| Step | Hyp | Ref
| Expression |
| 1 | | hdmap11.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
| 2 | | hdmap11.u |
. . . . . 6
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 3 | | hdmap11.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑈) |
| 4 | | hdmap11.n |
. . . . . 6
⊢ 𝑁 = (LSpan‘𝑈) |
| 5 | | hdmap11.k |
. . . . . 6
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 6 | | hdmap11.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 7 | | hdmap11.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | dvh3dim 41448 |
. . . . 5
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
| 9 | 8 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
| 10 | | eqid 2737 |
. . . . . . . 8
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
| 11 | 1, 2, 5 | dvhlmod 41112 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 12 | 11 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LMod) |
| 13 | 3, 10, 4, 11, 6, 7 | lspprcl 20976 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
| 14 | 13 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
| 15 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) |
| 16 | 10, 4, 12, 14, 15 | ellspsn5 20994 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 17 | 16 | ssneld 3985 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝐸}))) |
| 18 | 17 | ancld 550 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))) |
| 19 | 18 | reximdv 3170 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))) |
| 20 | 9, 19 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) |
| 21 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 22 | | eqid 2737 |
. . . . . . . . . 10
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
| 23 | | hdmap11.o |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑈) |
| 24 | | hdmap11.e |
. . . . . . . . . 10
⊢ 𝐸 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 |
| 25 | 1, 21, 22, 2, 3, 23, 24, 5 | dvheveccl 41114 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ { 0 })) |
| 26 | 25 | eldifad 3963 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| 27 | 1, 2, 3, 4, 5, 26,
7 | dvh3dim 41448 |
. . . . . . 7
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌})) |
| 28 | 27 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 0 ) → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌})) |
| 29 | | preq1 4733 |
. . . . . . . . . . . . 13
⊢ (𝑋 = 0 → {𝑋, 𝑌} = { 0 , 𝑌}) |
| 30 | | prcom 4732 |
. . . . . . . . . . . . 13
⊢ { 0 , 𝑌} = {𝑌, 0 } |
| 31 | 29, 30 | eqtrdi 2793 |
. . . . . . . . . . . 12
⊢ (𝑋 = 0 → {𝑋, 𝑌} = {𝑌, 0 }) |
| 32 | 31 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (𝑋 = 0 → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, 0 })) |
| 33 | 3, 23, 4, 11, 7 | lsppr0 21091 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁‘{𝑌, 0 }) = (𝑁‘{𝑌})) |
| 34 | 32, 33 | sylan9eqr 2799 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌})) |
| 35 | 3, 10, 4, 11, 26, 7 | lspprcl 20976 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑁‘{𝐸, 𝑌}) ∈ (LSubSp‘𝑈)) |
| 36 | 3, 4, 11, 26, 7 | lspprid2 20996 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝐸, 𝑌})) |
| 37 | 10, 4, 11, 35, 36 | ellspsn5 20994 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝐸, 𝑌})) |
| 38 | 37 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝐸, 𝑌})) |
| 39 | 34, 38 | eqsstrd 4018 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝐸, 𝑌})) |
| 40 | 39 | ssneld 3985 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))) |
| 41 | 3, 4, 11, 26, 7 | lspprid1 20995 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ (𝑁‘{𝐸, 𝑌})) |
| 42 | 10, 4, 11, 35, 41 | ellspsn5 20994 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑌})) |
| 43 | 42 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑌})) |
| 44 | 43 | ssneld 3985 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝐸}))) |
| 45 | 40, 44 | jcad 512 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))) |
| 46 | 45 | reximdv 3170 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = 0 ) → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))) |
| 47 | 28, 46 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = 0 ) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) |
| 48 | 47 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 = 0 ) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) |
| 49 | | hdmap11.p |
. . . . . . . 8
⊢ + =
(+g‘𝑈) |
| 50 | 3, 49 | lmodvacl 20873 |
. . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝐸 + 𝑋) ∈ 𝑉) |
| 51 | 11, 26, 6, 50 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → (𝐸 + 𝑋) ∈ 𝑉) |
| 52 | 51 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → (𝐸 + 𝑋) ∈ 𝑉) |
| 53 | 11 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → 𝑈 ∈ LMod) |
| 54 | 13 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
