Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpomulf Structured version   Visualization version   GIF version

Theorem mpomulf 35147
Description: Multiplication is an operation on complex numbers. Version of ax-mulf 11186 using maps-to notation, proved from the axioms of set theory and ax-mulcl 11168. (Contributed by GG, 16-Mar-2025.)
Assertion
Ref Expression
mpomulf (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ Β· 𝑦)):(β„‚ Γ— β„‚)βŸΆβ„‚
Distinct variable group:   π‘₯,𝑦

Proof of Theorem mpomulf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ Β· 𝑦)) = (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ Β· 𝑦))
2 ovex 7438 . . 3 (π‘₯ Β· 𝑦) ∈ V
31, 2fnmpoi 8052 . 2 (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ Β· 𝑦)) Fn (β„‚ Γ— β„‚)
4 simpll 765 . . . . 5 (((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) ∧ 𝑧 = (π‘₯ Β· 𝑦)) β†’ π‘₯ ∈ β„‚)
5 simplr 767 . . . . 5 (((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) ∧ 𝑧 = (π‘₯ Β· 𝑦)) β†’ 𝑦 ∈ β„‚)
6 mulcl 11190 . . . . . . 7 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) β†’ (π‘₯ Β· 𝑦) ∈ β„‚)
7 eleq1a 2828 . . . . . . 7 ((π‘₯ Β· 𝑦) ∈ β„‚ β†’ (𝑧 = (π‘₯ Β· 𝑦) β†’ 𝑧 ∈ β„‚))
86, 7syl 17 . . . . . 6 ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) β†’ (𝑧 = (π‘₯ Β· 𝑦) β†’ 𝑧 ∈ β„‚))
98imp 407 . . . . 5 (((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) ∧ 𝑧 = (π‘₯ Β· 𝑦)) β†’ 𝑧 ∈ β„‚)
104, 5, 93jca 1128 . . . 4 (((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) ∧ 𝑧 = (π‘₯ Β· 𝑦)) β†’ (π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚ ∧ 𝑧 ∈ β„‚))
1110ssoprab2i 7515 . . 3 {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) ∧ 𝑧 = (π‘₯ Β· 𝑦))} βŠ† {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ (π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚ ∧ 𝑧 ∈ β„‚)}
12 df-mpo 7410 . . 3 (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ Β· 𝑦)) = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ((π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚) ∧ 𝑧 = (π‘₯ Β· 𝑦))}
13 dfxp3 8043 . . 3 ((β„‚ Γ— β„‚) Γ— β„‚) = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ (π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚ ∧ 𝑧 ∈ β„‚)}
1411, 12, 133sstr4i 4024 . 2 (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ Β· 𝑦)) βŠ† ((β„‚ Γ— β„‚) Γ— β„‚)
15 dff2 7097 . 2 ((π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ Β· 𝑦)):(β„‚ Γ— β„‚)βŸΆβ„‚ ↔ ((π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ Β· 𝑦)) Fn (β„‚ Γ— β„‚) ∧ (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ Β· 𝑦)) βŠ† ((β„‚ Γ— β„‚) Γ— β„‚)))
163, 14, 15mpbir2an 709 1 (π‘₯ ∈ β„‚, 𝑦 ∈ β„‚ ↦ (π‘₯ Β· 𝑦)):(β„‚ Γ— β„‚)βŸΆβ„‚
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   βŠ† wss 3947   Γ— cxp 5673   Fn wfn 6535  βŸΆwf 6536  (class class class)co 7405  {coprab 7406   ∈ cmpo 7407  β„‚cc 11104   Β· cmul 11111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721  ax-mulcl 11168
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972
This theorem is referenced by:  mpomulcn  35150
  Copyright terms: Public domain W3C validator