Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsigalem5 Structured version   Visualization version   GIF version

Theorem sxbrsigalem5 34256
Description: First direction for sxbrsiga 34258. (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
sxbrsigalem5 (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅 ×s 𝔅)
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑛,𝑣   𝑅,𝑛,𝑥   𝑥,𝐽,𝑢,𝑣
Allowed substitution hints:   𝑅(𝑣,𝑢)   𝐼(𝑛)   𝐽(𝑛)

Proof of Theorem sxbrsigalem5
Dummy variables 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sxbrsiga.0 . . . . 5 𝐽 = (topGen‘ran (,))
2 dya2ioc.1 . . . . 5 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3 dya2ioc.2 . . . . 5 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
41, 2, 3dya2iocucvr 34252 . . . 4 ran 𝑅 = (ℝ × ℝ)
5 br2base 34237 . . . 4 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = (ℝ × ℝ)
64, 5eqtr4i 2755 . . 3 ran 𝑅 = ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
7 brsigarn 34151 . . . . . . 7 𝔅 ∈ (sigAlgebra‘ℝ)
87elexi 3459 . . . . . 6 𝔅 ∈ V
98, 8mpoex 8014 . . . . 5 (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∈ V
109rnex 7843 . . . 4 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∈ V
111, 2dya2icobrsiga 34244 . . . . . . . . . 10 ran 𝐼 ⊆ 𝔅
1211sseli 3931 . . . . . . . . 9 (𝑢 ∈ ran 𝐼𝑢 ∈ 𝔅)
1311sseli 3931 . . . . . . . . 9 (𝑣 ∈ ran 𝐼𝑣 ∈ 𝔅)
1412, 13anim12i 613 . . . . . . . 8 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 ∈ 𝔅𝑣 ∈ 𝔅))
1514anim1i 615 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣)) → ((𝑢 ∈ 𝔅𝑣 ∈ 𝔅) ∧ 𝑔 = (𝑢 × 𝑣)))
1615ssoprab2i 7460 . . . . . 6 {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))} ⊆ {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ 𝔅𝑣 ∈ 𝔅) ∧ 𝑔 = (𝑢 × 𝑣))}
17 df-mpo 7354 . . . . . . 7 (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) = {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))}
183, 17eqtri 2752 . . . . . 6 𝑅 = {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑔 = (𝑢 × 𝑣))}
19 xpeq1 5633 . . . . . . . 8 (𝑒 = 𝑢 → (𝑒 × 𝑓) = (𝑢 × 𝑓))
20 xpeq2 5640 . . . . . . . 8 (𝑓 = 𝑣 → (𝑢 × 𝑓) = (𝑢 × 𝑣))
2119, 20cbvmpov 7444 . . . . . . 7 (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = (𝑢 ∈ 𝔅, 𝑣 ∈ 𝔅 ↦ (𝑢 × 𝑣))
22 df-mpo 7354 . . . . . . 7 (𝑢 ∈ 𝔅, 𝑣 ∈ 𝔅 ↦ (𝑢 × 𝑣)) = {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ 𝔅𝑣 ∈ 𝔅) ∧ 𝑔 = (𝑢 × 𝑣))}
2321, 22eqtri 2752 . . . . . 6 (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = {⟨⟨𝑢, 𝑣⟩, 𝑔⟩ ∣ ((𝑢 ∈ 𝔅𝑣 ∈ 𝔅) ∧ 𝑔 = (𝑢 × 𝑣))}
2416, 18, 233sstr4i 3987 . . . . 5 𝑅 ⊆ (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
25 rnss 5881 . . . . 5 (𝑅 ⊆ (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) → ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)))
2624, 25ax-mp 5 . . . 4 ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
27 sssigagen2 34113 . . . 4 ((ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∈ V ∧ ran 𝑅 ⊆ ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))) → ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))))
2810, 26, 27mp2an 692 . . 3 ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)))
29 sigagenss2 34117 . . 3 (( ran 𝑅 = ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∧ ran 𝑅 ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))) ∧ ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ∈ V) → (sigaGen‘ran 𝑅) ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))))
306, 28, 10, 29mp3an 1463 . 2 (sigaGen‘ran 𝑅) ⊆ (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)))
311, 2, 3sxbrsigalem4 34255 . 2 (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘ran 𝑅)
32 eqid 2729 . . . 4 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
3332sxval 34157 . . 3 ((𝔅 ∈ (sigAlgebra‘ℝ) ∧ 𝔅 ∈ (sigAlgebra‘ℝ)) → (𝔅 ×s 𝔅) = (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))))
347, 7, 33mp2an 692 . 2 (𝔅 ×s 𝔅) = (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)))
3530, 31, 343sstr4i 3987 1 (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅 ×s 𝔅)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903   cuni 4858   × cxp 5617  ran crn 5620  cfv 6482  (class class class)co 7349  {coprab 7350  cmpo 7351  cr 11008  1c1 11010   + caddc 11012   / cdiv 11777  2c2 12183  cz 12471  (,)cioo 13248  [,)cico 13250  cexp 13968  topGenctg 17341   ×t ctx 23445  sigAlgebracsiga 34075  sigaGencsigagen 34105  𝔅cbrsiga 34148   ×s csx 34155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-refld 21512  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-fcls 23826  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-cfil 25153  df-cmet 25155  df-cms 25233  df-limc 25765  df-dv 25766  df-log 26463  df-cxp 26464  df-logb 26673  df-siga 34076  df-sigagen 34106  df-brsiga 34149  df-sx 34156
This theorem is referenced by:  sxbrsigalem6  34257
  Copyright terms: Public domain W3C validator