Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap11lem2 Structured version   Visualization version   GIF version

Theorem hdmap11lem2 40305
Description: Lemma for hdmapadd 40306. (Contributed by NM, 26-May-2015.)
Hypotheses
Ref Expression
hdmap11.h 𝐻 = (LHyp‘𝐾)
hdmap11.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap11.v 𝑉 = (Base‘𝑈)
hdmap11.p + = (+g𝑈)
hdmap11.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap11.a = (+g𝐶)
hdmap11.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap11.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap11.x (𝜑𝑋𝑉)
hdmap11.y (𝜑𝑌𝑉)
hdmap11.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmap11.o 0 = (0g𝑈)
hdmap11.n 𝑁 = (LSpan‘𝑈)
hdmap11.d 𝐷 = (Base‘𝐶)
hdmap11.l 𝐿 = (LSpan‘𝐶)
hdmap11.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap11.j 𝐽 = ((HVMap‘𝐾)‘𝑊)
hdmap11.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
Assertion
Ref Expression
hdmap11lem2 (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌)))

Proof of Theorem hdmap11lem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 hdmap11.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 hdmap11.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap11.v . . . . . 6 𝑉 = (Base‘𝑈)
4 hdmap11.n . . . . . 6 𝑁 = (LSpan‘𝑈)
5 hdmap11.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 hdmap11.x . . . . . 6 (𝜑𝑋𝑉)
7 hdmap11.y . . . . . 6 (𝜑𝑌𝑉)
81, 2, 3, 4, 5, 6, 7dvh3dim 39909 . . . . 5 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
98adantr 481 . . . 4 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
10 eqid 2736 . . . . . . . 8 (LSubSp‘𝑈) = (LSubSp‘𝑈)
111, 2, 5dvhlmod 39573 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
1211adantr 481 . . . . . . . 8 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LMod)
133, 10, 4, 11, 6, 7lspprcl 20439 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
1413adantr 481 . . . . . . . 8 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
15 simpr 485 . . . . . . . 8 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → 𝐸 ∈ (𝑁‘{𝑋, 𝑌}))
1610, 4, 12, 14, 15lspsnel5a 20457 . . . . . . 7 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝑋, 𝑌}))
1716ssneld 3946 . . . . . 6 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝐸})))
1817ancld 551 . . . . 5 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
1918reximdv 3167 . . . 4 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
209, 19mpd 15 . . 3 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
21 eqid 2736 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
22 eqid 2736 . . . . . . . . . 10 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
23 hdmap11.o . . . . . . . . . 10 0 = (0g𝑈)
24 hdmap11.e . . . . . . . . . 10 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
251, 21, 22, 2, 3, 23, 24, 5dvheveccl 39575 . . . . . . . . 9 (𝜑𝐸 ∈ (𝑉 ∖ { 0 }))
2625eldifad 3922 . . . . . . . 8 (𝜑𝐸𝑉)
271, 2, 3, 4, 5, 26, 7dvh3dim 39909 . . . . . . 7 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}))
2827adantr 481 . . . . . 6 ((𝜑𝑋 = 0 ) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}))
29 preq1 4694 . . . . . . . . . . . . 13 (𝑋 = 0 → {𝑋, 𝑌} = { 0 , 𝑌})
30 prcom 4693 . . . . . . . . . . . . 13 { 0 , 𝑌} = {𝑌, 0 }
3129, 30eqtrdi 2792 . . . . . . . . . . . 12 (𝑋 = 0 → {𝑋, 𝑌} = {𝑌, 0 })
3231fveq2d 6846 . . . . . . . . . . 11 (𝑋 = 0 → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, 0 }))
333, 23, 4, 11, 7lsppr0 20553 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌, 0 }) = (𝑁‘{𝑌}))
3432, 33sylan9eqr 2798 . . . . . . . . . 10 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌}))
353, 10, 4, 11, 26, 7lspprcl 20439 . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝐸, 𝑌}) ∈ (LSubSp‘𝑈))
363, 4, 11, 26, 7lspprid2 20459 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (𝑁‘{𝐸, 𝑌}))
3710, 4, 11, 35, 36lspsnel5a 20457 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝐸, 𝑌}))
3837adantr 481 . . . . . . . . . 10 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝐸, 𝑌}))
3934, 38eqsstrd 3982 . . . . . . . . 9 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝐸, 𝑌}))
4039ssneld 3946 . . . . . . . 8 ((𝜑𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
413, 4, 11, 26, 7lspprid1 20458 . . . . . . . . . . 11 (𝜑𝐸 ∈ (𝑁‘{𝐸, 𝑌}))
4210, 4, 11, 35, 41lspsnel5a 20457 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑌}))
4342adantr 481 . . . . . . . . 9 ((𝜑𝑋 = 0 ) → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑌}))
4443ssneld 3946 . . . . . . . 8 ((𝜑𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝐸})))
4540, 44jcad 513 . . . . . . 7 ((𝜑𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
4645reximdv 3167 . . . . . 6 ((𝜑𝑋 = 0 ) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
4728, 46mpd 15 . . . . 5 ((𝜑𝑋 = 0 ) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
4847adantlr 713 . . . 4 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 = 0 ) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
49 hdmap11.p . . . . . . . 8 + = (+g𝑈)
503, 49lmodvacl 20336 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝐸𝑉𝑋𝑉) → (𝐸 + 𝑋) ∈ 𝑉)
5111, 26, 6, 50syl3anc 1371 . . . . . 6 (𝜑 → (𝐸 + 𝑋) ∈ 𝑉)
5251ad2antrr 724 . . . . 5 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → (𝐸 + 𝑋) ∈ 𝑉)
5311ad2antrr 724 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑈 ∈ LMod)
5413ad2antrr 724 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
553, 4, 11, 6, 7lspprid1 20458 . . . . . . 7 (𝜑𝑋 ∈ (𝑁‘{𝑋, 𝑌}))
