![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sxbrsigalem5 | Structured version Visualization version GIF version |
Description: First direction for sxbrsiga 33584. (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.) |
Ref | Expression |
---|---|
sxbrsiga.0 | β’ π½ = (topGenβran (,)) |
dya2ioc.1 | β’ πΌ = (π₯ β β€, π β β€ β¦ ((π₯ / (2βπ))[,)((π₯ + 1) / (2βπ)))) |
dya2ioc.2 | β’ π = (π’ β ran πΌ, π£ β ran πΌ β¦ (π’ Γ π£)) |
Ref | Expression |
---|---|
sxbrsigalem5 | β’ (sigaGenβ(π½ Γt π½)) β (π β Γs π β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sxbrsiga.0 | . . . . 5 β’ π½ = (topGenβran (,)) | |
2 | dya2ioc.1 | . . . . 5 β’ πΌ = (π₯ β β€, π β β€ β¦ ((π₯ / (2βπ))[,)((π₯ + 1) / (2βπ)))) | |
3 | dya2ioc.2 | . . . . 5 β’ π = (π’ β ran πΌ, π£ β ran πΌ β¦ (π’ Γ π£)) | |
4 | 1, 2, 3 | dya2iocucvr 33578 | . . . 4 β’ βͺ ran π = (β Γ β) |
5 | br2base 33563 | . . . 4 β’ βͺ ran (π β π β, π β π β β¦ (π Γ π)) = (β Γ β) | |
6 | 4, 5 | eqtr4i 2762 | . . 3 β’ βͺ ran π = βͺ ran (π β π β, π β π β β¦ (π Γ π)) |
7 | brsigarn 33477 | . . . . . . 7 β’ π β β (sigAlgebraββ) | |
8 | 7 | elexi 3493 | . . . . . 6 β’ π β β V |
9 | 8, 8 | mpoex 8069 | . . . . 5 β’ (π β π β, π β π β β¦ (π Γ π)) β V |
10 | 9 | rnex 7906 | . . . 4 β’ ran (π β π β, π β π β β¦ (π Γ π)) β V |
11 | 1, 2 | dya2icobrsiga 33570 | . . . . . . . . . 10 β’ ran πΌ β π β |
12 | 11 | sseli 3979 | . . . . . . . . 9 β’ (π’ β ran πΌ β π’ β π β) |
13 | 11 | sseli 3979 | . . . . . . . . 9 β’ (π£ β ran πΌ β π£ β π β) |
14 | 12, 13 | anim12i 612 | . . . . . . . 8 β’ ((π’ β ran πΌ β§ π£ β ran πΌ) β (π’ β π β β§ π£ β π β)) |
15 | 14 | anim1i 614 | . . . . . . 7 β’ (((π’ β ran πΌ β§ π£ β ran πΌ) β§ π = (π’ Γ π£)) β ((π’ β π β β§ π£ β π β) β§ π = (π’ Γ π£))) |
16 | 15 | ssoprab2i 7522 | . . . . . 6 β’ {β¨β¨π’, π£β©, πβ© β£ ((π’ β ran πΌ β§ π£ β ran πΌ) β§ π = (π’ Γ π£))} β {β¨β¨π’, π£β©, πβ© β£ ((π’ β π β β§ π£ β π β) β§ π = (π’ Γ π£))} |
17 | df-mpo 7417 | . . . . . . 7 β’ (π’ β ran πΌ, π£ β ran πΌ β¦ (π’ Γ π£)) = {β¨β¨π’, π£β©, πβ© β£ ((π’ β ran πΌ β§ π£ β ran πΌ) β§ π = (π’ Γ π£))} | |
18 | 3, 17 | eqtri 2759 | . . . . . 6 β’ π = {β¨β¨π’, π£β©, πβ© β£ ((π’ β ran πΌ β§ π£ β ran πΌ) β§ π = (π’ Γ π£))} |
19 | xpeq1 5691 | . . . . . . . 8 β’ (π = π’ β (π Γ π) = (π’ Γ π)) | |
20 | xpeq2 5698 | . . . . . . . 8 β’ (π = π£ β (π’ Γ π) = (π’ Γ π£)) | |
21 | 19, 20 | cbvmpov 7507 | . . . . . . 7 β’ (π β π β, π β π β β¦ (π Γ π)) = (π’ β π β, π£ β π β β¦ (π’ Γ π£)) |
22 | df-mpo 7417 | . . . . . . 7 β’ (π’ β π β, π£ β π β β¦ (π’ Γ π£)) = {β¨β¨π’, π£β©, πβ© β£ ((π’ β π β β§ π£ β π β) β§ π = (π’ Γ π£))} | |
23 | 21, 22 | eqtri 2759 | . . . . . 6 β’ (π β π β, π β π β β¦ (π Γ π)) = {β¨β¨π’, π£β©, πβ© β£ ((π’ β π β β§ π£ β π β) β§ π = (π’ Γ π£))} |
24 | 16, 18, 23 | 3sstr4i 4026 | . . . . 5 β’ π β (π β π β, π β π β β¦ (π Γ π)) |
25 | rnss 5939 | . . . . 5 β’ (π β (π β π β, π β π β β¦ (π Γ π)) β ran π β ran (π β π β, π β π β β¦ (π Γ π))) | |
26 | 24, 25 | ax-mp 5 | . . . 4 β’ ran π β ran (π β π β, π β π β β¦ (π Γ π)) |
27 | sssigagen2 33439 | . . . 4 β’ ((ran (π β π β, π β π β β¦ (π Γ π)) β V β§ ran π β ran (π β π β, π β π β β¦ (π Γ π))) β ran π β (sigaGenβran (π β π β, π β π β β¦ (π Γ π)))) | |
