Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap11lem2 Structured version   Visualization version   GIF version

Theorem hdmap11lem2 41844
Description: Lemma for hdmapadd 41845. (Contributed by NM, 26-May-2015.)
Hypotheses
Ref Expression
hdmap11.h 𝐻 = (LHyp‘𝐾)
hdmap11.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap11.v 𝑉 = (Base‘𝑈)
hdmap11.p + = (+g𝑈)
hdmap11.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap11.a = (+g𝐶)
hdmap11.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap11.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap11.x (𝜑𝑋𝑉)
hdmap11.y (𝜑𝑌𝑉)
hdmap11.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmap11.o 0 = (0g𝑈)
hdmap11.n 𝑁 = (LSpan‘𝑈)
hdmap11.d 𝐷 = (Base‘𝐶)
hdmap11.l 𝐿 = (LSpan‘𝐶)
hdmap11.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap11.j 𝐽 = ((HVMap‘𝐾)‘𝑊)
hdmap11.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
Assertion
Ref Expression
hdmap11lem2 (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌)))

Proof of Theorem hdmap11lem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 hdmap11.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 hdmap11.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap11.v . . . . . 6 𝑉 = (Base‘𝑈)
4 hdmap11.n . . . . . 6 𝑁 = (LSpan‘𝑈)
5 hdmap11.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 hdmap11.x . . . . . 6 (𝜑𝑋𝑉)
7 hdmap11.y . . . . . 6 (𝜑𝑌𝑉)
81, 2, 3, 4, 5, 6, 7dvh3dim 41448 . . . . 5 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
98adantr 480 . . . 4 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
10 eqid 2737 . . . . . . . 8 (LSubSp‘𝑈) = (LSubSp‘𝑈)
111, 2, 5dvhlmod 41112 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
1211adantr 480 . . . . . . . 8 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LMod)
133, 10, 4, 11, 6, 7lspprcl 20976 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
1413adantr 480 . . . . . . . 8 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
15 simpr 484 . . . . . . . 8 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → 𝐸 ∈ (𝑁‘{𝑋, 𝑌}))
1610, 4, 12, 14, 15ellspsn5 20994 . . . . . . 7 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝑋, 𝑌}))
1716ssneld 3985 . . . . . 6 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝐸})))
1817ancld 550 . . . . 5 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
1918reximdv 3170 . . . 4 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
209, 19mpd 15 . . 3 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
21 eqid 2737 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
22 eqid 2737 . . . . . . . . . 10 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
23 hdmap11.o . . . . . . . . . 10 0 = (0g𝑈)
24 hdmap11.e . . . . . . . . . 10 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
251, 21, 22, 2, 3, 23, 24, 5dvheveccl 41114 . . . . . . . . 9 (𝜑𝐸 ∈ (𝑉 ∖ { 0 }))
2625eldifad 3963 . . . . . . . 8 (𝜑𝐸𝑉)
271, 2, 3, 4, 5, 26, 7dvh3dim 41448 . . . . . . 7 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}))
2827adantr 480 . . . . . 6 ((𝜑𝑋 = 0 ) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}))
29 preq1 4733 . . . . . . . . . . . . 13 (𝑋 = 0 → {𝑋, 𝑌} = { 0 , 𝑌})
30 prcom 4732 . . . . . . . . . . . . 13 { 0 , 𝑌} = {𝑌, 0 }
3129, 30eqtrdi 2793 . . . . . . . . . . . 12 (𝑋 = 0 → {𝑋, 𝑌} = {𝑌, 0 })
3231fveq2d 6910 . . . . . . . . . . 11 (𝑋 = 0 → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, 0 }))
333, 23, 4, 11, 7lsppr0 21091 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌, 0 }) = (𝑁‘{𝑌}))
3432, 33sylan9eqr 2799 . . . . . . . . . 10 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌}))
353, 10, 4, 11, 26, 7lspprcl 20976 . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝐸, 𝑌}) ∈ (LSubSp‘𝑈))
363, 4, 11, 26, 7lspprid2 20996 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (𝑁‘{𝐸, 𝑌}))
3710, 4, 11, 35, 36ellspsn5 20994 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝐸, 𝑌}))
3837adantr 480 . . . . . . . . . 10 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝐸, 𝑌}))
3934, 38eqsstrd 4018 . . . . . . . . 9 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝐸, 𝑌}))
4039ssneld 3985 . . . . . . . 8 ((𝜑𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
413, 4, 11, 26, 7lspprid1 20995 . . . . . . . . . . 11 (𝜑𝐸 ∈ (𝑁‘{𝐸, 𝑌}))
4210, 4, 11, 35, 41ellspsn5 20994 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑌}))
4342adantr 480 . . . . . . . . 9 ((𝜑𝑋 = 0 ) → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑌}))
4443ssneld 3985 . . . . . . . 8 ((𝜑𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝐸})))
4540, 44jcad 512 . . . . . . 7 ((𝜑𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
4645reximdv 3170 . . . . . 6 ((𝜑𝑋 = 0 ) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
4728, 46mpd 15 . . . . 5 ((𝜑𝑋 = 0 ) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
4847adantlr 715 . . . 4 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 = 0 ) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
49 hdmap11.p . . . . . . . 8 + = (+g𝑈)
503, 49lmodvacl 20873 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝐸𝑉𝑋𝑉) → (𝐸 + 𝑋) ∈ 𝑉)
5111, 26, 6, 50syl3anc 1373 . . . . . 6 (𝜑 → (𝐸 + 𝑋) ∈ 𝑉)
5251ad2antrr 726 . . . . 5 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → (𝐸 + 𝑋) ∈ 𝑉)
5311ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑈 ∈ LMod)
5413ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
553, 4, 11, 6, 7lspprid1 20995 . . . . . . 7 (𝜑𝑋 ∈ (𝑁‘{𝑋, 𝑌}))
5655ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋 ∈ (𝑁‘{𝑋, 𝑌}))
5726ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝐸𝑉)
