Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap11lem2 Structured version   Visualization version   GIF version

Theorem hdmap11lem2 41824
Description: Lemma for hdmapadd 41825. (Contributed by NM, 26-May-2015.)
Hypotheses
Ref Expression
hdmap11.h 𝐻 = (LHyp‘𝐾)
hdmap11.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap11.v 𝑉 = (Base‘𝑈)
hdmap11.p + = (+g𝑈)
hdmap11.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap11.a = (+g𝐶)
hdmap11.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap11.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap11.x (𝜑𝑋𝑉)
hdmap11.y (𝜑𝑌𝑉)
hdmap11.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmap11.o 0 = (0g𝑈)
hdmap11.n 𝑁 = (LSpan‘𝑈)
hdmap11.d 𝐷 = (Base‘𝐶)
hdmap11.l 𝐿 = (LSpan‘𝐶)
hdmap11.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap11.j 𝐽 = ((HVMap‘𝐾)‘𝑊)
hdmap11.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
Assertion
Ref Expression
hdmap11lem2 (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌)))

Proof of Theorem hdmap11lem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 hdmap11.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 hdmap11.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap11.v . . . . . 6 𝑉 = (Base‘𝑈)
4 hdmap11.n . . . . . 6 𝑁 = (LSpan‘𝑈)
5 hdmap11.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 hdmap11.x . . . . . 6 (𝜑𝑋𝑉)
7 hdmap11.y . . . . . 6 (𝜑𝑌𝑉)
81, 2, 3, 4, 5, 6, 7dvh3dim 41428 . . . . 5 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
98adantr 480 . . . 4 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
10 eqid 2729 . . . . . . . 8 (LSubSp‘𝑈) = (LSubSp‘𝑈)
111, 2, 5dvhlmod 41092 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
1211adantr 480 . . . . . . . 8 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LMod)
133, 10, 4, 11, 6, 7lspprcl 20899 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
1413adantr 480 . . . . . . . 8 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
15 simpr 484 . . . . . . . 8 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → 𝐸 ∈ (𝑁‘{𝑋, 𝑌}))
1610, 4, 12, 14, 15ellspsn5 20917 . . . . . . 7 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝑋, 𝑌}))
1716ssneld 3939 . . . . . 6 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝐸})))
1817ancld 550 . . . . 5 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
1918reximdv 3144 . . . 4 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
209, 19mpd 15 . . 3 ((𝜑𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
21 eqid 2729 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
22 eqid 2729 . . . . . . . . . 10 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
23 hdmap11.o . . . . . . . . . 10 0 = (0g𝑈)
24 hdmap11.e . . . . . . . . . 10 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
251, 21, 22, 2, 3, 23, 24, 5dvheveccl 41094 . . . . . . . . 9 (𝜑𝐸 ∈ (𝑉 ∖ { 0 }))
2625eldifad 3917 . . . . . . . 8 (𝜑𝐸𝑉)
271, 2, 3, 4, 5, 26, 7dvh3dim 41428 . . . . . . 7 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}))
2827adantr 480 . . . . . 6 ((𝜑𝑋 = 0 ) → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}))
29 preq1 4687 . . . . . . . . . . . . 13 (𝑋 = 0 → {𝑋, 𝑌} = { 0 , 𝑌})
30 prcom 4686 . . . . . . . . . . . . 13 { 0 , 𝑌} = {𝑌, 0 }
3129, 30eqtrdi 2780 . . . . . . . . . . . 12 (𝑋 = 0 → {𝑋, 𝑌} = {𝑌, 0 })
3231fveq2d 6830 . . . . . . . . . . 11 (𝑋 = 0 → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, 0 }))
333, 23, 4, 11, 7lsppr0 21014 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌, 0 }) = (𝑁‘{𝑌}))
3432, 33sylan9eqr 2786 . . . . . . . . . 10 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌}))
353, 10, 4, 11, 26, 7lspprcl 20899 . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝐸, 𝑌}) ∈ (LSubSp‘𝑈))
363, 4, 11, 26, 7lspprid2 20919 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (𝑁‘{𝐸, 𝑌}))
3710, 4, 11, 35, 36ellspsn5 20917 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝐸, 𝑌}))
