Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem59 Structured version   Visualization version   GIF version

Theorem stoweidlem59 42343
Description: This lemma proves that there exists a function 𝑥 as in the proof in [BrosowskiDeutsh] p. 91, after Lemma 2: xj is in the subalgebra, 0 <= xj <= 1, xj < ε / n on Aj (meaning A in the paper), xj > 1 - \epsilon / n on Bj. Here 𝐷 is used to represent A in the paper (because A is used for the subalgebra of functions), 𝐸 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem59.1 𝑡𝐹
stoweidlem59.2 𝑡𝜑
stoweidlem59.3 𝐾 = (topGen‘ran (,))
stoweidlem59.4 𝑇 = 𝐽
stoweidlem59.5 𝐶 = (𝐽 Cn 𝐾)
stoweidlem59.6 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
stoweidlem59.7 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
stoweidlem59.8 𝑌 = {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)}
stoweidlem59.9 𝐻 = (𝑗 ∈ (0...𝑁) ↦ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
stoweidlem59.10 (𝜑𝐽 ∈ Comp)
stoweidlem59.11 (𝜑𝐴𝐶)
stoweidlem59.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem59.13 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem59.14 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
stoweidlem59.15 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem59.16 (𝜑𝐹𝐶)
stoweidlem59.17 (𝜑𝐸 ∈ ℝ+)
stoweidlem59.18 (𝜑𝐸 < (1 / 3))
stoweidlem59.19 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
stoweidlem59 (𝜑 → ∃𝑥(𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥𝑗)‘𝑡))))
Distinct variable groups:   𝑡,𝑗,𝑦   𝑦,𝐵   𝑦,𝐷   𝑗,𝑁,𝑡,𝑦   𝑗,𝑌   𝑓,𝑔,𝑗,𝑞,𝑟,𝑡,𝑁   𝑥,𝑓,𝑔,𝑗,𝑡,𝑁   𝑦,𝑓,𝑞,𝑟,𝐴   𝐴,𝑔,𝑞,𝑟,𝑡   𝐵,𝑓,𝑔,𝑞,𝑟   𝐷,𝑓,𝑔,𝑞,𝑟   𝑓,𝐸,𝑔,𝑟,𝑡   𝑓,𝐽,𝑔,𝑟,𝑡   𝑇,𝑓,𝑔,𝑞,𝑟,𝑡   𝜑,𝑓,𝑔,𝑗,𝑞,𝑟   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸,𝑦   𝑥,𝑇,𝑦   𝜑,𝑦   𝑡,𝐾   𝑥,𝐻   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑗)   𝐵(𝑡,𝑗)   𝐶(𝑥,𝑦,𝑡,𝑓,𝑔,𝑗,𝑟,𝑞)   𝐷(𝑡,𝑗)   𝑇(𝑗)   𝐸(𝑗,𝑞)   𝐹(𝑥,𝑦,𝑡,𝑓,𝑔,𝑗,𝑟,𝑞)   𝐻(𝑦,𝑡,𝑓,𝑔,𝑗,𝑟,𝑞)   𝐽(𝑥,𝑦,𝑗,𝑞)   𝐾(𝑥,𝑦,𝑓,𝑔,𝑗,𝑟,𝑞)   𝑌(𝑦,𝑡,𝑓,𝑔,𝑟,𝑞)

Proof of Theorem stoweidlem59
Dummy variables 𝑎 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem59.8 . . . . . . . . . 10 𝑌 = {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)}
2 nfrab1 3384 . . . . . . . . . 10 𝑦{𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)}
31, 2nfcxfr 2975 . . . . . . . . 9 𝑦𝑌
4 nfcv 2977 . . . . . . . . 9 𝑧𝑌
5 nfv 1911 . . . . . . . . 9 𝑧(∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))
6 nfv 1911 . . . . . . . . 9 𝑦(∀𝑡 ∈ (𝐷𝑗)(𝑧𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑧𝑡))
7 fveq1 6668 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝑡) = (𝑧𝑡))
87breq1d 5075 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑦𝑡) < (𝐸 / 𝑁) ↔ (𝑧𝑡) < (𝐸 / 𝑁)))
98ralbidv 3197 . . . . . . . . . 10 (𝑦 = 𝑧 → (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ↔ ∀𝑡 ∈ (𝐷𝑗)(𝑧𝑡) < (𝐸 / 𝑁)))
107breq2d 5077 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((1 − (𝐸 / 𝑁)) < (𝑦𝑡) ↔ (1 − (𝐸 / 𝑁)) < (𝑧𝑡)))
1110ralbidv 3197 . . . . . . . . . 10 (𝑦 = 𝑧 → (∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡) ↔ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑧𝑡)))
129, 11anbi12d 632 . . . . . . . . 9 (𝑦 = 𝑧 → ((∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡)) ↔ (∀𝑡 ∈ (𝐷𝑗)(𝑧𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑧𝑡))))
133, 4, 5, 6, 12cbvrabw 3489 . . . . . . . 8 {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} = {𝑧𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑧𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑧𝑡))}
14 ovexd 7190 . . . . . . . . . 10 (𝜑 → (𝐽 Cn 𝐾) ∈ V)
15 stoweidlem59.11 . . . . . . . . . . 11 (𝜑𝐴𝐶)
16 stoweidlem59.5 . . . . . . . . . . 11 𝐶 = (𝐽 Cn 𝐾)
1715, 16sseqtrdi 4016 . . . . . . . . . 10 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
1814, 17ssexd 5227 . . . . . . . . 9 (𝜑𝐴 ∈ V)
191, 18rabexd 5235 . . . . . . . 8 (𝜑𝑌 ∈ V)
2013, 19rabexd 5235 . . . . . . 7 (𝜑 → {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ∈ V)
2120ralrimivw 3183 . . . . . 6 (𝜑 → ∀𝑗 ∈ (0...𝑁){𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ∈ V)
22 stoweidlem59.9 . . . . . . 7 𝐻 = (𝑗 ∈ (0...𝑁) ↦ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
