Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sxbrsigalem5 | Structured version Visualization version GIF version |
Description: First direction for sxbrsiga 32557. (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.) |
Ref | Expression |
---|---|
sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
Ref | Expression |
---|---|
sxbrsigalem5 | ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅ℝ ×s 𝔅ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sxbrsiga.0 | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
2 | dya2ioc.1 | . . . . 5 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
3 | dya2ioc.2 | . . . . 5 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
4 | 1, 2, 3 | dya2iocucvr 32551 | . . . 4 ⊢ ∪ ran 𝑅 = (ℝ × ℝ) |
5 | br2base 32536 | . . . 4 ⊢ ∪ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) = (ℝ × ℝ) | |
6 | 4, 5 | eqtr4i 2767 | . . 3 ⊢ ∪ ran 𝑅 = ∪ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) |
7 | brsigarn 32450 | . . . . . . 7 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
8 | 7 | elexi 3460 | . . . . . 6 ⊢ 𝔅ℝ ∈ V |
9 | 8, 8 | mpoex 7988 | . . . . 5 ⊢ (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) ∈ V |
10 | 9 | rnex 7827 | . . . 4 ⊢ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) ∈ V |
11 | 1, 2 | dya2icobrsiga 32543 | . . . . . . . . . 10 ⊢ ran 𝐼 ⊆ 𝔅ℝ |
12 | 11 | sseli 3928 | . . . . . . . . 9 ⊢ (𝑢 ∈ ran 𝐼 → 𝑢 ∈ 𝔅ℝ) |
13 | 11 | sseli 3928 | . . . . . . . . 9 ⊢ (𝑣 ∈ ran 𝐼 → 𝑣 ∈ 𝔅ℝ) |
14 | 12, 13 | anim12i 613 | . . . . . . . 8 ⊢ ((𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼) → (𝑢 ∈ 𝔅ℝ ∧ 𝑣 ∈ 𝔅ℝ)) |
15 | 14 | anim1i 615 | . . . . . . 7 ⊢ (((𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣)) → ((𝑢 ∈ 𝔅ℝ ∧ 𝑣 ∈ 𝔅ℝ) ∧ 𝑔 = (𝑢 × 𝑣))) |
16 | 15 | ssoprab2i 7447 | . . . . . 6 ⊢ {〈〈𝑢, 𝑣〉, 𝑔〉 ∣ ((𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))} ⊆ {〈〈𝑢, 𝑣〉, 𝑔〉 ∣ ((𝑢 ∈ 𝔅ℝ ∧ 𝑣 ∈ 𝔅ℝ) ∧ 𝑔 = (𝑢 × 𝑣))} |
17 | df-mpo 7342 | . . . . . . 7 ⊢ (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) = {〈〈𝑢, 𝑣〉, 𝑔〉 ∣ ((𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))} | |
18 | 3, 17 | eqtri 2764 | . . . . . 6 ⊢ 𝑅 = {〈〈𝑢, 𝑣〉, 𝑔〉 ∣ ((𝑢 ∈ ran 𝐼 ∧ 𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))} |
19 | xpeq1 5634 | . . . . . . . 8 ⊢ (𝑒 = 𝑢 → (𝑒 × 𝑓) = (𝑢 × 𝑓)) | |
20 | xpeq2 5641 | . . . . . . . 8 ⊢ (𝑓 = 𝑣 → (𝑢 × 𝑓) = (𝑢 × 𝑣)) | |
21 | 19, 20 | cbvmpov 7432 | . . . . . . 7 ⊢ (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) = (𝑢 ∈ 𝔅ℝ, 𝑣 ∈ 𝔅ℝ ↦ (𝑢 × 𝑣)) |
22 | df-mpo 7342 | . . . . . . 7 ⊢ (𝑢 ∈ 𝔅ℝ, 𝑣 ∈ 𝔅ℝ ↦ (𝑢 × 𝑣)) = {〈〈𝑢, 𝑣〉, 𝑔〉 ∣ ((𝑢 ∈ 𝔅ℝ ∧ 𝑣 ∈ 𝔅ℝ) ∧ 𝑔 = (𝑢 × 𝑣))} | |
23 | 21, 22 | eqtri 2764 | . . . . . 6 ⊢ (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) = {〈〈𝑢, 𝑣〉, 𝑔〉 ∣ ((𝑢 ∈ 𝔅ℝ ∧ 𝑣 ∈ 𝔅ℝ) ∧ 𝑔 = (𝑢 × 𝑣))} |
24 | 16, 18, 23 | 3sstr4i 3975 | . . . . 5 ⊢ 𝑅 ⊆ (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) |
25 | rnss 5880 | . . . . 5 ⊢ (𝑅 ⊆ (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) → ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓))) | |
26 | 24, 25 | ax-mp 5 | . . . 4 ⊢ ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) |
27 | sssigagen2 32412 | . . . 4 ⊢ ((ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) ∈ V ∧ ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓))) → ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)))) | |
28 | 10, 26, 27 | mp2an 689 | . . 3 ⊢ ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓))) |