3837adantr 480 . . . . . . . . . 10 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝐸, 𝑌}))
3934, 38eqsstrd 3972 . . . . . . . . 9 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝐸, 𝑌}))
4039ssneld 3939 . . . . . . . 8 ((𝜑𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})))
413, 4, 11, 26, 7lspprid1 20918 . . . . . . . . . . 11 (𝜑𝐸 ∈ (𝑁‘{𝐸, 𝑌}))
4210, 4, 11, 35, 41ellspsn5 20917 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑌}))
4342adantr 480 . . . . . . . . 9 ((𝜑𝑋 = 0 ) → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑌}))
4443ssneld 3939 . . . . . . . 8 ((𝜑𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ¬ 𝑧 ∈ (𝑁‘{𝐸})))
4540, 44jcad 512 . . . . . . 7 ((𝜑𝑋 = 0 ) → (¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
4645reximdv 3144 . . . . . 6 ((𝜑𝑋 = 0 ) → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝐸, 𝑌}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))))
4728, 46mpd 15 . . . . 5 ((𝜑𝑋 = 0 ) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
4847adantlr 715 . . . 4 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋 = 0 ) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
49 hdmap11.p . . . . . . . 8 + = (+g𝑈)
503, 49lmodvacl 20796 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝐸𝑉𝑋𝑉) → (𝐸 + 𝑋) ∈ 𝑉)
5111, 26, 6, 50syl3anc 1373 . . . . . 6 (𝜑 → (𝐸 + 𝑋) ∈ 𝑉)
5251ad2antrr 726 . . . . 5 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → (𝐸 + 𝑋) ∈ 𝑉)
5311ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑈 ∈ LMod)
5413ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
553, 4, 11, 6, 7lspprid1 20918 . . . . . . 7 (𝜑𝑋 ∈ (𝑁‘{𝑋, 𝑌}))
5655ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋 ∈ (𝑁‘{𝑋, 𝑌}))
5726ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝐸𝑉)
58 simplr 768 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌}))
593, 49, 10, 53, 54, 56, 57, 58lssvancl2 20867 . . . . 5 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}))
603, 10, 4lspsncl 20898 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝐸𝑉) → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈))
6111, 26, 60syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈))
6261ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈))
633, 4lspsnid 20914 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝐸𝑉) → 𝐸 ∈ (𝑁‘{𝐸}))
6411, 26, 63syl2anc 584 . . . . . . 7 (𝜑𝐸 ∈ (𝑁‘{𝐸}))
6564ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝐸 ∈ (𝑁‘{𝐸}))
666ad2antrr 726 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋𝑉)
671, 2, 5dvhlvec 41091 . . . . . . . 8 (𝜑𝑈 ∈ LVec)
6867ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑈 ∈ LVec)
69 simpr 484 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋0 )
70 eldifsn 4740 . . . . . . . 8 (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋𝑉𝑋0 ))
7166, 69, 70sylanbrc 583 . . . . . . 7 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
7210, 4, 11, 13, 55ellspsn5 20917 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}))
7372sseld 3936 . . . . . . . . 9 (𝜑 → (𝐸 ∈ (𝑁‘{𝑋}) → 𝐸 ∈ (𝑁‘{𝑋, 𝑌})))
7473con3dimp 408 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝐸 ∈ (𝑁‘{𝑋}))
7574adantr 480 . . . . . . 7 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ 𝐸 ∈ (𝑁‘{𝑋}))
763, 23, 4, 68, 57, 71, 75lspsnnecom 21044 . . . . . 6 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ 𝑋 ∈ (𝑁‘{𝐸}))
773, 49, 10, 53, 62, 65, 66, 76lssvancl1 20866 . . . . 5 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))
78 eleq1 2816 . . . . . . . 8 (𝑧 = (𝐸 + 𝑋) → (𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌})))
7978notbid 318 . . . . . . 7 (𝑧 = (𝐸 + 𝑋) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌})))
80 eleq1 2816 . . . . . . . 8 (𝑧 = (𝐸 + 𝑋) → (𝑧 ∈ (𝑁‘{𝐸}) ↔ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸})))