| 55 | 3, 4, 11, 6, 7 | lspprid1 20995 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑋, 𝑌})) |
| 56 | 55 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ (𝑁‘{𝑋, 𝑌})) |
| 57 | 26 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → 𝐸 ∈ 𝑉) |
| 58 | | simplr 769 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) |
| 59 | 3, 49, 10, 53, 54, 56, 57, 58 | lssvancl2 20944 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌})) |
| 60 | 3, 10, 4 | lspsncl 20975 |
. . . . . . . 8
⊢ ((𝑈 ∈ LMod ∧ 𝐸 ∈ 𝑉) → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈)) |
| 61 | 11, 26, 60 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈)) |
| 62 | 61 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈)) |
| 63 | 3, 4 | lspsnid 20991 |
. . . . . . . 8
⊢ ((𝑈 ∈ LMod ∧ 𝐸 ∈ 𝑉) → 𝐸 ∈ (𝑁‘{𝐸})) |
| 64 | 11, 26, 63 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ (𝑁‘{𝐸})) |
| 65 | 64 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → 𝐸 ∈ (𝑁‘{𝐸})) |
| 66 | 6 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝑉) |
| 67 | 1, 2, 5 | dvhlvec 41111 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ LVec) |
| 68 | 67 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → 𝑈 ∈ LVec) |
| 69 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) |
| 70 | | eldifsn 4786 |
. . . . . . . 8
⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) |
| 71 | 66, 69, 70 | sylanbrc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 72 | 10, 4, 11, 13, 55 | ellspsn5 20994 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 73 | 72 | sseld 3982 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 ∈ (𝑁‘{𝑋}) → 𝐸 ∈ (𝑁‘{𝑋, 𝑌}))) |
| 74 | 73 | con3dimp 408 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝐸 ∈ (𝑁‘{𝑋})) |
| 75 | 74 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → ¬ 𝐸 ∈ (𝑁‘{𝑋})) |
| 76 | 3, 23, 4, 68, 57, 71, 75 | lspsnnecom 21121 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → ¬ 𝑋 ∈ (𝑁‘{𝐸})) |
| 77 | 3, 49, 10, 53, 62, 65, 66, 76 | lssvancl1 20943 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸})) |
| 78 | | eleq1 2829 |
. . . . . . . 8
⊢ (𝑧 = (𝐸 + 𝑋) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}))) |
| 79 | 78 | notbid 318 |
. . . . . . 7
⊢ (𝑧 = (𝐸 + 𝑋) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}))) |
| 80 | | eleq1 2829 |
. . . . . . . 8
⊢ (𝑧 = (𝐸 + 𝑋) → (𝑧 ∈ (𝑁‘{𝐸}) ↔ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))) |
| 81 | 80 | notbid 318 |
. . . . . . 7
⊢ (𝑧 = (𝐸 + 𝑋) → (¬ 𝑧 ∈ (𝑁‘{𝐸}) ↔ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))) |
| 82 | 79, 81 | anbi12d 632 |
. . . . . 6
⊢ (𝑧 = (𝐸 + 𝑋) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})) ↔ (¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸})))) |
| 83 | 82 | rspcev 3622 |
. . . . 5
⊢ (((𝐸 + 𝑋) ∈ 𝑉 ∧ (¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) |
| 84 | 52, 59, 77, 83 | syl12anc 837 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 ≠ 0 ) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) |
| 85 | 48, 84 | pm2.61dane 3029 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) |
| 86 | 20, 85 | pm2.61dan 813 |
. 2
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) |
| 87 | | hdmap11.c |
. . . 4
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| 88 | | hdmap11.a |
. . . 4
⊢ ✚ =
(+g‘𝐶) |
| 89 | | hdmap11.s |
. . . 4
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| 90 | 5 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 91 | 6 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑋 ∈ 𝑉) |
| 92 | 7 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑌 ∈ 𝑉) |
| 93 | | hdmap11.d |
. . . 4
⊢ 𝐷 = (Base‘𝐶) |
| 94 | | hdmap11.l |
. . . 4
⊢ 𝐿 = (LSpan‘𝐶) |
| 95 | | hdmap11.m |
. . . 4
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| 96 | | hdmap11.j |
. . . 4
⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) |
| 97 | | hdmap11.i |
. . . 4
⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
| 98 | | simp2 1138 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑧 ∈ 𝑉) |
| 99 | | simp3l 1202 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
| 100 | 11 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑈 ∈ LMod) |
| 101 | 26 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝐸 ∈ 𝑉) |
| 102 | | simp3r 1203 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → ¬ 𝑧 ∈ (𝑁‘{𝐸})) |
| 103 | 3, 4, 100, 98, 101, 102 | lspsnne2 21120 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝐸})) |
| 104 | 1, 2, 3, 49, 87, 88, 89, 90, 91, 92, 24, 23, 4, 93, 94, 95, 96, 97, 98, 99, 103 | hdmap11lem1 41843 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝑆‘(𝑋 + 𝑌)) = ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) |
| 105 | 104 | rexlimdv3a 3159 |
. 2
⊢ (𝜑 → (∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})) → (𝑆‘(𝑋 + 𝑌)) = ((𝑆‘𝑋) ✚ (𝑆‘𝑌)))) |
| 106 | 86, 105 | mpd 15 |
1
⊢ (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) |