| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sxbrsigalem5 | Structured version Visualization version GIF version | ||
| Description: First direction for sxbrsiga 34292. (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.) |
| Ref | Expression |
|---|---|
| sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
| dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
| dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
| Ref | Expression |
|---|---|
| sxbrsigalem5 | ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅ℝ ×s 𝔅ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sxbrsiga.0 | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 2 | dya2ioc.1 | . . . . 5 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
| 3 | dya2ioc.2 | . . . . 5 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
| 4 | 1, 2, 3 | dya2iocucvr 34286 | . . . 4 ⊢ ∪ ran 𝑅 = (ℝ × ℝ) |
| 5 | br2base 34271 | . . . 4 ⊢ ∪ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) = (ℝ × ℝ) | |
| 6 | 4, 5 | eqtr4i 2768 | . . 3 ⊢ ∪ ran 𝑅 = ∪ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) |
| 7 | brsigarn 34185 | . . . . . . 7 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
| 8 | 7 | elexi 3503 | . . . . . 6 ⊢ 𝔅ℝ ∈ V |
| 9 | 8, 8 | mpoex 8104 | . . . . 5 ⊢ (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) ∈ V |
| 10 | 9 | rnex 7932 | . . . 4 ⊢ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) ∈ V |
| 11 | 1, 2 | dya2icobrsiga 34278 | . . . . . . . . . 10 ⊢ ran 𝐼 ⊆ 𝔅ℝ |
| 12 | 11 | sseli 3979 | . . . . . . . . 9 ⊢ (𝑢 ∈ ran 𝐼 → 𝑢 ∈ 𝔅ℝ) |
| 13 | 11 | sseli 3979 | . . . . . . . . 9 ⊢ (𝑣 ∈ ran 𝐼 → 𝑣 ∈ 𝔅ℝ) |
| 14 | 12, 13 | anim12i 613 | . . . . . . . 8 ⊢ ((𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼) → (𝑢 ∈ 𝔅ℝ ∧ 𝑣 ∈ 𝔅ℝ)) |
| 15 | 14 | anim1i 615 | . . . . . . 7 ⊢ (((𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣)) → ((𝑢 ∈ 𝔅ℝ ∧ 𝑣 ∈ 𝔅ℝ) ∧ 𝑔 = (𝑢 × 𝑣))) |
| 16 | 15 | ssoprab2i 7544 | . . . . . 6 ⊢ {〈〈𝑢, 𝑣〉, 𝑔〉 ∣ ((𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))} ⊆ {〈〈𝑢, 𝑣〉, 𝑔〉 ∣ ((𝑢 ∈ 𝔅ℝ ∧ 𝑣 ∈ 𝔅ℝ) ∧ 𝑔 = (𝑢 × 𝑣))} |
| 17 | df-mpo 7436 | . . . . . . 7 ⊢ (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) = {〈〈𝑢, 𝑣〉, 𝑔〉 ∣ ((𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))} | |
| 18 | 3, 17 | eqtri 2765 | . . . . . 6 ⊢ 𝑅 = {〈〈𝑢, 𝑣〉, 𝑔〉 ∣ ((𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))} |
| 19 | xpeq1 5699 | . . . . . . . 8 ⊢ (𝑒 = 𝑢 → (𝑒 × 𝑓) = (𝑢 × 𝑓)) | |
| 20 | xpeq2 5706 | . . . . . . . 8 ⊢ (𝑓 = 𝑣 → (𝑢 × 𝑓) = (𝑢 × 𝑣)) | |
| 21 | 19, 20 | cbvmpov 7528 | . . . . . . 7 ⊢ (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) = (𝑢 ∈ 𝔅ℝ, 𝑣 ∈ 𝔅ℝ ↦ (𝑢 × 𝑣)) |
| 22 | df-mpo 7436 | . . . . . . 7 ⊢ (𝑢 ∈ 𝔅ℝ, 𝑣 ∈ 𝔅ℝ ↦ (𝑢 × 𝑣)) = {〈〈𝑢, 𝑣〉, 𝑔〉 ∣ ((𝑢 ∈ 𝔅ℝ ∧ 𝑣 ∈ 𝔅ℝ) ∧ 𝑔 = (𝑢 × 𝑣))} | |
| 23 | 21, 22 | eqtri 2765 | . . . . . 6 ⊢ (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) = {〈〈𝑢, 𝑣〉, 𝑔〉 ∣ ((𝑢 ∈ 𝔅ℝ ∧ 𝑣 ∈ 𝔅ℝ) ∧ 𝑔 = (𝑢 × 𝑣))} |
| 24 | 16, 18, 23 | 3sstr4i 4035 | . . . . 5 ⊢ 𝑅 ⊆ (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) |
