Step | Hyp | Ref
| Expression |
1 | | hdmap11.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | hdmap11.u |
. . . . . 6
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
3 | | hdmap11.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑈) |
4 | | hdmap11.n |
. . . . . 6
⊢ 𝑁 = (LSpan‘𝑈) |
5 | | hdmap11.k |
. . . . . 6
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
6 | | hdmap11.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
7 | | hdmap11.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
8 | 1, 2, 3, 4, 5, 6, 7 | dvh3dim 39057 |
. . . . 5
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
9 | 8 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
10 | | eqid 2758 |
. . . . . . . 8
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
11 | 1, 2, 5 | dvhlmod 38721 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ LMod) |
12 | 11 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LMod) |
13 | 3, 10, 4, 11, 6, 7 | lspprcl 19832 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
14 | 13 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
15 | | simpr 488 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) |
16 | 10, 4, 12, 14, 15 | lspsnel5a 19850 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝑋, 𝑌})) |
17 | 16 | ssneld 3896 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝐸}))) |
18 | 17 | ancld 554 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))) |
19 | 18 | reximdv 3197 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))) |
20 | 9, 19 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) |
21 | | eqid 2758 |
. . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) |
22 | | eqid 2758 |
. . . . . . . . . 10
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
23 | | hdmap11.o |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑈) |
24 | | hdmap11.e |
. . . . . . . . . 10
⊢ 𝐸 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 |
25 | 1, 21, 22, 2, 3, 23, 24, 5 | dvheveccl 38723 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ { 0 })) |
26 | 25 | eldifad 3872 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ 𝑉) |
27 | 1, 2, 3, 4, 5, 26,
7 | dvh3dim 39057 |
. . . . . . 7
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌})) |
28 | 27 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 0 ) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌})) |
29 | | preq1 4629 |
. . . . . . . . . . . . 13
⊢ (𝑋 = 0 → {𝑋, 𝑌} = { 0 , 𝑌}) |
30 | | prcom 4628 |
. . . . . . . . . . . . 13
⊢ { 0 , 𝑌} = {𝑌, 0 } |
31 | 29, 30 | eqtrdi 2809 |
. . . . . . . . . . . 12
⊢ (𝑋 = 0 → {𝑋, 𝑌} = {𝑌, 0 }) |
32 | 31 | fveq2d 6667 |
. . . . . . . . . . 11
⊢ (𝑋 = 0 → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, 0 })) |
33 | 3, 23, 4, 11, 7 | lsppr0 19946 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁‘{𝑌, 0 }) = (𝑁‘{𝑌})) |
34 | 32, 33 | sylan9eqr 2815 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌})) |
35 | 3, 10, 4, 11, 26, 7 | lspprcl 19832 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑁‘{𝐸, 𝑌}) ∈ (LSubSp‘𝑈)) |
36 | 3, 4, 11, 26, 7 | lspprid2 19852 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝐸, 𝑌})) |
37 | 10, 4, 11, 35, 36 | lspsnel5a 19850 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝐸, 𝑌})) |
38 | 37 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝐸, 𝑌})) |
39 | 34, 38 | eqsstrd 3932 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝐸, 𝑌})) |
40 | 39 | ssneld 3896 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))) |
41 | 3, 4, 11, 26, 7 | lspprid1 19851 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ (𝑁‘{𝐸, 𝑌})) |
42 | 10, 4, 11, 35, 41 | lspsnel5a 19850 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑌})) |
43 | 42 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑌})) |
44 | 43 | ssneld 3896 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝐸}))) |
45 | 40, 44 | jcad 516 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))) |
46 | 45 | reximdv 3197 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 0 ) → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))) |
47 | 28, 46 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = 0 ) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) |
48 | 47 | adantlr 714 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 = 0 ) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) |
49 | | hdmap11.p |
. . . . . . . 8
⊢ + =
(+g‘𝑈) |
50 | 3, 49 | lmodvacl 19730 |
. . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝐸 + 𝑋) ∈ 𝑉) |
51 | 11, 26, 6, 50 | syl3anc 1368 |
. . . . . 6
⊢ (𝜑 → (𝐸 + 𝑋) ∈ 𝑉) |
52 | 51 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → (𝐸 + 𝑋) ∈ 𝑉) |
53 | 11 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → 𝑈 ∈ LMod) |
54 | 13 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