2322fnmpt 6487 . . . . . 6 (∀𝑗 ∈ (0...𝑁){𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ∈ V → 𝐻 Fn (0...𝑁))
2421, 23syl 17 . . . . 5 (𝜑𝐻 Fn (0...𝑁))
25 fzfi 13339 . . . . 5 (0...𝑁) ∈ Fin
26 fnfi 8795 . . . . 5 ((𝐻 Fn (0...𝑁) ∧ (0...𝑁) ∈ Fin) → 𝐻 ∈ Fin)
2724, 25, 26sylancl 588 . . . 4 (𝜑𝐻 ∈ Fin)
28 rnfi 8806 . . . 4 (𝐻 ∈ Fin → ran 𝐻 ∈ Fin)
2927, 28syl 17 . . 3 (𝜑 → ran 𝐻 ∈ Fin)
30 fnchoice 41284 . . 3 (ran 𝐻 ∈ Fin → ∃( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)))
3129, 30syl 17 . 2 (𝜑 → ∃( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)))
32 simprl 769 . . . . 5 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → Fn ran 𝐻)
33 ovex 7188 . . . . . . . 8 (0...𝑁) ∈ V
3433mptex 6985 . . . . . . 7 (𝑗 ∈ (0...𝑁) ↦ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))}) ∈ V
3522, 34eqeltri 2909 . . . . . 6 𝐻 ∈ V
3635rnex 7616 . . . . 5 ran 𝐻 ∈ V
37 fnex 6979 . . . . 5 (( Fn ran 𝐻 ∧ ran 𝐻 ∈ V) → ∈ V)
3832, 36, 37sylancl 588 . . . 4 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → ∈ V)
39 coexg 7633 . . . 4 (( ∈ V ∧ 𝐻 ∈ V) → (𝐻) ∈ V)
4038, 35, 39sylancl 588 . . 3 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → (𝐻) ∈ V)
41 dffn3 6524 . . . . . . 7 ( Fn ran 𝐻:ran 𝐻⟶ran )
4232, 41sylib 220 . . . . . 6 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → :ran 𝐻⟶ran )
43 nfv 1911 . . . . . . . . . 10 𝑤𝜑
44 nfv 1911 . . . . . . . . . . 11 𝑤 Fn ran 𝐻
45 nfra1 3219 . . . . . . . . . . 11 𝑤𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)
4644, 45nfan 1896 . . . . . . . . . 10 𝑤( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))
4743, 46nfan 1896 . . . . . . . . 9 𝑤(𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)))
48 simplrr 776 . . . . . . . . . . 11 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑤 ∈ ran 𝐻) → ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))
49 simpr 487 . . . . . . . . . . 11 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑤 ∈ ran 𝐻) → 𝑤 ∈ ran 𝐻)
50 fvelrnb 6725 . . . . . . . . . . . . . . . 16 (𝐻 Fn (0...𝑁) → (𝑤 ∈ ran 𝐻 ↔ ∃𝑎 ∈ (0...𝑁)(𝐻𝑎) = 𝑤))
51 nfv 1911 . . . . . . . . . . . . . . . . 17 𝑎(𝐻𝑗) = 𝑤
52 nfmpt1 5163 . . . . . . . . . . . . . . . . . . . 20 𝑗(𝑗 ∈ (0...𝑁) ↦ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
5322, 52nfcxfr 2975 . . . . . . . . . . . . . . . . . . 19 𝑗𝐻
54 nfcv 2977 . . . . . . . . . . . . . . . . . . 19 𝑗𝑎
5553, 54nffv 6679 . . . . . . . . . . . . . . . . . 18 𝑗(𝐻𝑎)
56 nfcv 2977 . . . . . . . . . . . . . . . . . 18 𝑗𝑤
5755, 56nfeq 2991 . . . . . . . . . . . . . . . . 17 𝑗(𝐻𝑎) = 𝑤
58 fveq2 6669 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑎 → (𝐻𝑗) = (𝐻𝑎))
5958eqeq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑎 → ((𝐻𝑗) = 𝑤 ↔ (𝐻𝑎) = 𝑤))
6051, 57, 59cbvrexw 3442 . . . . . . . . . . . . . . . 16 (∃𝑗 ∈ (0...𝑁)(𝐻𝑗) = 𝑤 ↔ ∃𝑎 ∈ (0...𝑁)(𝐻𝑎) = 𝑤)
6150, 60syl6bbr 291 . . . . . . . . . . . . . . 15 (𝐻 Fn (0...𝑁) → (𝑤 ∈ ran 𝐻 ↔ ∃𝑗 ∈ (0...𝑁)(𝐻𝑗) = 𝑤))
6224, 61syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ ran 𝐻 ↔ ∃𝑗 ∈ (0...𝑁)(𝐻𝑗) = 𝑤))
6362biimpa 479 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ran 𝐻) → ∃𝑗 ∈ (0...𝑁)(𝐻𝑗) = 𝑤)
64 simp3 1134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...𝑁) ∧ (𝐻𝑗) = 𝑤) → (𝐻𝑗) = 𝑤)
65 simpr 487 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑁))
6620adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑁)) → {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ∈ V)
6722fvmpt2 6778 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ (0...𝑁) ∧ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ∈ V) → (𝐻𝑗) = {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
6865, 66, 67syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐻𝑗) = {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
69 stoweidlem59.6 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
70 nfcv 2977 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑡(0...𝑁)
71 nfrab1 3384 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑡{𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}
7270, 71nfmpt 5162 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑡(𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
7369, 72nfcxfr 2975 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡𝐷
