MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodss Structured version   Visualization version   GIF version

Theorem prodss 15349
Description: Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.)
Hypotheses
Ref Expression
prodss.1 (𝜑𝐴𝐵)
prodss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
prodss.3 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
prodss.4 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
prodss.5 (𝜑𝐵 ⊆ (ℤ𝑀))
Assertion
Ref Expression
prodss (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘,𝑛,𝑦   𝐵,𝑘,𝑛,𝑦   𝐶,𝑛,𝑦   𝑘,𝑛,𝜑,𝑦   𝑛,𝑀,𝑦   𝜑,𝑛,𝑦   𝑘,𝑀
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem prodss
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
2 simpr 488 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 prodss.3 . . . . . 6 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
43adantr 484 . . . . 5 ((𝜑𝑀 ∈ ℤ) → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
5 prodss.1 . . . . . . 7 (𝜑𝐴𝐵)
6 prodss.5 . . . . . . 7 (𝜑𝐵 ⊆ (ℤ𝑀))
75, 6sstrd 3902 . . . . . 6 (𝜑𝐴 ⊆ (ℤ𝑀))
87adantr 484 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝐴 ⊆ (ℤ𝑀))
9 simpr 488 . . . . . . 7 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
10 iftrue 4426 . . . . . . . . . . . 12 (𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
1110adantl 485 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
12 prodss.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1312ex 416 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘𝐴𝐶 ∈ ℂ))
1413adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (𝑘𝐴𝐶 ∈ ℂ))
15 eldif 3868 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝐵𝐴) ↔ (𝑘𝐵 ∧ ¬ 𝑘𝐴))
16 prodss.4 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
17 ax-1cn 10633 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
1816, 17eqeltrdi 2860 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
1915, 18sylan2br 597 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → 𝐶 ∈ ℂ)
2019expr 460 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴𝐶 ∈ ℂ))
2114, 20pm2.61d 182 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
2221ralrimiva 3113 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
23 nfcsb1v 3829 . . . . . . . . . . . . . 14 𝑘𝑚 / 𝑘𝐶
2423nfel1 2935 . . . . . . . . . . . . 13 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
25 csbeq1a 3819 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
2625eleq1d 2836 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
2724, 26rspc 3529 . . . . . . . . . . . 12 (𝑚𝐵 → (∀𝑘𝐵 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
2822, 27mpan9 510 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → 𝑚 / 𝑘𝐶 ∈ ℂ)
2911, 28eqeltrd 2852 . . . . . . . . . 10 ((𝜑𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
30 iffalse 4429 . . . . . . . . . . . 12 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 1)
3130, 17eqeltrdi 2860 . . . . . . . . . . 11 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
3231adantl 485 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
3329, 32pm2.61dan 812 . . . . . . . . 9 (𝜑 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
3433adantr 484 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
3534adantr 484 . . . . . . 7 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
36 nfcv 2919 . . . . . . . 8 𝑘𝑚
37 nfv 1915 . . . . . . . . 9 𝑘 𝑚𝐵
38 nfcv 2919 . . . . . . . . 9 𝑘1
3937, 23, 38nfif 4450 . . . . . . . 8 𝑘if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)
40 eleq1w 2834 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑘𝐵𝑚𝐵))
4140, 25ifbieq1d 4444 . . . . . . . 8 (𝑘 = 𝑚 → if(𝑘𝐵, 𝐶, 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
42 eqid 2758 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)) = (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))
4336, 39, 41, 42fvmptf 6780 . . . . . . 7 ((𝑚 ∈ (ℤ𝑀) ∧ if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
449, 35, 43syl2anc 587 . . . . . 6 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
45 iftrue 4426 . . . . . . . . . . . . . 14 (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = ((𝑘𝐴𝐶)‘𝑚))
4645adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = ((𝑘𝐴𝐶)‘𝑚))
47 simpr 488 . . . . . . . . . . . . . 14 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → 𝑚𝐴)
485adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑀 ∈ ℤ) → 𝐴𝐵)
4948sselda 3892 . . . . . . . . . . . . . . 15 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → 𝑚𝐵)
5028adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → 𝑚 / 𝑘𝐶 ∈ ℂ)
5149, 50syldan 594 . . . . . . . . . . . . . 14 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
52 eqid 2758 . . . . . . . . . . . . . . 15 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
5352fvmpts 6762 . . . . . . . . . . . . . 14 ((𝑚𝐴𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
5447, 51, 53syl2anc 587 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
5546, 54eqtrd 2793 . . . . . . . . . . . 12 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
5655ex 416 . . . . . . . . . . 11 ((𝜑𝑀 ∈ ℤ) → (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
5756adantr 484 . . . . . . . . . 10 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
58 iffalse 4429 . . . . . . . . . . . . . 14 𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
5958adantl 485 . . . . . . . . . . . . 13 ((𝑚𝐵 ∧ ¬ 𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
6059adantl 485 . . . . . . . . . . . 12 (((𝜑𝑀 ∈ ℤ) ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
61 eldif 3868 . . . . . . . . . . . . 13 (𝑚 ∈ (𝐵𝐴) ↔ (𝑚𝐵 ∧ ¬ 𝑚𝐴))
6216ralrimiva 3113 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 1)
6362adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑀 ∈ ℤ) → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 1)