29 | sigagenss2 32416 | . . 3 ⊢ ((∪ ran 𝑅 = ∪ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) ∧ ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓))) ∧ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) ∈ V) → (sigaGen‘ran 𝑅) ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)))) | |
30 | 6, 28, 10, 29 | mp3an 1460 | . 2 ⊢ (sigaGen‘ran 𝑅) ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓))) |
31 | 1, 2, 3 | sxbrsigalem4 32554 | . 2 ⊢ (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘ran 𝑅) |
32 | eqid 2736 | . . . 4 ⊢ ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) = ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)) | |
33 | 32 | sxval 32456 | . . 3 ⊢ ((𝔅ℝ ∈ (sigAlgebra‘ℝ) ∧ 𝔅ℝ ∈ (sigAlgebra‘ℝ)) → (𝔅ℝ ×s 𝔅ℝ) = (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓)))) |
34 | 7, 7, 33 | mp2an 689 | . 2 ⊢ (𝔅ℝ ×s 𝔅ℝ) = (sigaGen‘ran (𝑒 ∈ 𝔅ℝ, 𝑓 ∈ 𝔅ℝ ↦ (𝑒 × 𝑓))) |
35 | 30, 31, 34 | 3sstr4i 3975 | 1 ⊢ (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅ℝ ×s 𝔅ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ⊆ wss 3898 ∪ cuni 4852 × cxp 5618 ran crn 5621 ‘cfv 6479 (class class class)co 7337 {coprab 7338 ∈ cmpo 7339 ℝcr 10971 1c1 10973 + caddc 10975 / cdiv 11733 2c2 12129 ℤcz 12420 (,)cioo 13180 [,)cico 13182 ↑cexp 13883 topGenctg 17245 ×t ctx 22817 sigAlgebracsiga 32374 sigaGencsigagen 32404 𝔅ℝcbrsiga 32447 ×s csx 32454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-ac2 10320 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 ax-addf 11051 ax-mulf 11052 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-om 7781 df-1st 7899 df-2nd 7900 df-supp 8048 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-2o 8368 df-oadd 8371 df-omul 8372 df-er 8569 df-map 8688 df-pm 8689 df-ixp 8757 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-fsupp 9227 df-fi 9268 df-sup 9299 df-inf 9300 df-oi 9367 df-dju 9758 df-card 9796 df-acn 9799 df-ac 9973 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-q 12790 df-rp 12832 df-xneg 12949 df-xadd 12950 df-xmul 12951 df-ioo 13184 df-ioc 13185 df-ico 13186 df-icc 13187 df-fz 13341 df-fzo 13484 df-fl 13613 df-mod 13691 df-seq 13823 df-exp 13884 df-fac 14089 df-bc 14118 df-hash 14146 df-shft 14877 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-limsup 15279 df-clim 15296 df-rlim 15297 df-sum 15497 df-ef 15876 df-sin 15878 df-cos 15879 df-pi 15881 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-starv 17074 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-unif 17082 df-hom 17083 df-cco 17084 df-rest 17230 df-topn 17231 df-0g 17249 df-gsum 17250 df-topgen 17251 df-pt 17252 df-prds 17255 df-xrs 17310 df-qtop 17315 df-imas 17316 df-xps 17318 df-mre 17392 df-mrc 17393 df-acs 17395 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 df-mulg 18797 df-cntz 19019 df-cmn 19483 df-psmet 20695 df-xmet 20696 df-met 20697 df-bl 20698 df-mopn 20699 df-fbas 20700 df-fg 20701 df-cnfld 20704 df-refld 20916 df-top 22149 df-topon 22166 df-topsp 22188 df-bases 22202 df-cld 22276 df-ntr 22277 df-cls 22278 df-nei 22355 df-lp 22393 df-perf 22394 df-cn 22484 df-cnp 22485 df-haus 22572 df-cmp 22644 df-tx 22819 df-hmeo 23012 df-fil 23103 df-fm 23195 df-flim 23196 df-flf 23197 df-fcls 23198 df-xms 23579 df-ms 23580 df-tms 23581 df-cncf 24147 df-cfil 24525 df-cmet 24527 df-cms 24605 df-limc 25136 df-dv 25137 df-log 25818 df-cxp 25819 df-logb 26021 df-siga 32375 df-sigagen 32405 df-brsiga 32448 df-sx 32455 |
This theorem is referenced by: sxbrsigalem6 32556 |
Copyright terms: Public domain | W3C validator |