55 | 3, 4, 11, 6, 7 | lspprid1 19851 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑋, 𝑌})) |
56 | 55 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ (𝑁‘{𝑋, 𝑌})) |
57 | 26 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → 𝐸 ∈ 𝑉) |
58 | | simplr 768 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) |
59 | 3, 49, 10, 53, 54, 56, 57, 58 | lssvancl2 19799 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌})) |
60 | 3, 10, 4 | lspsncl 19831 |
. . . . . . . 8
⊢ ((𝑈 ∈ LMod ∧ 𝐸 ∈ 𝑉) → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈)) |
61 | 11, 26, 60 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈)) |
62 | 61 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈)) |
63 | 3, 4 | lspsnid 19847 |
. . . . . . . 8
⊢ ((𝑈 ∈ LMod ∧ 𝐸 ∈ 𝑉) → 𝐸 ∈ (𝑁‘{𝐸})) |
64 | 11, 26, 63 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ (𝑁‘{𝐸})) |
65 | 64 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → 𝐸 ∈ (𝑁‘{𝐸})) |
66 | 6 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝑉) |
67 | 1, 2, 5 | dvhlvec 38720 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ LVec) |
68 | 67 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → 𝑈 ∈ LVec) |
69 | | simpr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) |
70 | | eldifsn 4680 |
. . . . . . . 8
⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) |
71 | 66, 69, 70 | sylanbrc 586 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
72 | 10, 4, 11, 13, 55 | lspsnel5a 19850 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌})) |
73 | 72 | sseld 3893 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 ∈ (𝑁‘{𝑋}) → 𝐸 ∈ (𝑁‘{𝑋, 𝑌}))) |
74 | 73 | con3dimp 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝐸 ∈ (𝑁‘{𝑋})) |
75 | 74 | adantr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → ¬ 𝐸 ∈ (𝑁‘{𝑋})) |
76 | 3, 23, 4, 68, 57, 71, 75 | lspsnnecom 19973 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → ¬ 𝑋 ∈ (𝑁‘{𝐸})) |
77 | 3, 49, 10, 53, 62, 65, 66, 76 | lssvancl1 19798 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸})) |
78 | | eleq1 2839 |
. . . . . . . 8
⊢ (𝑧 = (𝐸 + 𝑋) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}))) |
79 | 78 | notbid 321 |
. . . . . . 7
⊢ (𝑧 = (𝐸 + 𝑋) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}))) |
80 | | eleq1 2839 |
. . . . . . . 8
⊢ (𝑧 = (𝐸 + 𝑋) → (𝑧 ∈ (𝑁‘{𝐸}) ↔ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))) |
81 | 80 | notbid 321 |
. . . . . . 7
⊢ (𝑧 = (𝐸 + 𝑋) → (¬ 𝑧 ∈ (𝑁‘{𝐸}) ↔ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))) |
82 | 79, 81 | anbi12d 633 |
. . . . . 6
⊢ (𝑧 = (𝐸 + 𝑋) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})) ↔ (¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸})))) |
83 | 82 | rspcev 3543 |
. . . . 5
⊢ (((𝐸 + 𝑋) ∈ 𝑉 ∧ (¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) |
84 | 52, 59, 77, 83 | syl12anc 835 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) |
85 | 48, 84 | pm2.61dane 3038 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) |
86 | 20, 85 | pm2.61dan 812 |
. 2
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) |
87 | | hdmap11.c |
. . . 4
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
88 | | hdmap11.a |
. . . 4
⊢ ✚ =
(+g‘𝐶) |
89 | | hdmap11.s |
. . . 4
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
90 | 5 | 3ad2ant1 1130 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
91 | 6 | 3ad2ant1 1130 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑋 ∈ 𝑉) |
92 | 7 | 3ad2ant1 1130 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑌 ∈ 𝑉) |
93 | | hdmap11.d |
. . . 4
⊢ 𝐷 = (Base‘𝐶) |
94 | | hdmap11.l |
. . . 4
⊢ 𝐿 = (LSpan‘𝐶) |
95 | | hdmap11.m |
. . . 4
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
96 | | hdmap11.j |
. . . 4
⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) |
97 | | hdmap11.i |
. . . 4
⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
98 | | simp2 1134 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑧 ∈ 𝑉) |
99 | | simp3l 1198 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
100 | 11 | 3ad2ant1 1130 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑈 ∈ LMod) |
101 | 26 | 3ad2ant1 1130 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝐸 ∈ 𝑉) |
102 | | simp3r 1199 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → ¬ 𝑧 ∈ (𝑁‘{𝐸})) |
103 | 3, 4, 100, 98, 101, 102 | lspsnne2 19972 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝐸})) |
104 | 1, 2, 3, 49, 87, 88, 89, 90, 91, 92, 24, 23, 4, 93, 94, 95, 96, 97, 98, 99, 103 | hdmap11lem1 39452 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝑆‘(𝑋 + 𝑌)) = ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) |
105 | 104 | rexlimdv3a 3210 |
. 2
⊢ (𝜑 → (∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})) → (𝑆‘(𝑋 + 𝑌)) = ((𝑆‘𝑋) ✚ (𝑆‘𝑌)))) |
106 | 86, 105 | mpd 15 |
1
⊢ (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) |