| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sxbrsigalem5 | Structured version Visualization version GIF version | ||
| Description: First direction for sxbrsiga 34322. (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.) |
| Ref | Expression |
|---|---|
| sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
| dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
| dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
| Ref | Expression |
|---|---|
| sxbrsigalem5 | ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅ℝ ×s 𝔅ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sxbrsiga.0 | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 2 | dya2ioc.1 | . . . . 5 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
| 3 | dya2ioc.2 | . . . . 5 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
| 4 | 1, 2, 3 | dya2iocucvr 34316 | . . . 4 ⊢ ∪ ran 𝑅 = (ℝ × ℝ) |
| 5 | br2base 34301 | . . . 4 ⊢ ∪ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) = (ℝ × ℝ) | |
| 6 | 4, 5 | eqtr4i 2761 | . . 3 ⊢ ∪ ran 𝑅 = ∪ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) |
| 7 | brsigarn 34215 | . . . . . . 7 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
| 8 | 7 | elexi 3482 | . . . . . 6 ⊢ 𝔅ℝ ∈ V |
| 9 | 8, 8 | mpoex 8078 | . . . . 5 ⊢ (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) ∈ V |
| 10 | 9 | rnex 7906 | . . . 4 ⊢ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) ∈ V |
| 11 | 1, 2 | dya2icobrsiga 34308 | . . . . . . . . . 10 ⊢ ran 𝐼 ⊆ 𝔅ℝ |
| 12 | 11 | sseli 3954 | . . . . . . . . 9 ⊢ (𝑢 ∈ ran 𝐼 → 𝑢 ∈ 𝔅ℝ) |
| 13 | 11 | sseli 3954 | . . . . . . . . 9 ⊢ (𝑣 ∈ ran 𝐼 → 𝑣 ∈ 𝔅ℝ) |
| 14 | 12, 13 | anim12i 613 | . . . . . . . 8 ⊢ ((𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼) → (𝑢 ∈ 𝔅ℝ ∧ 𝑣 ∈ 𝔅ℝ)) |
| 15 | 14 | anim1i 615 | . . . . . . 7 ⊢ (((𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣)) → ((𝑢 ∈ 𝔅ℝ ∧ 𝑣 ∈ 𝔅ℝ) ∧ 𝑔 = (𝑢 × 𝑣))) |
| 16 | 15 | ssoprab2i 7518 | . . . . . 6 ⊢ {〈〈𝑢, 𝑣〉, 𝑔〉 ∣ ((𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))} ⊆ {〈〈𝑢, 𝑣〉, 𝑔〉 ∣ ((𝑢 ∈ 𝔅ℝ ∧ 𝑣 ∈ 𝔅ℝ) ∧ 𝑔 = (𝑢 × 𝑣))} |
| 17 | df-mpo 7410 | . . . . . . 7 ⊢ (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) = {〈〈𝑢, 𝑣〉, 𝑔〉 ∣ ((𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))} | |
| 18 | 3, 17 | eqtri 2758 | . . . . . 6 ⊢ 𝑅 = {〈〈𝑢, 𝑣〉, 𝑔〉 ∣ ((𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))} |
| 19 | xpeq1 5668 | . . . . . . . 8 ⊢ (𝑒 = 𝑢 → (𝑒 × 𝑓) = (𝑢 × 𝑓)) | |
| 20 | xpeq2 5675 | . . . . . . . 8 ⊢ (𝑓 = 𝑣 → (𝑢 × 𝑓) = (𝑢 × 𝑣)) | |
| 21 | 19, 20 | cbvmpov 7502 | . . . . . . 7 ⊢ (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) = (𝑢 ∈ 𝔅ℝ, 𝑣 ∈ 𝔅ℝ ↦ (𝑢 × 𝑣)) |
| 22 | df-mpo 7410 | . . . . . . 7 ⊢ (𝑢 ∈ 𝔅ℝ, 𝑣 ∈ 𝔅ℝ ↦ (𝑢 × 𝑣)) = {〈〈𝑢, 𝑣〉, 𝑔〉 ∣ ((𝑢 ∈ 𝔅ℝ ∧ 𝑣 ∈ 𝔅ℝ) ∧ 𝑔 = (𝑢 × 𝑣))} | |
| 23 | 21, 22 | eqtri 2758 | . . . . . 6 ⊢ (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) = {〈〈𝑢, 𝑣〉, 𝑔〉 ∣ ((𝑢 ∈ 𝔅ℝ ∧ 𝑣 ∈ 𝔅ℝ) ∧ 𝑔 = (𝑢 × 𝑣))} |
| 24 | 16, 18, 23 | 3sstr4i 4010 | . . . . 5 ⊢ 𝑅 ⊆ (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) |