74 nfcv 2977 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡𝑗
7573, 74nffv 6679 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡(𝐷𝑗)
76 nfcv 2977 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡𝑇
77 stoweidlem59.7 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
78 nfrab1 3384 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑡{𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)}
7970, 78nfmpt 5162 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑡(𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
8077, 79nfcxfr 2975 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑡𝐵
8180, 74nffv 6679 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡(𝐵𝑗)
8276, 81nfdif 4101 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡(𝑇 ∖ (𝐵𝑗))
83 stoweidlem59.2 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡𝜑
84 nfv 1911 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡 𝑗 ∈ (0...𝑁)
8583, 84nfan 1896 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡(𝜑𝑗 ∈ (0...𝑁))
86 stoweidlem59.3 . . . . . . . . . . . . . . . . . . . . . . 23 𝐾 = (topGen‘ran (,))
87 stoweidlem59.4 . . . . . . . . . . . . . . . . . . . . . . 23 𝑇 = 𝐽
88 stoweidlem59.10 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐽 ∈ Comp)
8988adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑁)) → 𝐽 ∈ Comp)
9015adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑁)) → 𝐴𝐶)
91 stoweidlem59.12 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
92913adant1r 1173 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
93 stoweidlem59.13 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
94933adant1r 1173 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
95 stoweidlem59.14 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
9695adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
97 stoweidlem59.15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
9897adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
9988uniexd 7467 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 𝐽 ∈ V)
10087, 99eqeltrid 2917 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑇 ∈ V)
101100adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑇 ∈ V)
102 rabexg 5233 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑇 ∈ V → {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ∈ V)
103101, 102syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (0...𝑁)) → {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ∈ V)
10477fvmpt2 6778 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗 ∈ (0...𝑁) ∧ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ∈ V) → (𝐵𝑗) = {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
10565, 103, 104syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐵𝑗) = {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
106 stoweidlem59.1 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑡𝐹
107 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} = {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)}
108 elfzelz 12907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ)
109108zred 12086 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℝ)
110 3re 11716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 ∈ ℝ
111 3ne0 11742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 ≠ 0
112110, 111rereccli 11404 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (1 / 3) ∈ ℝ
113 readdcl 10619 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℝ ∧ (1 / 3) ∈ ℝ) → (𝑗 + (1 / 3)) ∈ ℝ)
114109, 112, 113sylancl 588 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 ∈ (0...𝑁) → (𝑗 + (1 / 3)) ∈ ℝ)
115114adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑗 + (1 / 3)) ∈ ℝ)
116 stoweidlem59.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐸 ∈ ℝ+)
117116rpred 12430 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐸 ∈ ℝ)
118117adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ (0...𝑁)) → 𝐸 ∈ ℝ)
119115, 118remulcld 10670 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑗 + (1 / 3)) · 𝐸) ∈ ℝ)
120 stoweidlem59.16 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐹𝐶)
121120, 16eleqtrdi 2923 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
