Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap11lem2 Structured version   Visualization version   GIF version

Theorem hdmap11lem2 37730
Description: Lemma for hdmapadd 37731. (Contributed by NM, 26-May-2015.)
Hypotheses
Ref Expression
hdmap11.h 𝐻 = (LHyp‘𝐾)
hdmap11.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap11.v 𝑉 = (Base‘𝑈)
hdmap11.p + = (+g𝑈)
hdmap11.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap11.a = (+g𝐶)
hdmap11.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap11.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap11.x (𝜑𝑋𝑉)
hdmap11.y (𝜑𝑌𝑉)
hdmap11.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmap11.o 0 = (0g𝑈)
hdmap11.n 𝑁 = (LSpan‘𝑈)
hdmap11.d 𝐷 = (Base‘𝐶)
hdmap11.l 𝐿 = (LSpan‘𝐶)
hdmap11.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap11.j 𝐽 = ((HVMap‘𝐾)‘𝑊)
hdmap11.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
Assertion
Ref Expression
hdmap11lem2 (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌)))

Proof of Theorem hdmap11lem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 hdmap11.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 hdmap11.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap11.v . . . . . 6 𝑉 = (Base‘𝑈)
4 hdmap11.n . . . . . 6 𝑁 = (LSpan‘𝑈)
5 hdmap11.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 hdmap11.x . . . . . 6 (𝜑𝑋𝑉)
7 hdmap11.y . . . . . 6 (𝜑𝑌𝑉)
81, 2, 3, 4, 5, 6, 7dvh3dim 37334 . . . . 5 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
98adantr 472 . . . 4 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
10 eqid 2765 . . . . . . . 8 (LSubSp‘𝑈) = (LSubSp‘𝑈)
111, 2, 5dvhlmod 36998 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
1211adantr 472 . . . . . . . 8 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LMod)
133, 10, 4, 11, 6, 7lspprcl 19250 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
1413adantr 472 . . . . . . . 8 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
15 simpr 477 . . . . . . . 8 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → 𝐸 ∈ (𝑁‘{𝑋, 𝑌}))
1610, 4, 12, 14, 15lspsnel5a 19268 . . . . . . 7 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝑋, 𝑌}))
1716ssneld 3763 . . . . . 6 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝐸})))
1817ancld 546 . . . . 5 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
1918reximdv 3162 . . . 4 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
209, 19mpd 15 . . 3 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
21 eqid 2765 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
22 eqid 2765 . . . . . . . . . 10 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
23 hdmap11.o . . . . . . . . . 10 0 = (0g𝑈)
24 hdmap11.e . . . . . . . . . 10 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
251, 21, 22, 2, 3, 23, 24, 5dvheveccl 37000 . . . . . . . . 9 (𝜑𝐸 ∈ (𝑉 ∖ { 0 }))
2625eldifad 3744 . . . . . . . 8 (𝜑𝐸𝑉)
271, 2, 3, 4, 5, 26, 7dvh3dim 37334 . . . . . . 7 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}))
2827adantr 472 . . . . . 6 ((𝜑𝑋 = 0 ) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}))
29 preq1 4423 . . . . . . . . . . . . 13 (𝑋 = 0 → {𝑋, 𝑌} = { 0 , 𝑌})
30 prcom 4422 . . . . . . . . . . . . 13 { 0 , 𝑌} = {𝑌, 0 }
3129, 30syl6eq 2815 . . . . . . . . . . . 12 (𝑋 = 0 → {𝑋, 𝑌} = {𝑌, 0 })
3231fveq2d 6379 . . . . . . . . . . 11 (𝑋 = 0 → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, 0 }))
333, 23, 4, 11, 7lsppr0 19364 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌, 0 }) = (𝑁‘{𝑌}))
3432, 33sylan9eqr 2821 . . . . . . . . . 10 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌}))
353, 10, 4, 11, 26, 7lspprcl 19250 . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝐸, 𝑌}) ∈ (LSubSp‘𝑈))
363, 4, 11, 26, 7lspprid2 19270 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (𝑁‘{𝐸, 𝑌}))
3710, 4, 11, 35, 36lspsnel5a 19268 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝐸, 𝑌}))