| 25 | rnss 5950 | . . . . 5 ⊢ (𝑅 ⊆ (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) → ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓))) | |
| 26 | 24, 25 | ax-mp 5 | . . . 4 ⊢ ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) |
| 27 | sssigagen2 34147 | . . . 4 ⊢ ((ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) ∈ V ∧ ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓))) → ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)))) | |
| 28 | 10, 26, 27 | mp2an 692 | . . 3 ⊢ ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓))) |
| 29 | sigagenss2 34151 | . . 3 ⊢ ((∪ ran 𝑅 = ∪ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) ∧ ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓))) ∧ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) ∈ V) → (sigaGen‘ran 𝑅) ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)))) | |
| 30 | 6, 28, 10, 29 | mp3an 1463 | . 2 ⊢ (sigaGen‘ran 𝑅) ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓))) |
| 31 | 1, 2, 3 | sxbrsigalem4 34289 | . 2 ⊢ (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘ran 𝑅) |
| 32 | eqid 2737 | . . . 4 ⊢ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) = ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) | |
| 33 | 32 | sxval 34191 | . . 3 ⊢ ((𝔅ℝ ∈ (sigAlgebra‘ℝ) ∧ 𝔅ℝ ∈ (sigAlgebra‘ℝ)) → (𝔅ℝ ×s 𝔅ℝ) = (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)))) |
| 34 | 7, 7, 33 | mp2an 692 | . 2 ⊢ (𝔅ℝ ×s 𝔅ℝ) = (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓))) |
| 35 | 30, 31, 34 | 3sstr4i 4035 | 1 ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅ℝ ×s 𝔅ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ⊆ wss 3951 ∪ cuni 4907 × cxp 5683 ran crn 5686 ‘cfv 6561 (class class class)co 7431 {coprab 7432 ∈ cmpo 7433 ℝcr 11154 1c1 11156 + caddc 11158 / cdiv 11920 2c2 12321 ℤcz 12613 (,)cioo 13387 [,)cico 13389 ↑cexp 14102 topGenctg 17482 ×t ctx 23568 sigAlgebracsiga 34109 sigaGencsigagen 34139 𝔅ℝcbrsiga 34182 ×s csx 34189 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-ac2 10503 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-omul 8511 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-dju 9941 df-card 9979 df-acn 9982 df-ac 10156 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-ioc 13392 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-fac 14313 df-bc 14342 df-hash 14370 df-shft 15106 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 df-sum 15723 df-ef 16103 df-sin 16105 df-cos 16106 df-pi 16108 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-fbas 21361 df-fg 21362 df-cnfld 21365 df-refld 21623 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-nei 23106 df-lp 23144 df-perf 23145 df-cn 23235 df-cnp 23236 df-haus 23323 df-cmp 23395 df-tx 23570 df-hmeo 23763 df-fil 23854 df-fm 23946 df-flim 23947 df-flf 23948 df-fcls 23949 df-xms 24330 df-ms 24331 df-tms 24332 df-cncf 24904 df-cfil 25289 df-cmet 25291 df-cms 25369 df-limc 25901 df-dv 25902 df-log 26598 df-cxp 26599 df-logb 26808 df-siga 34110 df-sigagen 34140 df-brsiga 34183 df-sx 34190 |
| This theorem is referenced by: sxbrsigalem6 34291 |
| Copyright terms: Public domain | W3C validator |