122121adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (0...𝑁)) → 𝐹 ∈ (𝐽 Cn 𝐾))
123106, 86, 87, 107, 119, 122rfcnpre3 41288 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (0...𝑁)) → {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ∈ (Clsd‘𝐽))
124105, 123eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐵𝑗) ∈ (Clsd‘𝐽))
125 rabexg 5233 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑇 ∈ V → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ V)
126101, 125syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (0...𝑁)) → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ V)
12769fvmpt2 6778 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗 ∈ (0...𝑁) ∧ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ V) → (𝐷𝑗) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
12865, 126, 127syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐷𝑗) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
129 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}
130 resubcl 10949 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℝ ∧ (1 / 3) ∈ ℝ) → (𝑗 − (1 / 3)) ∈ ℝ)
131109, 112, 130sylancl 588 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 ∈ (0...𝑁) → (𝑗 − (1 / 3)) ∈ ℝ)
132131adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑗 − (1 / 3)) ∈ ℝ)
133132, 118remulcld 10670 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑗 − (1 / 3)) · 𝐸) ∈ ℝ)
134106, 86, 87, 129, 133, 122rfcnpre4 41289 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (0...𝑁)) → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ (Clsd‘𝐽))
135128, 134eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐷𝑗) ∈ (Clsd‘𝐽))
136133adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → ((𝑗 − (1 / 3)) · 𝐸) ∈ ℝ)
137119adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → ((𝑗 + (1 / 3)) · 𝐸) ∈ ℝ)
13886, 87, 16, 120fcnre 41280 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐹:𝑇⟶ℝ)
139138ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → 𝐹:𝑇⟶ℝ)
140 ssrab2 4055 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ⊆ 𝑇
141105, 140eqsstrdi 4020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐵𝑗) ⊆ 𝑇)
142141sselda 3966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → 𝑡𝑇)
143139, 142ffvelrnd 6851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → (𝐹𝑡) ∈ ℝ)
144112, 130mpan2 689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℝ → (𝑗 − (1 / 3)) ∈ ℝ)
145 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℝ → 𝑗 ∈ ℝ)
146112, 113mpan2 689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℝ → (𝑗 + (1 / 3)) ∈ ℝ)
147 3pos 11741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 0 < 3
148110, 147recgt0ii 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 0 < (1 / 3)
149112, 148elrpii 12391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (1 / 3) ∈ ℝ+
150 ltsubrp 12424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑗 ∈ ℝ ∧ (1 / 3) ∈ ℝ+) → (𝑗 − (1 / 3)) < 𝑗)
151149, 150mpan2 689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℝ → (𝑗 − (1 / 3)) < 𝑗)
152 ltaddrp 12425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑗 ∈ ℝ ∧ (1 / 3) ∈ ℝ+) → 𝑗 < (𝑗 + (1 / 3)))
153149, 152mpan2 689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℝ → 𝑗 < (𝑗 + (1 / 3)))
154144, 145, 146, 151, 153lttrd 10800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑗 ∈ ℝ → (𝑗 − (1 / 3)) < (𝑗 + (1 / 3)))
155109, 154syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑗 ∈ (0...𝑁) → (𝑗 − (1 / 3)) < (𝑗 + (1 / 3)))
156155adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑗 − (1 / 3)) < (𝑗 + (1 / 3)))
157116rpregt0d 12436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
158157adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
159 ltmul1 11489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 − (1 / 3)) ∈ ℝ ∧ (𝑗 + (1 / 3)) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → ((𝑗 − (1 / 3)) < (𝑗 + (1 / 3)) ↔ ((𝑗 − (1 / 3)) · 𝐸) < ((𝑗 + (1 / 3)) · 𝐸)))
160132, 115, 158, 159syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑗 − (1 / 3)) < (𝑗 + (1 / 3)) ↔ ((𝑗 − (1 / 3)) · 𝐸) < ((𝑗 + (1 / 3)) · 𝐸)))
161156, 160mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑗 − (1 / 3)) · 𝐸) < ((𝑗 + (1 / 3)) · 𝐸))