3837adantr 472 . . . . . . . . . 10 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝐸, 𝑌}))
3934, 38eqsstrd 3799 . . . . . . . . 9 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝐸, 𝑌}))
4039ssneld 3763 . . . . . . . 8 ((𝜑𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
413, 4, 11, 26, 7lspprid1 19269 . . . . . . . . . . 11 (𝜑𝐸 ∈ (𝑁‘{𝐸, 𝑌}))
4210, 4, 11, 35, 41lspsnel5a 19268 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑌}))
4342adantr 472 . . . . . . . . 9 ((𝜑𝑋 = 0 ) → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑌}))
4443ssneld 3763 . . . . . . . 8 ((𝜑𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝐸})))
4540, 44jcad 508 . . . . . . 7 ((𝜑𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
4645reximdv 3162 . . . . . 6 ((𝜑𝑋 = 0 ) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
4728, 46mpd 15 . . . . 5 ((𝜑𝑋 = 0 ) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
4847adantlr 706 . . . 4 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 = 0 ) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
49 hdmap11.p . . . . . . . 8 + = (+g𝑈)
503, 49lmodvacl 19146 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝐸𝑉𝑋𝑉) → (𝐸 + 𝑋) ∈ 𝑉)
5111, 26, 6, 50syl3anc 1490 . . . . . 6 (𝜑 → (𝐸 + 𝑋) ∈ 𝑉)
5251ad2antrr 717 . . . . 5 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → (𝐸 + 𝑋) ∈ 𝑉)
5311ad2antrr 717 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑈 ∈ LMod)
5413ad2antrr 717 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
553, 4, 11, 6, 7lspprid1 19269 . . . . . . 7 (𝜑𝑋 ∈ (𝑁‘{𝑋, 𝑌}))
5655ad2antrr 717 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋 ∈ (𝑁‘{𝑋, 𝑌}))
5726ad2antrr 717 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝐸𝑉)
58 simplr 785 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌}))
593, 49, 10, 53, 54, 56, 57, 58lssvancl2 19215 . . . . 5 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}))
603, 10, 4lspsncl 19249 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝐸𝑉) → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈))
6111, 26, 60syl2anc 579 . . . . . . 7 (𝜑 → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈))
6261ad2antrr 717 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈))
633, 4lspsnid 19265 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝐸𝑉) → 𝐸 ∈ (𝑁‘{𝐸}))
6411, 26, 63syl2anc 579 . . . . . . 7 (𝜑𝐸 ∈ (𝑁‘{𝐸}))
6564ad2antrr 717 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝐸 ∈ (𝑁‘{𝐸}))
666ad2antrr 717 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋𝑉)
671, 2, 5dvhlvec 36997 . . . . . . . 8 (𝜑𝑈 ∈ LVec)
6867ad2antrr 717 . . . . . . 7 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑈 ∈ LVec)
69 simpr 477 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋0 )
70 eldifsn 4472 . . . . . . . 8 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
7166, 69, 70sylanbrc 578 . . . . . . 7 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
7210, 4, 11, 13, 55lspsnel5a 19268 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}))
7372sseld 3760 . . . . . . . . 9 (𝜑 → (𝐸 ∈ (𝑁‘{𝑋}) → 𝐸 ∈ (𝑁‘{𝑋, 𝑌})))
7473con3dimp 397 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝐸 ∈ (𝑁‘{𝑋}))
7574adantr 472 . . . . . . 7 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ 𝐸 ∈ (𝑁‘{𝑋}))
763, 23, 4, 68, 57, 71, 75lspsnnecom 19391 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ 𝑋 ∈ (𝑁‘{𝐸}))
773, 49, 10, 53, 62, 65, 66, 76lssvancl1 19214 . . . . 5 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))
78 eleq1 2832 . . . . . . . 8 (𝑧 = (𝐸 + 𝑋) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌})))
7978notbid 309 . . . . . . 7 (𝑧 = (𝐸 + 𝑋) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌})))
80 eleq1 2832 . . . . . . . 8 (𝑧 = (𝐸 + 𝑋) → (𝑧 ∈ (𝑁‘{𝐸}) ↔ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸})))
8180notbid 309 . . . . . . 7 (𝑧 = (𝐸 + 𝑋) → (¬ 𝑧 ∈ (𝑁‘{𝐸}) ↔ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸})))
