MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodss Structured version   Visualization version   GIF version

Theorem prodss 15830
Description: Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.)
Hypotheses
Ref Expression
prodss.1 (𝜑𝐴𝐵)
prodss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
prodss.3 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
prodss.4 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
prodss.5 (𝜑𝐵 ⊆ (ℤ𝑀))
Assertion
Ref Expression
prodss (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘,𝑛,𝑦   𝐵,𝑘,𝑛,𝑦   𝐶,𝑛,𝑦   𝑘,𝑛,𝜑,𝑦   𝑛,𝑀,𝑦   𝜑,𝑛,𝑦   𝑘,𝑀
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem prodss
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
2 simpr 485 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 prodss.3 . . . . . 6 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
43adantr 481 . . . . 5 ((𝜑𝑀 ∈ ℤ) → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
5 prodss.1 . . . . . . 7 (𝜑𝐴𝐵)
6 prodss.5 . . . . . . 7 (𝜑𝐵 ⊆ (ℤ𝑀))
75, 6sstrd 3954 . . . . . 6 (𝜑𝐴 ⊆ (ℤ𝑀))
87adantr 481 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝐴 ⊆ (ℤ𝑀))
9 simpr 485 . . . . . . 7 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
10 iftrue 4492 . . . . . . . . . . . 12 (𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
1110adantl 482 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
12 prodss.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1312ex 413 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘𝐴𝐶 ∈ ℂ))
1413adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (𝑘𝐴𝐶 ∈ ℂ))
15 eldif 3920 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝐵𝐴) ↔ (𝑘𝐵 ∧ ¬ 𝑘𝐴))
16 prodss.4 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
17 ax-1cn 11109 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
1816, 17eqeltrdi 2846 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
1915, 18sylan2br 595 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → 𝐶 ∈ ℂ)
2019expr 457 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴𝐶 ∈ ℂ))
2114, 20pm2.61d 179 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
2221ralrimiva 3143 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
23 nfcsb1v 3880 . . . . . . . . . . . . . 14 𝑘𝑚 / 𝑘𝐶
2423nfel1 2923 . . . . . . . . . . . . 13 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
25 csbeq1a 3869 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
2625eleq1d 2822 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
2724, 26rspc 3569 . . . . . . . . . . . 12 (𝑚𝐵 → (∀𝑘𝐵 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
2822, 27mpan9 507 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → 𝑚 / 𝑘𝐶 ∈ ℂ)
2911, 28eqeltrd 2838 . . . . . . . . . 10 ((𝜑𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
30 iffalse 4495 . . . . . . . . . . . 12 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 1)
3130, 17eqeltrdi 2846 . . . . . . . . . . 11 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
3231adantl 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
3329, 32pm2.61dan 811 . . . . . . . . 9 (𝜑 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
3433adantr 481 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
3534adantr 481 . . . . . . 7 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
36 nfcv 2907 . . . . . . . 8 𝑘𝑚
37 nfv 1917 . . . . . . . . 9 𝑘 𝑚𝐵
38 nfcv 2907 . . . . . . . . 9 𝑘1
3937, 23, 38nfif 4516 . . . . . . . 8 𝑘if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)
40 eleq1w 2820 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑘𝐵𝑚𝐵))
4140, 25ifbieq1d 4510 . . . . . . . 8 (𝑘 = 𝑚 → if(𝑘𝐵, 𝐶, 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
42 eqid 2736 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)) = (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))
4336, 39, 41, 42fvmptf 6969 . . . . . . 7 ((𝑚 ∈ (ℤ𝑀) ∧ if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
449, 35, 43syl2anc 584 . . . . . 6 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
45 iftrue 4492 . . . . . . . . . . . . . 14 (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = ((𝑘𝐴𝐶)‘𝑚))
4645adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = ((𝑘𝐴𝐶)‘𝑚))
47 simpr 485 . . . . . . . . . . . . . 14 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → 𝑚𝐴)
485adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑀 ∈ ℤ) → 𝐴𝐵)
4948sselda 3944 . . . . . . . . . . . . . . 15 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → 𝑚𝐵)
5028adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → 𝑚 / 𝑘𝐶 ∈ ℂ)
5149, 50syldan 591 . . . . . . . . . . . . . 14 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
52 eqid 2736 . . . . . . . . . . . . . . 15 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
5352fvmpts 6951 . . . . . . . . . . . . . 14 ((𝑚𝐴𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
5447, 51, 53syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
5546, 54eqtrd 2776 . . . . . . . . . . . 12 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
5655ex 413 . . . . . . . . . . 11 ((𝜑𝑀 ∈ ℤ) → (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
5756adantr 481 . . . . . . . . . 10 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
58 iffalse 4495 . . . . . . . . . . . . . 14 𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
5958adantl 482 . . . . . . . . . . . . 13 ((𝑚𝐵 ∧ ¬ 𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
6059adantl 482 . . . . . . . . . . . 12 (((𝜑𝑀 ∈ ℤ) ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
61 eldif 3920 . . . . . . . . . . . . 13 (𝑚 ∈ (𝐵𝐴) ↔ (𝑚𝐵 ∧ ¬ 𝑚𝐴))
6216ralrimiva 3143 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 1)