162161adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → ((𝑗 − (1 / 3)) · 𝐸) < ((𝑗 + (1 / 3)) · 𝐸))
163105eleq2d 2898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑡 ∈ (𝐵𝑗) ↔ 𝑡 ∈ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)}))
164163biimpa 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → 𝑡 ∈ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
165 rabid 3378 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 ∈ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ↔ (𝑡𝑇 ∧ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)))
166164, 165sylib 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → (𝑡𝑇 ∧ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)))
167166simprd 498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡))
168136, 137, 143, 162, 167ltletrd 10799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → ((𝑗 − (1 / 3)) · 𝐸) < (𝐹𝑡))
169136, 143ltnled 10786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → (((𝑗 − (1 / 3)) · 𝐸) < (𝐹𝑡) ↔ ¬ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)))
170168, 169mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → ¬ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))
171170intnand 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → ¬ (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)))
172 rabid 3378 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ↔ (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)))
173171, 172sylnibr 331 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → ¬ 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
174128adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → (𝐷𝑗) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
175173, 174neleqtrrd 2935 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → ¬ 𝑡 ∈ (𝐷𝑗))
176175ex 415 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑡 ∈ (𝐵𝑗) → ¬ 𝑡 ∈ (𝐷𝑗)))
17785, 176ralrimi 3216 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (0...𝑁)) → ∀𝑡 ∈ (𝐵𝑗) ¬ 𝑡 ∈ (𝐷𝑗))
178 disj 4398 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐵𝑗) ∩ (𝐷𝑗)) = ∅ ↔ ∀𝑎 ∈ (𝐵𝑗) ¬ 𝑎 ∈ (𝐷𝑗))
179 nfcv 2977 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑎(𝐵𝑗)
18075nfcri 2971 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑡 𝑎 ∈ (𝐷𝑗)
181180nfn 1853 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑡 ¬ 𝑎 ∈ (𝐷𝑗)
182 nfv 1911 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑎 ¬ 𝑡 ∈ (𝐷𝑗)
183 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = 𝑡 → (𝑎 ∈ (𝐷𝑗) ↔ 𝑡 ∈ (𝐷𝑗)))
184183notbid 320 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑡 → (¬ 𝑎 ∈ (𝐷𝑗) ↔ ¬ 𝑡 ∈ (𝐷𝑗)))
185179, 81, 181, 182, 184cbvralfw 3437 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑎 ∈ (𝐵𝑗) ¬ 𝑎 ∈ (𝐷𝑗) ↔ ∀𝑡 ∈ (𝐵𝑗) ¬ 𝑡 ∈ (𝐷𝑗))
186178, 185bitri 277 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵𝑗) ∩ (𝐷𝑗)) = ∅ ↔ ∀𝑡 ∈ (𝐵𝑗) ¬ 𝑡 ∈ (𝐷𝑗))
187177, 186sylibr 236 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝐵𝑗) ∩ (𝐷𝑗)) = ∅)
188 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑇 ∖ (𝐵𝑗)) = (𝑇 ∖ (𝐵𝑗))
189 stoweidlem59.19 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑁 ∈ ℕ)
190189nnrpd 12428 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 ∈ ℝ+)
191116, 190rpdivcld 12447 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐸 / 𝑁) ∈ ℝ+)
192191adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐸 / 𝑁) ∈ ℝ+)
193117, 189nndivred 11690 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐸 / 𝑁) ∈ ℝ)
194112a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (1 / 3) ∈ ℝ)
195189nnge1d 11684 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → 1 ≤ 𝑁)
196 1re 10640 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1 ∈ ℝ
197 0lt1 11161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 < 1
198196, 197pm3.2i 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (1 ∈ ℝ ∧ 0 < 1)
199198a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (1 ∈ ℝ ∧ 0 < 1))
200189nnred 11652 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑁 ∈ ℝ)
201189nngt0d 11685 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → 0 < 𝑁)
202 lediv2 11529 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (1 ≤ 𝑁 ↔ (𝐸 / 𝑁) ≤ (𝐸 / 1)))
