MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpomulf Structured version   Visualization version   GIF version

Theorem mpomulf 11163
Description: Multiplication is an operation on complex numbers. Version of ax-mulf 11148 using maps-to notation, proved from the axioms of set theory and ax-mulcl 11130. (Contributed by GG, 16-Mar-2025.)
Assertion
Ref Expression
mpomulf (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
Distinct variable group:   𝑥,𝑦

Proof of Theorem mpomulf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
2 ovex 7420 . . 3 (𝑥 · 𝑦) ∈ V
31, 2fnmpoi 8049 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ)
4 simpll 766 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦)) → 𝑥 ∈ ℂ)
5 simplr 768 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦)) → 𝑦 ∈ ℂ)
6 mulcl 11152 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
7 eleq1a 2823 . . . . . . 7 ((𝑥 · 𝑦) ∈ ℂ → (𝑧 = (𝑥 · 𝑦) → 𝑧 ∈ ℂ))
86, 7syl 17 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑧 = (𝑥 · 𝑦) → 𝑧 ∈ ℂ))
98imp 406 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦)) → 𝑧 ∈ ℂ)
104, 5, 93jca 1128 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦)) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ))
1110ssoprab2i 7500 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦))} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)}
12 df-mpo 7392 . . 3 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑧 = (𝑥 · 𝑦))}
13 dfxp3 8040 . . 3 ((ℂ × ℂ) × ℂ) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)}
1411, 12, 133sstr4i 3998 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ⊆ ((ℂ × ℂ) × ℂ)
15 dff2 7071 . 2 ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ) ∧ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ⊆ ((ℂ × ℂ) × ℂ)))
163, 14, 15mpbir2an 711 1 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914   × cxp 5636   Fn wfn 6506  wf 6507  (class class class)co 7387  {coprab 7388  cmpo 7389  cc 11066   · cmul 11073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-mulcl 11130
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969
This theorem is referenced by:  mpomulex  12949  cncrng  21300  mpomulcn  24758  mpodvdsmulf1o  27104  fsumdvdsmul  27105
  Copyright terms: Public domain W3C validator