Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpoaddf Structured version   Visualization version   GIF version

Theorem mpoaddf 35471
Description: Addition is an operation on complex numbers. Version of ax-addf 11191 using maps-to notation, proved from the axioms of set theory and ax-addcl 11172. (Contributed by GG, 31-Mar-2025.)
Assertion
Ref Expression
mpoaddf (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ + 𝑦)):(β„‚ Γ— β„‚)βŸΆβ„‚
Distinct variable group:   π‘₯,𝑦

Proof of Theorem mpoaddf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ + 𝑦)) = (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ + 𝑦))
2 ovex 7444 . . 3 (π‘₯ + 𝑦) ∈ V
31, 2fnmpoi 8058 . 2 (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ + 𝑦)) Fn (β„‚ Γ— β„‚)
4 simpll 763 . . . . 5 (((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) ∧ 𝑧 = (π‘₯ + 𝑦)) β†’ π‘₯ ∈ β„‚)
5 simplr 765 . . . . 5 (((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) ∧ 𝑧 = (π‘₯ + 𝑦)) β†’ 𝑦 ∈ β„‚)
6 addcl 11194 . . . . . . 7 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) β†’ (π‘₯ + 𝑦) ∈ β„‚)
7 eleq1a 2826 . . . . . . 7 ((π‘₯ + 𝑦) ∈ β„‚ β†’ (𝑧 = (π‘₯ + 𝑦) β†’ 𝑧 ∈ β„‚))
86, 7syl 17 . . . . . 6 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) β†’ (𝑧 = (π‘₯ + 𝑦) β†’ 𝑧 ∈ β„‚))
98imp 405 . . . . 5 (((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) ∧ 𝑧 = (π‘₯ + 𝑦)) β†’ 𝑧 ∈ β„‚)
104, 5, 93jca 1126 . . . 4 (((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) ∧ 𝑧 = (π‘₯ + 𝑦)) β†’ (π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚ ∧ 𝑧 ∈ β„‚))
1110ssoprab2i 7521 . . 3 {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) ∧ 𝑧 = (π‘₯ + 𝑦))} βŠ† {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ (π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚ ∧ 𝑧 ∈ β„‚)}
12 df-mpo 7416 . . 3 (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ + 𝑦)) = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) ∧ 𝑧 = (π‘₯ + 𝑦))}
13 dfxp3 8049 . . 3 ((β„‚ Γ— β„‚) Γ— β„‚) = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ (π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚ ∧ 𝑧 ∈ β„‚)}
1411, 12, 133sstr4i 4024 . 2 (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ + 𝑦)) βŠ† ((β„‚ Γ— β„‚) Γ— β„‚)
15 dff2 7099 . 2 ((π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ + 𝑦)):(β„‚ Γ— β„‚)βŸΆβ„‚ ↔ ((π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ + 𝑦)) Fn (β„‚ Γ— β„‚) ∧ (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ + 𝑦)) βŠ† ((β„‚ Γ— β„‚) Γ— β„‚)))
163, 14, 15mpbir2an 707 1 (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ + 𝑦)):(β„‚ Γ— β„‚)βŸΆβ„‚
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   βŠ† wss 3947   Γ— cxp 5673   Fn wfn 6537  βŸΆwf 6538  (class class class)co 7411  {coprab 7412   ∈ cmpo 7413  β„‚cc 11110   + caddc 11115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727  ax-addcl 11172
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978
This theorem is referenced by:  mpoaddex  35472
  Copyright terms: Public domain W3C validator