5655ad2antrr 724 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋 ∈ (𝑁‘{𝑋, 𝑌}))
5726ad2antrr 724 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝐸𝑉)
58 simplr 767 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌}))
593, 49, 10, 53, 54, 56, 57, 58lssvancl2 20406 . . . . 5 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}))
603, 10, 4lspsncl 20438 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝐸𝑉) → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈))
6111, 26, 60syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈))
6261ad2antrr 724 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈))
633, 4lspsnid 20454 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝐸𝑉) → 𝐸 ∈ (𝑁‘{𝐸}))
6411, 26, 63syl2anc 584 . . . . . . 7 (𝜑𝐸 ∈ (𝑁‘{𝐸}))
6564ad2antrr 724 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝐸 ∈ (𝑁‘{𝐸}))
666ad2antrr 724 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋𝑉)
671, 2, 5dvhlvec 39572 . . . . . . . 8 (𝜑𝑈 ∈ LVec)
6867ad2antrr 724 . . . . . . 7 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑈 ∈ LVec)
69 simpr 485 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋0 )
70 eldifsn 4747 . . . . . . . 8 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
7166, 69, 70sylanbrc 583 . . . . . . 7 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
7210, 4, 11, 13, 55lspsnel5a 20457 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}))
7372sseld 3943 . . . . . . . . 9 (𝜑 → (𝐸 ∈ (𝑁‘{𝑋}) → 𝐸 ∈ (𝑁‘{𝑋, 𝑌})))
7473con3dimp 409 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝐸 ∈ (𝑁‘{𝑋}))
7574adantr 481 . . . . . . 7 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ 𝐸 ∈ (𝑁‘{𝑋}))
763, 23, 4, 68, 57, 71, 75lspsnnecom 20580 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ 𝑋 ∈ (𝑁‘{𝐸}))
773, 49, 10, 53, 62, 65, 66, 76lssvancl1 20405 . . . . 5 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))
78 eleq1 2825 . . . . . . . 8 (𝑧 = (𝐸 + 𝑋) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌})))
7978notbid 317 . . . . . . 7 (𝑧 = (𝐸 + 𝑋) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌})))
80 eleq1 2825 . . . . . . . 8 (𝑧 = (𝐸 + 𝑋) → (𝑧 ∈ (𝑁‘{𝐸}) ↔ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸})))
8180notbid 317 . . . . . . 7 (𝑧 = (𝐸 + 𝑋) → (¬ 𝑧 ∈ (𝑁‘{𝐸}) ↔ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸})))
8279, 81anbi12d 631 . . . . . 6 (𝑧 = (𝐸 + 𝑋) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})) ↔ (¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))))
8382rspcev 3581 . . . . 5 (((𝐸 + 𝑋) ∈ 𝑉 ∧ (¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
8452, 59, 77, 83syl12anc 835 . . . 4 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
8548, 84pm2.61dane 3032 . . 3 ((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
8620, 85pm2.61dan 811 . 2 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
87 hdmap11.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
88 hdmap11.a . . . 4 = (+g𝐶)
89 hdmap11.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
9053ad2ant1 1133 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9163ad2ant1 1133 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑋𝑉)
9273ad2ant1 1133 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑌𝑉)
93 hdmap11.d . . . 4 𝐷 = (Base‘𝐶)
94 hdmap11.l . . . 4 𝐿 = (LSpan‘𝐶)
95 hdmap11.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
96 hdmap11.j . . . 4 𝐽 = ((HVMap‘𝐾)‘𝑊)
97 hdmap11.i . . . 4 𝐼 = ((HDMap1‘𝐾)‘𝑊)
98 simp2 1137 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑧𝑉)
99 simp3l 1201 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
100113ad2ant1 1133 . . . . 5 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑈 ∈ LMod)
101263ad2ant1 1133 . . . . 5 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝐸𝑉)
102 simp3r 1202 . . . . 5 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → ¬ 𝑧 ∈ (𝑁‘{𝐸}))
1033, 4, 100, 98, 101, 102lspsnne2 20579 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝐸}))
1041, 2, 3, 49, 87, 88, 89, 90, 91, 92, 24, 23, 4, 93, 94, 95, 96, 97, 98, 99, 103hdmap11lem1 40304 . . 3 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌)))
105104rexlimdv3a 3156 . 2 (𝜑 → (∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})) → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌))))
10686, 105mpd 15 1 (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cdif 3907  wss 3910  {csn 4586  {cpr 4588  cop 4592   I cid 5530  cres 5635  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  0gc0g 17321  LModclmod 20322  LSubSpclss 20392  LSpanclspn 20432  LVecclvec 20563  HLchlt 37812  LHypclh 38447  LTrncltrn 38564  DVecHcdvh 39541  LCDualclcd 40049  mapdcmpd 40087  HVMapchvm 40219  HDMap1chdma1 40254  HDMapchdma 40255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-undef 8204  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-0g 17323  df-mre 17466  df-mrc 17467  df-acs 17469  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-oppg 19124  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564  df-lsatoms 37438  df-lshyp 37439  df-lcv 37481  df-lfl 37520  df-lkr 37548  df-ldual 37586  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tgrp 39206  df-tendo 39218  df-edring 39220  df-dveca 39466  df-disoa 39492  df-dvech 39542  df-dib 39602  df-dic 39636  df-dih 39692  df-doch 39811  df-djh 39858  df-lcdual 40050  df-mapd 40088  df-hvmap 40220  df-hdmap1 40256  df-hdmap 40257
This theorem is referenced by:  hdmapadd  40306
  Copyright terms: Public domain W3C validator