203199, 200, 201, 157, 202syl121anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (1 ≤ 𝑁 ↔ (𝐸 / 𝑁) ≤ (𝐸 / 1)))
204195, 203mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐸 / 𝑁) ≤ (𝐸 / 1))
205116rpcnd 12432 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐸 ∈ ℂ)
206205div1d 11407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐸 / 1) = 𝐸)
207204, 206breqtrd 5091 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐸 / 𝑁) ≤ 𝐸)
208 stoweidlem59.18 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐸 < (1 / 3))
209193, 117, 194, 207, 208lelttrd 10797 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐸 / 𝑁) < (1 / 3))
210209adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐸 / 𝑁) < (1 / 3))
21175, 82, 85, 86, 87, 16, 89, 90, 92, 94, 96, 98, 124, 135, 187, 188, 192, 210stoweidlem58 42342 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑁)) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))
212 df-rex 3144 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)) ↔ ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡))))
213211, 212sylib 220 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0...𝑁)) → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡))))
214 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))) → 𝑥𝐴)
215 simprr1 1217 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))) → ∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1))
216 fveq1 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = 𝑥 → (𝑦𝑡) = (𝑥𝑡))
217216breq2d 5077 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = 𝑥 → (0 ≤ (𝑦𝑡) ↔ 0 ≤ (𝑥𝑡)))
218216breq1d 5075 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = 𝑥 → ((𝑦𝑡) ≤ 1 ↔ (𝑥𝑡) ≤ 1))
219217, 218anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = 𝑥 → ((0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ↔ (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1)))
220219ralbidv 3197 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑥 → (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1)))
221220, 1elrab2 3682 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑌 ↔ (𝑥𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1)))
222214, 215, 221sylanbrc 585 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))) → 𝑥𝑌)
223 simprr2 1218 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))) → ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁))
224 simprr3 1219 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡))
225223, 224jca 514 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))) → (∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))
226 nfcv 2977 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑦𝑥
227 nfv 1911 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑦(∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡))
228216breq1d 5075 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = 𝑥 → ((𝑦𝑡) < (𝐸 / 𝑁) ↔ (𝑥𝑡) < (𝐸 / 𝑁)))
229228ralbidv 3197 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑥 → (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ↔ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁)))
230216breq2d 5077 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = 𝑥 → ((1 − (𝐸 / 𝑁)) < (𝑦𝑡) ↔ (1 − (𝐸 / 𝑁)) < (𝑥𝑡)))
231230ralbidv 3197 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑥 → (∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡) ↔ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))
232229, 231anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑥 → ((∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡)) ↔ (∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡))))
233226, 3, 227, 232elrabf 3675 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ↔ (𝑥𝑌 ∧ (∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡))))
234222, 225, 233sylanbrc 585 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))) → 𝑥 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
235234ex 415 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡))) → 𝑥 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))}))
236235eximdv 1914 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0...𝑁)) → (∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡))) → ∃𝑥 𝑥 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))}))
