![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoaddf | Structured version Visualization version GIF version |
Description: Addition is an operation on complex numbers. Version of ax-addf 11259 using maps-to notation, proved from the axioms of set theory and ax-addcl 11240. (Contributed by GG, 31-Mar-2025.) |
Ref | Expression |
---|---|
mpoaddf | ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)):(ℂ × ℂ)⟶ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . 3 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) | |
2 | ovex 7478 | . . 3 ⊢ (𝑥 + 𝑦) ∈ V | |
3 | 1, 2 | fnmpoi 8107 | . 2 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) Fn (ℂ × ℂ) |
4 | simpll 766 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 + 𝑦)) → 𝑥 ∈ ℂ) | |
5 | simplr 768 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 + 𝑦)) → 𝑦 ∈ ℂ) | |
6 | addcl 11262 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
7 | eleq1a 2833 | . . . . . . 7 ⊢ ((𝑥 + 𝑦) ∈ ℂ → (𝑧 = (𝑥 + 𝑦) → 𝑧 ∈ ℂ)) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧 = (𝑥 + 𝑦) → 𝑧 ∈ ℂ)) |
9 | 8 | imp 406 | . . . . 5 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 + 𝑦)) → 𝑧 ∈ ℂ) |
10 | 4, 5, 9 | 3jca 1128 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 + 𝑦)) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) |
11 | 10 | ssoprab2i 7557 | . . 3 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 + 𝑦))} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)} |
12 | df-mpo 7450 | . . 3 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 + 𝑦))} | |
13 | dfxp3 8098 | . . 3 ⊢ ((ℂ × ℂ) × ℂ) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)} | |
14 | 11, 12, 13 | 3sstr4i 4046 | . 2 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) ⊆ ((ℂ × ℂ) × ℂ) |
15 | dff2 7131 | . 2 ⊢ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)):(ℂ × ℂ)⟶ℂ ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) Fn (ℂ × ℂ) ∧ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) ⊆ ((ℂ × ℂ) × ℂ))) | |
16 | 3, 14, 15 | mpbir2an 710 | 1 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)):(ℂ × ℂ)⟶ℂ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2103 ⊆ wss 3970 × cxp 5697 Fn wfn 6567 ⟶wf 6568 (class class class)co 7445 {coprab 7446 ∈ cmpo 7447 ℂcc 11178 + caddc 11183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pr 5450 ax-un 7766 ax-addcl 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-fv 6580 df-ov 7448 df-oprab 7449 df-mpo 7450 df-1st 8026 df-2nd 8027 |
This theorem is referenced by: mpoaddex 13049 |
Copyright terms: Public domain | W3C validator |