6362adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑀 ∈ ℤ) → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 1)
6423nfeq1 2922 . . . . . . . . . . . . . . 15 𝑘𝑚 / 𝑘𝐶 = 1
6525eqeq1d 2738 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (𝐶 = 1 ↔ 𝑚 / 𝑘𝐶 = 1))
6664, 65rspc 3569 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝐵𝐴) → (∀𝑘 ∈ (𝐵𝐴)𝐶 = 1 → 𝑚 / 𝑘𝐶 = 1))
6763, 66mpan9 507 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (𝐵𝐴)) → 𝑚 / 𝑘𝐶 = 1)
6861, 67sylan2br 595 . . . . . . . . . . . 12 (((𝜑𝑀 ∈ ℤ) ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → 𝑚 / 𝑘𝐶 = 1)
6960, 68eqtr4d 2779 . . . . . . . . . . 11 (((𝜑𝑀 ∈ ℤ) ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
7069expr 457 . . . . . . . . . 10 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → (¬ 𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
7157, 70pm2.61d 179 . . . . . . . . 9 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
7210adantl 482 . . . . . . . . 9 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
7371, 72eqtr4d 2779 . . . . . . . 8 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
7448ssneld 3946 . . . . . . . . . . 11 ((𝜑𝑀 ∈ ℤ) → (¬ 𝑚𝐵 → ¬ 𝑚𝐴))
7574imp 407 . . . . . . . . . 10 (((𝜑𝑀 ∈ ℤ) ∧ ¬ 𝑚𝐵) → ¬ 𝑚𝐴)
7675, 58syl 17 . . . . . . . . 9 (((𝜑𝑀 ∈ ℤ) ∧ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
7730adantl 482 . . . . . . . . 9 (((𝜑𝑀 ∈ ℤ) ∧ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 1)
7876, 77eqtr4d 2779 . . . . . . . 8 (((𝜑𝑀 ∈ ℤ) ∧ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
7973, 78pm2.61dan 811 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
8079adantr 481 . . . . . 6 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
8144, 80eqtr4d 2779 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1))
8212fmpttd 7063 . . . . . . 7 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
8382adantr 481 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → (𝑘𝐴𝐶):𝐴⟶ℂ)
8483ffvelcdmda 7035 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
851, 2, 4, 8, 81, 84zprod 15820 . . . 4 ((𝜑𝑀 ∈ ℤ) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)))))
866adantr 481 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝐵 ⊆ (ℤ𝑀))
8743ancoms 459 . . . . . . 7 ((if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
8834, 87sylan 580 . . . . . 6 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
89 simpr 485 . . . . . . . . . 10 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → 𝑚𝐵)
90 eqid 2736 . . . . . . . . . . 11 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
9190fvmpts 6951 . . . . . . . . . 10 ((𝑚𝐵𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
9289, 50, 91syl2anc 584 . . . . . . . . 9 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
9392ifeq1d 4505 . . . . . . . 8 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9493adantlr 713 . . . . . . 7 ((((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
95 iffalse 4495 . . . . . . . . 9 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = 1)
9695, 30eqtr4d 2779 . . . . . . . 8 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9796adantl 482 . . . . . . 7 ((((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ ¬ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9894, 97pm2.61dan 811 . . . . . 6 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9988, 98eqtr4d 2779 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1))
10021fmpttd 7063 . . . . . . 7 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
101100adantr 481 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → (𝑘𝐵𝐶):𝐵⟶ℂ)
102101ffvelcdmda 7035 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
1031, 2, 4, 86, 99, 102zprod 15820 . . . 4 ((𝜑𝑀 ∈ ℤ) → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)))))
10485, 103eqtr4d 2779 . . 3 ((𝜑𝑀 ∈ ℤ) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
105 prodfc 15828 . . 3 𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶
106 prodfc 15828 . . 3 𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑘𝐵 𝐶
107104, 105, 1063eqtr3g 2799 . 2 ((𝜑𝑀 ∈ ℤ) → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
1085adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴𝐵)
1096adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐵 ⊆ (ℤ𝑀))
110 uzf 12766 . . . . . . . . . . 11 :ℤ⟶𝒫 ℤ
111110fdmi 6680 . . . . . . . . . 10 dom ℤ = ℤ
112111eleq2i 2829 . . . . . . . . 9 (𝑀 ∈ dom ℤ𝑀 ∈ ℤ)
113 ndmfv 6877 . . . . . . . . 9 𝑀 ∈ dom ℤ → (ℤ𝑀) = ∅)
114112, 113sylnbir 330 . . . . . . . 8 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
115114adantl 482 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → (ℤ𝑀) = ∅)
116109, 115sseqtrd 3984 . . . . . 6 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐵 ⊆ ∅)
117108, 116sstrd 3954 . . . . 5 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 ⊆ ∅)
118 ss0 4358 . . . . 5 (𝐴 ⊆ ∅ → 𝐴 = ∅)
119117, 118syl 17 . . . 4 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 = ∅)
120 ss0 4358 . . . . 5 (𝐵 ⊆ ∅ → 𝐵 = ∅)
121116, 120syl 17 . . . 4 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐵 = ∅)
122119, 121eqtr4d 2779 . . 3 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 = 𝐵)
123122prodeq1d 15804 . 2 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
124107, 123pm2.61dan 811 1 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  csb 3855  cdif 3907  wss 3910  c0 4282  ifcif 4486  𝒫 cpw 4560   class class class wbr 5105  cmpt 5188  dom cdm 5633  wf 6492  cfv 6496  cc 11049  0cc0 11051  1c1 11052   · cmul 11056  cz 12499  cuz 12763  seqcseq 13906  cli 15366  cprod 15788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-prod 15789
This theorem is referenced by:  fprodss  15831
  Copyright terms: Public domain W3C validator