Step | Hyp | Ref
| Expression |
1 | | eqid 2730 |
. . 3
β’ (π₯ β β, π¦ β β β¦ (π₯ + π¦)) = (π₯ β β, π¦ β β β¦ (π₯ + π¦)) |
2 | | ovex 7444 |
. . 3
β’ (π₯ + π¦) β V |
3 | 1, 2 | fnmpoi 8058 |
. 2
β’ (π₯ β β, π¦ β β β¦ (π₯ + π¦)) Fn (β Γ
β) |
4 | | simpll 763 |
. . . . 5
β’ (((π₯ β β β§ π¦ β β) β§ π§ = (π₯ + π¦)) β π₯ β β) |
5 | | simplr 765 |
. . . . 5
β’ (((π₯ β β β§ π¦ β β) β§ π§ = (π₯ + π¦)) β π¦ β β) |
6 | | addcl 11194 |
. . . . . . 7
β’ ((π₯ β β β§ π¦ β β) β (π₯ + π¦) β β) |
7 | | eleq1a 2826 |
. . . . . . 7
β’ ((π₯ + π¦) β β β (π§ = (π₯ + π¦) β π§ β β)) |
8 | 6, 7 | syl 17 |
. . . . . 6
β’ ((π₯ β β β§ π¦ β β) β (π§ = (π₯ + π¦) β π§ β β)) |
9 | 8 | imp 405 |
. . . . 5
β’ (((π₯ β β β§ π¦ β β) β§ π§ = (π₯ + π¦)) β π§ β β) |
10 | 4, 5, 9 | 3jca 1126 |
. . . 4
β’ (((π₯ β β β§ π¦ β β) β§ π§ = (π₯ + π¦)) β (π₯ β β β§ π¦ β β β§ π§ β β)) |
11 | 10 | ssoprab2i 7521 |
. . 3
β’
{β¨β¨π₯,
π¦β©, π§β© β£ ((π₯ β β β§ π¦ β β) β§ π§ = (π₯ + π¦))} β {β¨β¨π₯, π¦β©, π§β© β£ (π₯ β β β§ π¦ β β β§ π§ β β)} |
12 | | df-mpo 7416 |
. . 3
β’ (π₯ β β, π¦ β β β¦ (π₯ + π¦)) = {β¨β¨π₯, π¦β©, π§β© β£ ((π₯ β β β§ π¦ β β) β§ π§ = (π₯ + π¦))} |
13 | | dfxp3 8049 |
. . 3
β’ ((β
Γ β) Γ β) = {β¨β¨π₯, π¦β©, π§β© β£ (π₯ β β β§ π¦ β β β§ π§ β β)} |
14 | 11, 12, 13 | 3sstr4i 4024 |
. 2
β’ (π₯ β β, π¦ β β β¦ (π₯ + π¦)) β ((β Γ β) Γ
β) |
15 | | dff2 7099 |
. 2
β’ ((π₯ β β, π¦ β β β¦ (π₯ + π¦)):(β Γ β)βΆβ
β ((π₯ β β,
π¦ β β β¦
(π₯ + π¦)) Fn (β Γ β) β§ (π₯ β β, π¦ β β β¦ (π₯ + π¦)) β ((β Γ β) Γ
β))) |
16 | 3, 14, 15 | mpbir2an 707 |
1
β’ (π₯ β β, π¦ β β β¦ (π₯ + π¦)):(β Γ
β)βΆβ |