237213, 236mpd 15 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑁)) → ∃𝑥 𝑥 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
238 ne0i 4299 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} → {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ≠ ∅)
239238exlimiv 1927 . . . . . . . . . . . . . . . . . . . 20 (∃𝑥 𝑥 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} → {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ≠ ∅)
240237, 239syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...𝑁)) → {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ≠ ∅)
24168, 240eqnetrd 3083 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐻𝑗) ≠ ∅)
2422413adant3 1128 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...𝑁) ∧ (𝐻𝑗) = 𝑤) → (𝐻𝑗) ≠ ∅)
24364, 242eqnetrrd 3084 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0...𝑁) ∧ (𝐻𝑗) = 𝑤) → 𝑤 ≠ ∅)
2442433exp 1115 . . . . . . . . . . . . . . 15 (𝜑 → (𝑗 ∈ (0...𝑁) → ((𝐻𝑗) = 𝑤𝑤 ≠ ∅)))
245244rexlimdv 3283 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑗 ∈ (0...𝑁)(𝐻𝑗) = 𝑤𝑤 ≠ ∅))
246245adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ran 𝐻) → (∃𝑗 ∈ (0...𝑁)(𝐻𝑗) = 𝑤𝑤 ≠ ∅))
24763, 246mpd 15 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ran 𝐻) → 𝑤 ≠ ∅)
248247adantlr 713 . . . . . . . . . . 11 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑤 ∈ ran 𝐻) → 𝑤 ≠ ∅)
249 rsp 3205 . . . . . . . . . . 11 (∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤) → (𝑤 ∈ ran 𝐻 → (𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)))
25048, 49, 248, 249syl3c 66 . . . . . . . . . 10 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑤 ∈ ran 𝐻) → (𝑤) ∈ 𝑤)
251250ex 415 . . . . . . . . 9 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → (𝑤 ∈ ran 𝐻 → (𝑤) ∈ 𝑤))
25247, 251ralrimi 3216 . . . . . . . 8 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → ∀𝑤 ∈ ran 𝐻(𝑤) ∈ 𝑤)
253 chfnrn 6818 . . . . . . . 8 (( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤) ∈ 𝑤) → ran ran 𝐻)
25432, 252, 253syl2anc 586 . . . . . . 7 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → ran ran 𝐻)
255 nfv 1911 . . . . . . . . . 10 𝑦𝜑
256 nfcv 2977 . . . . . . . . . . . 12 𝑦
257 nfcv 2977 . . . . . . . . . . . . . . 15 𝑦(0...𝑁)
258 nfrab1 3384 . . . . . . . . . . . . . . 15 𝑦{𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))}
259257, 258nfmpt 5162 . . . . . . . . . . . . . 14 𝑦(𝑗 ∈ (0...𝑁) ↦ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
26022, 259nfcxfr 2975 . . . . . . . . . . . . 13 𝑦𝐻
261260nfrn 5823 . . . . . . . . . . . 12 𝑦ran 𝐻
262256, 261nffn 6451 . . . . . . . . . . 11 𝑦 Fn ran 𝐻
263 nfv 1911 . . . . . . . . . . . 12 𝑦(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)
264261, 263nfralw 3225 . . . . . . . . . . 11 𝑦𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)
265262, 264nfan 1896 . . . . . . . . . 10 𝑦( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))
266255, 265nfan 1896 . . . . . . . . 9 𝑦(𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)))
267261nfuni 4844 . . . . . . . . 9 𝑦 ran 𝐻
268 fnunirn 7011 . . . . . . . . . . . . . . 15 (𝐻 Fn (0...𝑁) → (𝑦 ran 𝐻 ↔ ∃𝑧 ∈ (0...𝑁)𝑦 ∈ (𝐻𝑧)))
269 nfcv 2977 . . . . . . . . . . . . . . . . . 18 𝑗𝑧
27053, 269nffv 6679 . . . . . . . . . . . . . . . . 17 𝑗(𝐻𝑧)
271270nfcri 2971 . . . . . . . . . . . . . . . 16 𝑗 𝑦 ∈ (𝐻𝑧)
272 nfv 1911 . . . . . . . . . . . . . . . 16 𝑧 𝑦 ∈ (𝐻𝑗)
273 fveq2 6669 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑗 → (𝐻𝑧) = (𝐻𝑗))
274273eleq2d 2898 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑗 → (𝑦 ∈ (𝐻𝑧) ↔ 𝑦 ∈ (𝐻𝑗)))
275271, 272, 274cbvrexw 3442 . . . . . . . . . . . . . . 15 (∃𝑧 ∈ (0...𝑁)𝑦 ∈ (𝐻𝑧) ↔ ∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻𝑗))
276268, 275syl6bb 289 . . . . . . . . . . . . . 14 (𝐻 Fn (0...𝑁) → (𝑦 ran 𝐻 ↔ ∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻𝑗)))
27724, 276syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ran 𝐻 ↔ ∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻𝑗)))
278277biimpa 479 . . . . . . . . . . . 12 ((𝜑𝑦 ran 𝐻) → ∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻𝑗))
279 nfv 1911 . . . . . . . . . . . . . 14 𝑗𝜑