58 simplr 769 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌}))
593, 49, 10, 53, 54, 56, 57, 58lssvancl2 20944 . . . . 5 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}))
603, 10, 4lspsncl 20975 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝐸𝑉) → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈))
6111, 26, 60syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈))
6261ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈))
633, 4lspsnid 20991 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝐸𝑉) → 𝐸 ∈ (𝑁‘{𝐸}))
6411, 26, 63syl2anc 584 . . . . . . 7 (𝜑𝐸 ∈ (𝑁‘{𝐸}))
6564ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝐸 ∈ (𝑁‘{𝐸}))
666ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋𝑉)
671, 2, 5dvhlvec 41111 . . . . . . . 8 (𝜑𝑈 ∈ LVec)
6867ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑈 ∈ LVec)
69 simpr 484 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋0 )
70 eldifsn 4786 . . . . . . . 8 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
7166, 69, 70sylanbrc 583 . . . . . . 7 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
7210, 4, 11, 13, 55ellspsn5 20994 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}))
7372sseld 3982 . . . . . . . . 9 (𝜑 → (𝐸 ∈ (𝑁‘{𝑋}) → 𝐸 ∈ (𝑁‘{𝑋, 𝑌})))
7473con3dimp 408 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝐸 ∈ (𝑁‘{𝑋}))
7574adantr 480 . . . . . . 7 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ 𝐸 ∈ (𝑁‘{𝑋}))
763, 23, 4, 68, 57, 71, 75lspsnnecom 21121 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ 𝑋 ∈ (𝑁‘{𝐸}))
773, 49, 10, 53, 62, 65, 66, 76lssvancl1 20943 . . . . 5 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))
78 eleq1 2829 . . . . . . . 8 (𝑧 = (𝐸 + 𝑋) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌})))
7978notbid 318 . . . . . . 7 (𝑧 = (𝐸 + 𝑋) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌})))
80 eleq1 2829 . . . . . . . 8 (𝑧 = (𝐸 + 𝑋) → (𝑧 ∈ (𝑁‘{𝐸}) ↔ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸})))
8180notbid 318 . . . . . . 7 (𝑧 = (𝐸 + 𝑋) → (¬ 𝑧 ∈ (𝑁‘{𝐸}) ↔ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸})))
8279, 81anbi12d 632 . . . . . 6 (𝑧 = (𝐸 + 𝑋) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})) ↔ (¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))))
8382rspcev 3622 . . . . 5 (((𝐸 + 𝑋) ∈ 𝑉 ∧ (¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
8452, 59, 77, 83syl12anc 837 . . . 4 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
8548, 84pm2.61dane 3029 . . 3 ((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
8620, 85pm2.61dan 813 . 2 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
87 hdmap11.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
88 hdmap11.a . . . 4 = (+g𝐶)
89 hdmap11.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
9053ad2ant1 1134 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9163ad2ant1 1134 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑋𝑉)
9273ad2ant1 1134 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑌𝑉)
93 hdmap11.d . . . 4 𝐷 = (Base‘𝐶)
94 hdmap11.l . . . 4 𝐿 = (LSpan‘𝐶)
95 hdmap11.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
96 hdmap11.j . . . 4 𝐽 = ((HVMap‘𝐾)‘𝑊)
97 hdmap11.i . . . 4 𝐼 = ((HDMap1‘𝐾)‘𝑊)
98 simp2 1138 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑧𝑉)
99 simp3l 1202 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
100113ad2ant1 1134 . . . . 5 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑈 ∈ LMod)
101263ad2ant1 1134 . . . . 5 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝐸𝑉)
102 simp3r 1203 . . . . 5 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → ¬ 𝑧 ∈ (𝑁‘{𝐸}))
1033, 4, 100, 98, 101, 102lspsnne2 21120 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝐸}))
1041, 2, 3, 49, 87, 88, 89, 90, 91, 92, 24, 23, 4, 93, 94, 95, 96, 97, 98, 99, 103hdmap11lem1 41843 . . 3 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌)))
105104rexlimdv3a 3159 . 2 (𝜑 → (∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})) → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌))))
10686, 105mpd 15 1 (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  cdif 3948  wss 3951  {csn 4626  {cpr 4628  cop 4632   I cid 5577  cres 5687  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484  LModclmod 20858  LSubSpclss 20929  LSpanclspn 20969  LVecclvec 21101  HLchlt 39351  LHypclh 39986  LTrncltrn 40103  DVecHcdvh 41080  LCDualclcd 41588  mapdcmpd 41626  HVMapchvm 41758  HDMap1chdma1 41793  HDMapchdma 41794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-riotaBAD 38954
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-undef 8298  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-0g 17486  df-mre 17629  df-mrc 17630  df-acs 17632  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335  df-oppg 19364  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-nzr 20513  df-rlreg 20694  df-domn 20695  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lvec 21102  df-lsatoms 38977  df-lshyp 38978  df-lcv 39020  df-lfl 39059  df-lkr 39087  df-ldual 39125  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501  df-lvols 39502  df-lines 39503  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161  df-tgrp 40745  df-tendo 40757  df-edring 40759  df-dveca 41005  df-disoa 41031  df-dvech 41081  df-dib 41141  df-dic 41175  df-dih 41231  df-doch 41350  df-djh 41397  df-lcdual 41589  df-mapd 41627  df-hvmap 41759  df-hdmap1 41795  df-hdmap 41796
This theorem is referenced by:  hdmapadd  41845
  Copyright terms: Public domain W3C validator