6423nfeq1 2934 . . . . . . . . . . . . . . 15 𝑘𝑚 / 𝑘𝐶 = 1
6525eqeq1d 2760 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (𝐶 = 1 ↔ 𝑚 / 𝑘𝐶 = 1))
6664, 65rspc 3529 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝐵𝐴) → (∀𝑘 ∈ (𝐵𝐴)𝐶 = 1 → 𝑚 / 𝑘𝐶 = 1))
6763, 66mpan9 510 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (𝐵𝐴)) → 𝑚 / 𝑘𝐶 = 1)
6861, 67sylan2br 597 . . . . . . . . . . . 12 (((𝜑𝑀 ∈ ℤ) ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → 𝑚 / 𝑘𝐶 = 1)
6960, 68eqtr4d 2796 . . . . . . . . . . 11 (((𝜑𝑀 ∈ ℤ) ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
7069expr 460 . . . . . . . . . 10 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → (¬ 𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
7157, 70pm2.61d 182 . . . . . . . . 9 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
7210adantl 485 . . . . . . . . 9 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
7371, 72eqtr4d 2796 . . . . . . . 8 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
7448ssneld 3894 . . . . . . . . . . 11 ((𝜑𝑀 ∈ ℤ) → (¬ 𝑚𝐵 → ¬ 𝑚𝐴))
7574imp 410 . . . . . . . . . 10 (((𝜑𝑀 ∈ ℤ) ∧ ¬ 𝑚𝐵) → ¬ 𝑚𝐴)
7675, 58syl 17 . . . . . . . . 9 (((𝜑𝑀 ∈ ℤ) ∧ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
7730adantl 485 . . . . . . . . 9 (((𝜑𝑀 ∈ ℤ) ∧ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 1)
7876, 77eqtr4d 2796 . . . . . . . 8 (((𝜑𝑀 ∈ ℤ) ∧ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
7973, 78pm2.61dan 812 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
8079adantr 484 . . . . . 6 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
8144, 80eqtr4d 2796 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1))
8212fmpttd 6870 . . . . . . 7 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
8382adantr 484 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → (𝑘𝐴𝐶):𝐴⟶ℂ)
8483ffvelrnda 6842 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
851, 2, 4, 8, 81, 84zprod 15339 . . . 4 ((𝜑𝑀 ∈ ℤ) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)))))
866adantr 484 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝐵 ⊆ (ℤ𝑀))
8743ancoms 462 . . . . . . 7 ((if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
8834, 87sylan 583 . . . . . 6 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
89 simpr 488 . . . . . . . . . 10 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → 𝑚𝐵)
90 eqid 2758 . . . . . . . . . . 11 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
9190fvmpts 6762 . . . . . . . . . 10 ((𝑚𝐵𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
9289, 50, 91syl2anc 587 . . . . . . . . 9 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
9392ifeq1d 4439 . . . . . . . 8 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9493adantlr 714 . . . . . . 7 ((((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
95 iffalse 4429 . . . . . . . . 9 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = 1)
9695, 30eqtr4d 2796 . . . . . . . 8 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9796adantl 485 . . . . . . 7 ((((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ ¬ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9894, 97pm2.61dan 812 . . . . . 6 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9988, 98eqtr4d 2796 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1))
10021fmpttd 6870 . . . . . . 7 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
101100adantr 484 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → (𝑘𝐵𝐶):𝐵⟶ℂ)
102101ffvelrnda 6842 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
1031, 2, 4, 86, 99, 102zprod 15339 . . . 4 ((𝜑𝑀 ∈ ℤ) → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)))))
10485, 103eqtr4d 2796 . . 3 ((𝜑𝑀 ∈ ℤ) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
105 prodfc 15347 . . 3 𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶
106 prodfc 15347 . . 3 𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑘𝐵 𝐶
107104, 105, 1063eqtr3g 2816 . 2 ((𝜑𝑀 ∈ ℤ) → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
1085adantr 484 . . . . . 6 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴𝐵)
1096adantr 484 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐵 ⊆ (ℤ𝑀))
110 uzf 12285 . . . . . . . . . . 11 :ℤ⟶𝒫 ℤ
111110fdmi 6509 . . . . . . . . . 10 dom ℤ = ℤ
112111eleq2i 2843 . . . . . . . . 9 (𝑀 ∈ dom ℤ𝑀 ∈ ℤ)
113 ndmfv 6688 . . . . . . . . 9 𝑀 ∈ dom ℤ → (ℤ𝑀) = ∅)
114112, 113sylnbir 334 . . . . . . . 8 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
115114adantl 485 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → (ℤ𝑀) = ∅)
116109, 115sseqtrd 3932 . . . . . 6 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐵 ⊆ ∅)
117108, 116sstrd 3902 . . . . 5 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 ⊆ ∅)
118 ss0 4294 . . . . 5 (𝐴 ⊆ ∅ → 𝐴 = ∅)
119117, 118syl 17 . . . 4 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 = ∅)
120 ss0 4294 . . . . 5 (𝐵 ⊆ ∅ → 𝐵 = ∅)
121116, 120syl 17 . . . 4 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐵 = ∅)
122119, 121eqtr4d 2796 . . 3 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 = 𝐵)
123122prodeq1d 15323 . 2 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
124107, 123pm2.61dan 812 1 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2951  wral 3070  wrex 3071  csb 3805  cdif 3855  wss 3858  c0 4225  ifcif 4420  𝒫 cpw 4494   class class class wbr 5032  cmpt 5112  dom cdm 5524  wf 6331  cfv 6335  cc 10573  0cc0 10575  1c1 10576   · cmul 10580  cz 12020  cuz 12282  seqcseq 13418  cli 14889  cprod 15307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-n0 11935  df-z 12021  df-uz 12283  df-rp 12431  df-fz 12940  df-fzo 13083  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-clim 14893  df-prod 15308
This theorem is referenced by:  fprodss  15350
  Copyright terms: Public domain W3C validator