28 | 10, 26, 27 | mp2an 689 | . . 3 β’ ran π β (sigaGenβran (π β π β, π β π β β¦ (π Γ π))) |
29 | sigagenss2 33443 | . . 3 β’ ((βͺ ran π = βͺ ran (π β π β, π β π β β¦ (π Γ π)) β§ ran π β (sigaGenβran (π β π β, π β π β β¦ (π Γ π))) β§ ran (π β π β, π β π β β¦ (π Γ π)) β V) β (sigaGenβran π ) β (sigaGenβran (π β π β, π β π β β¦ (π Γ π)))) | |
30 | 6, 28, 10, 29 | mp3an 1460 | . 2 β’ (sigaGenβran π ) β (sigaGenβran (π β π β, π β π β β¦ (π Γ π))) |
31 | 1, 2, 3 | sxbrsigalem4 33581 | . 2 β’ (sigaGenβ(π½ Γt π½)) = (sigaGenβran π ) |
32 | eqid 2731 | . . . 4 β’ ran (π β π β, π β π β β¦ (π Γ π)) = ran (π β π β, π β π β β¦ (π Γ π)) | |
33 | 32 | sxval 33483 | . . 3 β’ ((π β β (sigAlgebraββ) β§ π β β (sigAlgebraββ)) β (π β Γs π β) = (sigaGenβran (π β π β, π β π β β¦ (π Γ π)))) |
34 | 7, 7, 33 | mp2an 689 | . 2 β’ (π β Γs π β) = (sigaGenβran (π β π β, π β π β β¦ (π Γ π))) |
35 | 30, 31, 34 | 3sstr4i 4026 | 1 β’ (sigaGenβ(π½ Γt π½)) β (π β Γs π β) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 395 = wceq 1540 β wcel 2105 Vcvv 3473 β wss 3949 βͺ cuni 4909 Γ cxp 5675 ran crn 5678 βcfv 6544 (class class class)co 7412 {coprab 7413 β cmpo 7414 βcr 11112 1c1 11114 + caddc 11116 / cdiv 11876 2c2 12272 β€cz 12563 (,)cioo 13329 [,)cico 13331 βcexp 14032 topGenctg 17388 Γt ctx 23285 sigAlgebracsiga 33401 sigaGencsigagen 33431 π βcbrsiga 33474 Γs csx 33481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-inf2 9639 ax-ac2 10461 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 ax-addf 11192 ax-mulf 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-om 7859 df-1st 7978 df-2nd 7979 df-supp 8150 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-2o 8470 df-oadd 8473 df-omul 8474 df-er 8706 df-map 8825 df-pm 8826 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fsupp 9365 df-fi 9409 df-sup 9440 df-inf 9441 df-oi 9508 df-dju 9899 df-card 9937 df-acn 9940 df-ac 10114 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ioo 13333 df-ioc 13334 df-ico 13335 df-icc 13336 df-fz 13490 df-fzo 13633 df-fl 13762 df-mod 13840 df-seq 13972 df-exp 14033 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15019 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-limsup 15420 df-clim 15437 df-rlim 15438 df-sum 15638 df-ef 16016 df-sin 16018 df-cos 16019 df-pi 16021 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-0g 17392 df-gsum 17393 df-topgen 17394 df-pt 17395 df-prds 17398 df-xrs 17453 df-qtop 17458 df-imas 17459 df-xps 17461 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-mulg 18988 df-cntz 19223 df-cmn 19692 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-fbas 21142 df-fg 21143 df-cnfld 21146 df-refld 21378 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-cld 22744 df-ntr 22745 df-cls 22746 df-nei 22823 df-lp 22861 df-perf 22862 df-cn 22952 df-cnp 22953 df-haus 23040 df-cmp 23112 df-tx 23287 df-hmeo 23480 df-fil 23571 df-fm 23663 df-flim 23664 df-flf 23665 df-fcls 23666 df-xms 24047 df-ms 24048 df-tms 24049 df-cncf 24619 df-cfil 25004 df-cmet 25006 df-cms 25084 df-limc 25616 df-dv 25617 df-log 26298 df-cxp 26299 df-logb 26503 df-siga 33402 df-sigagen 33432 df-brsiga 33475 df-sx 33482 |
This theorem is referenced by: sxbrsigalem6 33583 |
Copyright terms: Public domain | W3C validator |