8279, 81anbi12d 624 . . . . . 6 (𝑧 = (𝐸 + 𝑋) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})) ↔ (¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))))
8382rspcev 3461 . . . . 5 (((𝐸 + 𝑋) ∈ 𝑉 ∧ (¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
8452, 59, 77, 83syl12anc 865 . . . 4 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
8548, 84pm2.61dane 3024 . . 3 ((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
8620, 85pm2.61dan 847 . 2 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
87 hdmap11.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
88 hdmap11.a . . . 4 = (+g𝐶)
89 hdmap11.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
9053ad2ant1 1163 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9163ad2ant1 1163 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑋𝑉)
9273ad2ant1 1163 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑌𝑉)
93 hdmap11.d . . . 4 𝐷 = (Base‘𝐶)
94 hdmap11.l . . . 4 𝐿 = (LSpan‘𝐶)
95 hdmap11.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
96 hdmap11.j . . . 4 𝐽 = ((HVMap‘𝐾)‘𝑊)
97 hdmap11.i . . . 4 𝐼 = ((HDMap1‘𝐾)‘𝑊)
98 simp2 1167 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑧𝑉)
99 simp3l 1258 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
100113ad2ant1 1163 . . . . 5 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑈 ∈ LMod)
101263ad2ant1 1163 . . . . 5 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝐸𝑉)
102 simp3r 1259 . . . . 5 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → ¬ 𝑧 ∈ (𝑁‘{𝐸}))
1033, 4, 100, 98, 101, 102lspsnne2 19390 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝐸}))
1041, 2, 3, 49, 87, 88, 89, 90, 91, 92, 24, 23, 4, 93, 94, 95, 96, 97, 98, 99, 103hdmap11lem1 37729 . . 3 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌)))
105104rexlimdv3a 3180 . 2 (𝜑 → (∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})) → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌))))
10686, 105mpd 15 1 (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wrex 3056  cdif 3729  wss 3732  {csn 4334  {cpr 4336  cop 4340   I cid 5184  cres 5279  cfv 6068  (class class class)co 6842  Basecbs 16132  +gcplusg 16216  0gc0g 16368  LModclmod 19132  LSubSpclss 19201  LSpanclspn 19243  LVecclvec 19374  HLchlt 35238  LHypclh 35872  LTrncltrn 35989  DVecHcdvh 36966  LCDualclcd 37474  mapdcmpd 37512  HVMapchvm 37644  HDMap1chdma1 37679  HDMapchdma 37680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-riotaBAD 34841
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-ot 4343  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-tpos 7555  df-undef 7602  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-sca 16232  df-vsca 16233  df-0g 16370  df-mre 16514  df-mrc 16515  df-acs 16517  df-proset 17196  df-poset 17214  df-plt 17226  df-lub 17242  df-glb 17243  df-join 17244  df-meet 17245  df-p0 17307  df-p1 17308  df-lat 17314  df-clat 17376  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-grp 17694  df-minusg 17695  df-sbg 17696  df-subg 17857  df-cntz 18015  df-oppg 18041  df-lsm 18317  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-ring 18816  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-invr 18939  df-dvr 18950  df-drng 19018  df-lmod 19134  df-lss 19202  df-lsp 19244  df-lvec 19375  df-lsatoms 34864  df-lshyp 34865  df-lcv 34907  df-lfl 34946  df-lkr 34974  df-ldual 35012  df-oposet 35064  df-ol 35066  df-oml 35067  df-covers 35154  df-ats 35155  df-atl 35186  df-cvlat 35210  df-hlat 35239  df-llines 35386  df-lplanes 35387  df-lvols 35388  df-lines 35389  df-psubsp 35391  df-pmap 35392  df-padd 35684  df-lhyp 35876  df-laut 35877  df-ldil 35992  df-ltrn 35993  df-trl 36047  df-tgrp 36631  df-tendo 36643  df-edring 36645  df-dveca 36891  df-disoa 36917  df-dvech 36967  df-dib 37027  df-dic 37061  df-dih 37117  df-doch 37236  df-djh 37283  df-lcdual 37475  df-mapd 37513  df-hvmap 37645  df-hdmap1 37681  df-hdmap 37682
This theorem is referenced by:  hdmapadd  37731
  Copyright terms: Public domain W3C validator