![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpoaddf | Structured version Visualization version GIF version |
Description: Addition is an operation on complex numbers. Version of ax-addf 11195 using maps-to notation, proved from the axioms of set theory and ax-addcl 11176. (Contributed by GG, 31-Mar-2025.) |
Ref | Expression |
---|---|
mpoaddf | ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)):(ℂ × ℂ)⟶ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) | |
2 | ovex 7445 | . . 3 ⊢ (𝑥 + 𝑦) ∈ V | |
3 | 1, 2 | fnmpoi 8060 | . 2 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) Fn (ℂ × ℂ) |
4 | simpll 764 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 + 𝑦)) → 𝑥 ∈ ℂ) | |
5 | simplr 766 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 + 𝑦)) → 𝑦 ∈ ℂ) | |
6 | addcl 11198 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
7 | eleq1a 2827 | . . . . . . 7 ⊢ ((𝑥 + 𝑦) ∈ ℂ → (𝑧 = (𝑥 + 𝑦) → 𝑧 ∈ ℂ)) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧 = (𝑥 + 𝑦) → 𝑧 ∈ ℂ)) |
9 | 8 | imp 406 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 + 𝑦)) → 𝑧 ∈ ℂ) |
10 | 4, 5, 9 | 3jca 1127 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 + 𝑦)) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) |
11 | 10 | ssoprab2i 7522 | . . 3 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 + 𝑦))} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)} |
12 | df-mpo 7417 | . . 3 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 + 𝑦))} | |
13 | dfxp3 8051 | . . 3 ⊢ ((ℂ × ℂ) × ℂ) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)} | |
14 | 11, 12, 13 | 3sstr4i 4025 | . 2 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) ⊆ ((ℂ × ℂ) × ℂ) |
15 | dff2 7100 | . 2 ⊢ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)):(ℂ × ℂ)⟶ℂ ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) Fn (ℂ × ℂ) ∧ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) ⊆ ((ℂ × ℂ) × ℂ))) | |
16 | 3, 14, 15 | mpbir2an 708 | 1 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)):(ℂ × ℂ)⟶ℂ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ⊆ wss 3948 × cxp 5674 Fn wfn 6538 ⟶wf 6539 (class class class)co 7412 {coprab 7413 ∈ cmpo 7414 ℂcc 11114 + caddc 11119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 ax-addcl 11176 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 |
This theorem is referenced by: mpoaddex 35485 |
Copyright terms: Public domain | W3C validator |