Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem5 Structured version   Visualization version   GIF version

Theorem sxbrsigalem5 34301
Description: First direction for sxbrsiga 34303. (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
sxbrsigalem5 (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅 ×s 𝔅)
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑛,𝑣   𝑅,𝑛,𝑥   𝑥,𝐽,𝑢,𝑣
Allowed substitution hints:   𝑅(𝑣,𝑢)   𝐼(𝑛)   𝐽(𝑛)

Proof of Theorem sxbrsigalem5
Dummy variables 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sxbrsiga.0 . . . . 5 𝐽 = (topGen‘ran (,))
2 dya2ioc.1 . . . . 5 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3 dya2ioc.2 . . . . 5 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
41, 2, 3dya2iocucvr 34297 . . . 4 ran 𝑅 = (ℝ × ℝ)
5 br2base 34282 . . . 4 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = (ℝ × ℝ)
64, 5eqtr4i 2757 . . 3 ran 𝑅 = ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
7 brsigarn 34197 . . . . . . 7 𝔅 ∈ (sigAlgebra‘ℝ)
87elexi 3459 . . . . . 6 𝔅 ∈ V
98, 8mpoex 8011 . . . . 5 (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∈ V
109rnex 7840 . . . 4 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∈ V
111, 2dya2icobrsiga 34289 . . . . . . . . . 10 ran 𝐼 ⊆ 𝔅
1211sseli 3925 . . . . . . . . 9 (𝑢 ∈ ran 𝐼𝑢 ∈ 𝔅)
1311sseli 3925 . . . . . . . . 9 (𝑣 ∈ ran 𝐼𝑣 ∈ 𝔅)
1412, 13anim12i 613 . . . . . . . 8 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 ∈ 𝔅𝑣 ∈ 𝔅))
1514anim1i 615 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣)) → ((𝑢 ∈ 𝔅𝑣 ∈ 𝔅) ∧ 𝑔 = (𝑢 × 𝑣)))
1615ssoprab2i 7457 . . . . . 6 {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))} ⊆ {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ 𝔅𝑣 ∈ 𝔅) ∧ 𝑔 = (𝑢 × 𝑣))}
17 df-mpo 7351 . . . . . . 7 (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) = {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))}
183, 17eqtri 2754 . . . . . 6 𝑅 = {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))}
19 xpeq1 5628 . . . . . . . 8 (𝑒 = 𝑢 → (𝑒 × 𝑓) = (𝑢 × 𝑓))
20 xpeq2 5635 . . . . . . . 8 (𝑓 = 𝑣 → (𝑢 × 𝑓) = (𝑢 × 𝑣))
2119, 20cbvmpov 7441 . . . . . . 7 (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = (𝑢 ∈ 𝔅, 𝑣 ∈ 𝔅 ↦ (𝑢 × 𝑣))
22 df-mpo 7351 . . . . . . 7 (𝑢 ∈ 𝔅, 𝑣 ∈ 𝔅 ↦ (𝑢 × 𝑣)) = {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ 𝔅𝑣 ∈ 𝔅) ∧ 𝑔 = (𝑢 × 𝑣))}
2321, 22eqtri 2754 . . . . . 6 (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ 𝔅𝑣 ∈ 𝔅) ∧ 𝑔 = (𝑢 × 𝑣))}
2416, 18, 233sstr4i 3981 . . . . 5 𝑅 ⊆ (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
25 rnss 5878 . . . . 5 (𝑅 ⊆ (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) → ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)))
2624, 25ax-mp 5 . . . 4 ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
27 sssigagen2 34159 . . . 4 ((ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∈ V ∧ ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))) → ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))))
2810, 26, 27mp2an 692 . . 3 ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)))
29 sigagenss2 34163 . . 3 (( ran 𝑅 = ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∧ ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))) ∧ ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∈ V) → (sigaGen‘ran 𝑅) ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))))
306, 28, 10, 29mp3an 1463 . 2 (sigaGen‘ran 𝑅) ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)))
311, 2, 3sxbrsigalem4 34300 . 2 (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘ran 𝑅)
32 eqid 2731 . . . 4 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
3332sxval 34203 . . 3 ((𝔅 ∈ (sigAlgebra‘ℝ) ∧ 𝔅 ∈ (sigAlgebra‘ℝ)) → (𝔅 ×s 𝔅) = (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))))
347, 7, 33mp2an 692 . 2 (𝔅 ×s 𝔅) = (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)))
3530, 31, 343sstr4i 3981 1 (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅 ×s 𝔅)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897   cuni 4856   × cxp 5612  ran crn 5615  cfv 6481  (class class class)co 7346  {coprab 7347  cmpo 7348  cr 11005  1c1 11007   + caddc 11009   / cdiv 11774  2c2 12180  cz 12468  (,)cioo 13245  [,)cico 13247  cexp 13968  topGenctg 17341   ×t ctx 23475  sigAlgebracsiga 34121  sigaGencsigagen 34151  𝔅cbrsiga 34194   ×s csx 34201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-ac2 10354  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-refld 21542  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-fcls 23856  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-cfil 25182  df-cmet 25184  df-cms 25262  df-limc 25794  df-dv 25795  df-log 26492  df-cxp 26493  df-logb 26702  df-siga 34122  df-sigagen 34152  df-brsiga 34195  df-sx 34202
This theorem is referenced by:  sxbrsigalem6  34302
  Copyright terms: Public domain W3C validator