| 25 | rnss 5919 | . . . . 5 ⊢ (𝑅 ⊆ (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) → ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓))) | |
| 26 | 24, 25 | ax-mp 5 | . . . 4 ⊢ ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) |
| 27 | sssigagen2 34177 | . . . 4 ⊢ ((ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) ∈ V ∧ ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓))) → ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)))) | |
| 28 | 10, 26, 27 | mp2an 692 | . . 3 ⊢ ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓))) |
| 29 | sigagenss2 34181 | . . 3 ⊢ ((∪ ran 𝑅 = ∪ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) ∧ ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓))) ∧ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) ∈ V) → (sigaGen‘ran 𝑅) ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)))) | |
| 30 | 6, 28, 10, 29 | mp3an 1463 | . 2 ⊢ (sigaGen‘ran 𝑅) ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓))) |
| 31 | 1, 2, 3 | sxbrsigalem4 34319 | . 2 ⊢ (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘ran 𝑅) |
| 32 | eqid 2735 | . . . 4 ⊢ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) = ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) | |
| 33 | 32 | sxval 34221 | . . 3 ⊢ ((𝔅ℝ ∈ (sigAlgebra‘ℝ) ∧ 𝔅ℝ ∈ (sigAlgebra‘ℝ)) → (𝔅ℝ ×s 𝔅ℝ) = (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)))) |
| 34 | 7, 7, 33 | mp2an 692 | . 2 ⊢ (𝔅ℝ ×s 𝔅ℝ) = (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓))) |
| 35 | 30, 31, 34 | 3sstr4i 4010 | 1 ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅ℝ ×s 𝔅ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 ∪ cuni 4883 × cxp 5652 ran crn 5655 ‘cfv 6531 (class class class)co 7405 {coprab 7406 ∈ cmpo 7407 ℝcr 11128 1c1 11130 + caddc 11132 / cdiv 11894 2c2 12295 ℤcz 12588 (,)cioo 13362 [,)cico 13364 ↑cexp 14079 topGenctg 17451 ×t ctx 23498 sigAlgebracsiga 34139 sigaGencsigagen 34169 𝔅ℝcbrsiga 34212 ×s csx 34219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-ac2 10477 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-acn 9956 df-ac 10130 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ioc 13367 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-fac 14292 df-bc 14321 df-hash 14349 df-shft 15086 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 df-ef 16083 df-sin 16085 df-cos 16086 df-pi 16088 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-cnfld 21316 df-refld 21565 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-lp 23074 df-perf 23075 df-cn 23165 df-cnp 23166 df-haus 23253 df-cmp 23325 df-tx 23500 df-hmeo 23693 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-fcls 23879 df-xms 24259 df-ms 24260 df-tms 24261 df-cncf 24822 df-cfil 25207 df-cmet 25209 df-cms 25287 df-limc 25819 df-dv 25820 df-log 26517 df-cxp 26518 df-logb 26727 df-siga 34140 df-sigagen 34170 df-brsiga 34213 df-sx 34220 |
| This theorem is referenced by: sxbrsigalem6 34321 |
| Copyright terms: Public domain | W3C validator |