 〈( I
↾ (Base‘𝐾)), (
I ↾ ((LTrn‘𝐾)‘𝑊))〉 ∈ (Base‘𝑈)) |
46 | | simp3 1135 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, 0 })) |
47 | 3, 4, 44, 23, 45, 22, 46 | lspindpi 19972 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) →
(((LSpan‘𝑈)‘{𝑥}) ≠ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉}) ∧
((LSpan‘𝑈)‘{𝑥}) ≠ ((LSpan‘𝑈)‘{ 0 }))) |
48 | 47 | simpld 498 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) →
((LSpan‘𝑈)‘{𝑥}) ≠ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉})) |
49 | 48 | necomd 3006 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) →
((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉}) ≠
((LSpan‘𝑈)‘{𝑥})) |
50 | 10 | 3ad2ant1 1130 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → 〈( I
↾ (Base‘𝐾)), (
I ↾ ((LTrn‘𝐾)‘𝑊))〉 ∈ ((Base‘𝑈) ∖ { 0 })) |
51 | 1, 2, 3, 8, 4, 16,
17, 36, 37, 19, 21, 40, 42, 49, 50, 23 | hdmap1cl 39380 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) →
(((HDMap1‘𝐾)‘𝑊)‘〈〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, (((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉), 𝑥〉) ∈ (Base‘𝐶)) |
52 | 1, 2, 3, 8, 16, 17, 35, 19, 21, 51, 23 | hdmap1val0 39375 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) →
(((HDMap1‘𝐾)‘𝑊)‘〈𝑥, (((HDMap1‘𝐾)‘𝑊)‘〈〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉, (((HVMap‘𝐾)‘𝑊)‘〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉), 𝑥〉), 0 〉) = 𝑄) |
53 | 34, 52 | eqtrd 2793 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 })) → (𝑆‘ 0 ) = 𝑄) |
54 | 53 | rexlimdv3a 3210 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ (Base‘𝑈) ¬ 𝑥 ∈ ((LSpan‘𝑈)‘{〈( I ↾ (Base‘𝐾)), ( I ↾
((LTrn‘𝐾)‘𝑊))〉, 0 }) → (𝑆‘ 0 ) = 𝑄)) |
55 | 15, 54 | mpd 15 |
1
⊢ (𝜑 → (𝑆‘ 0 ) = 𝑄) |