8180notbid 318 . . . . . . 7 (𝑧 = (𝐸 + 𝑋) → (¬ 𝑧 ∈ (𝑁‘{𝐸}) ↔ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸})))
8279, 81anbi12d 632 . . . . . 6 (𝑧 = (𝐸 + 𝑋) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})) ↔ (¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))))
8382rspcev 3579 . . . . 5 (((𝐸 + 𝑋) ∈ 𝑉 ∧ (¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝐸 + 𝑋) ∈ (𝑁‘{𝐸}))) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
8452, 59, 77, 83syl12anc 836 . . . 4 (((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) ∧ 𝑋0 ) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
8548, 84pm2.61dane 3012 . . 3 ((𝜑 ∧ ¬ 𝐸 ∈ (𝑁‘{𝑋, 𝑌})) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
8620, 85pm2.61dan 812 . 2 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})))
87 hdmap11.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
88 hdmap11.a . . . 4 = (+g𝐶)
89 hdmap11.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
9053ad2ant1 1133 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9163ad2ant1 1133 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑋𝑉)
9273ad2ant1 1133 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑌𝑉)
93 hdmap11.d . . . 4 𝐷 = (Base‘𝐶)
94 hdmap11.l . . . 4 𝐿 = (LSpan‘𝐶)
95 hdmap11.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
96 hdmap11.j . . . 4 𝐽 = ((HVMap‘𝐾)‘𝑊)
97 hdmap11.i . . . 4 𝐼 = ((HDMap1‘𝐾)‘𝑊)
98 simp2 1137 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑧𝑉)
99 simp3l 1202 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}))
100113ad2ant1 1133 . . . . 5 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝑈 ∈ LMod)
101263ad2ant1 1133 . . . . 5 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → 𝐸𝑉)
102 simp3r 1203 . . . . 5 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → ¬ 𝑧 ∈ (𝑁‘{𝐸}))
1033, 4, 100, 98, 101, 102lspsnne2 21043 . . . 4 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝐸}))
1041, 2, 3, 49, 87, 88, 89, 90, 91, 92, 24, 23, 4, 93, 94, 95, 96, 97, 98, 99, 103hdmap11lem1 41823 . . 3 ((𝜑𝑧𝑉 ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸}))) → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌)))
105104rexlimdv3a 3134 . 2 (𝜑 → (∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑌}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝐸})) → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌))))
10686, 105mpd 15 1 (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cdif 3902  wss 3905  {csn 4579  {cpr 4581  cop 4585   I cid 5517  cres 5625  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  0gc0g 17361  LModclmod 20781  LSubSpclss 20852  LSpanclspn 20892  LVecclvec 21024  HLchlt 39331  LHypclh 39966  LTrncltrn 40083  DVecHcdvh 41060  LCDualclcd 41568  mapdcmpd 41606  HVMapchvm 41738  HDMap1chdma1 41773  HDMapchdma 41774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-riotaBAD 38934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-undef 8213  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17363  df-mre 17506  df-mrc 17507  df-acs 17509  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-oppg 19243  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-nzr 20416  df-rlreg 20597  df-domn 20598  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lvec 21025  df-lsatoms 38957  df-lshyp 38958  df-lcv 39000  df-lfl 39039  df-lkr 39067  df-ldual 39105  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-llines 39480  df-lplanes 39481  df-lvols 39482  df-lines 39483  df-psubsp 39485  df-pmap 39486  df-padd 39778  df-lhyp 39970  df-laut 39971  df-ldil 40086  df-ltrn 40087  df-trl 40141  df-tgrp 40725  df-tendo 40737  df-edring 40739  df-dveca 40985  df-disoa 41011  df-dvech 41061  df-dib 41121  df-dic 41155  df-dih 41211  df-doch 41330  df-djh 41377  df-lcdual 41569  df-mapd 41607  df-hvmap 41739  df-hdmap1 41775  df-hdmap 41776
This theorem is referenced by:  hdmapadd  41825
  Copyright terms: Public domain W3C validator