MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpomulf Structured version   Visualization version   GIF version

Theorem mpomulf 11248
Description: Multiplication is an operation on complex numbers. Version of ax-mulf 11233 using maps-to notation, proved from the axioms of set theory and ax-mulcl 11215. (Contributed by GG, 16-Mar-2025.)
Assertion
Ref Expression
mpomulf (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
Distinct variable group:   𝑥,𝑦

Proof of Theorem mpomulf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
2 ovex 7464 . . 3 (𝑥 · 𝑦) ∈ V
31, 2fnmpoi 8094 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ)
4 simpll 767 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦)) → 𝑥 ∈ ℂ)
5 simplr 769 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦)) → 𝑦 ∈ ℂ)
6 mulcl 11237 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
7 eleq1a 2834 . . . . . . 7 ((𝑥 · 𝑦) ∈ ℂ → (𝑧 = (𝑥 · 𝑦) → 𝑧 ∈ ℂ))
86, 7syl 17 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧 = (𝑥 · 𝑦) → 𝑧 ∈ ℂ))
98imp 406 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦)) → 𝑧 ∈ ℂ)
104, 5, 93jca 1127 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦)) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ))
1110ssoprab2i 7544 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦))} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)}
12 df-mpo 7436 . . 3 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦))}
13 dfxp3 8085 . . 3 ((ℂ × ℂ) × ℂ) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)}
1411, 12, 133sstr4i 4039 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ⊆ ((ℂ × ℂ) × ℂ)
15 dff2 7119 . 2 ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ) ∧ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ⊆ ((ℂ × ℂ) × ℂ)))
163, 14, 15mpbir2an 711 1 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wss 3963   × cxp 5687   Fn wfn 6558  wf 6559  (class class class)co 7431  {coprab 7432  cmpo 7433  cc 11151   · cmul 11158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-mulcl 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014
This theorem is referenced by:  mpomulex  13030  cncrng  21419  mpomulcn  24905  mpodvdsmulf1o  27252  fsumdvdsmul  27253
  Copyright terms: Public domain W3C validator