28053nfrn 5823 . . . . . . . . . . . . . . . 16 𝑗ran 𝐻
281280nfuni 4844 . . . . . . . . . . . . . . 15 𝑗 ran 𝐻
282281nfcri 2971 . . . . . . . . . . . . . 14 𝑗 𝑦 ran 𝐻
283279, 282nfan 1896 . . . . . . . . . . . . 13 𝑗(𝜑𝑦 ran 𝐻)
284 nfv 1911 . . . . . . . . . . . . 13 𝑗 𝑦𝑌
285 simp1l 1193 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ran 𝐻) ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑦 ∈ (𝐻𝑗)) → 𝜑)
286 simp2 1133 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ran 𝐻) ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑦 ∈ (𝐻𝑗)) → 𝑗 ∈ (0...𝑁))
287 simp3 1134 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ran 𝐻) ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑦 ∈ (𝐻𝑗)) → 𝑦 ∈ (𝐻𝑗))
28868eleq2d 2898 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑦 ∈ (𝐻𝑗) ↔ 𝑦 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))}))
289288biimpa 479 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) → 𝑦 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
290 rabid 3378 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ↔ (𝑦𝑌 ∧ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))))
291289, 290sylib 220 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) → (𝑦𝑌 ∧ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))))
292291simpld 497 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) → 𝑦𝑌)
293285, 286, 287, 292syl21anc 835 . . . . . . . . . . . . . 14 (((𝜑𝑦 ran 𝐻) ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑦 ∈ (𝐻𝑗)) → 𝑦𝑌)
2942933exp 1115 . . . . . . . . . . . . 13 ((𝜑𝑦 ran 𝐻) → (𝑗 ∈ (0...𝑁) → (𝑦 ∈ (𝐻𝑗) → 𝑦𝑌)))
295283, 284, 294rexlimd 3317 . . . . . . . . . . . 12 ((𝜑𝑦 ran 𝐻) → (∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻𝑗) → 𝑦𝑌))
296278, 295mpd 15 . . . . . . . . . . 11 ((𝜑𝑦 ran 𝐻) → 𝑦𝑌)
297296adantlr 713 . . . . . . . . . 10 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑦 ran 𝐻) → 𝑦𝑌)
298297ex 415 . . . . . . . . 9 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → (𝑦 ran 𝐻𝑦𝑌))
299266, 267, 3, 298ssrd 3971 . . . . . . . 8 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → ran 𝐻𝑌)
300 ssrab2 4055 . . . . . . . . 9 {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} ⊆ 𝐴
3011, 300eqsstri 4000 . . . . . . . 8 𝑌𝐴
302299, 301sstrdi 3978 . . . . . . 7 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → ran 𝐻𝐴)
303254, 302sstrd 3976 . . . . . 6 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → ran 𝐴)
30442, 303fssd 6527 . . . . 5 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → :ran 𝐻𝐴)
305 dffn3 6524 . . . . . . 7 (𝐻 Fn (0...𝑁) ↔ 𝐻:(0...𝑁)⟶ran 𝐻)
30624, 305sylib 220 . . . . . 6 (𝜑𝐻:(0...𝑁)⟶ran 𝐻)
307306adantr 483 . . . . 5 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → 𝐻:(0...𝑁)⟶ran 𝐻)
308 fco 6530 . . . . 5 ((:ran 𝐻𝐴𝐻:(0...𝑁)⟶ran 𝐻) → (𝐻):(0...𝑁)⟶𝐴)
309304, 307, 308syl2anc 586 . . . 4 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → (𝐻):(0...𝑁)⟶𝐴)
310 nfcv 2977 . . . . . . . 8 𝑗
311310, 280nffn 6451 . . . . . . 7 𝑗 Fn ran 𝐻
312 nfv 1911 . . . . . . . 8 𝑗(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)
313280, 312nfralw 3225 . . . . . . 7 𝑗𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)
314311, 313nfan 1896 . . . . . 6 𝑗( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))
315279, 314nfan 1896 . . . . 5 𝑗(𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)))
316 simpll 765 . . . . . . . . . 10 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → 𝜑)
317 simpr 487 . . . . . . . . . 10 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑁))
31824ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → 𝐻 Fn (0...𝑁))
319 fvco2 6757 . . . . . . . . . . . 12 ((𝐻 Fn (0...𝑁) ∧ 𝑗 ∈ (0...𝑁)) → ((𝐻)‘𝑗) = (‘(𝐻𝑗)))
320318, 319sylancom 590 . . . . . . . . . . 11 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ((𝐻)‘𝑗) = (‘(𝐻𝑗)))
321 simplrr 776 . . . . . . . . . . . . 13 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))
322 fnfun 6452 . . . . . . . . . . . . . . . 16 (𝐻 Fn (0...𝑁) → Fun 𝐻)
32324, 322syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐻)
324323ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → Fun 𝐻)
325 fndm 6454 . . . . . . . . . . . . . . . . . 18 (𝐻 Fn (0...𝑁) → dom 𝐻 = (0...𝑁))
32624, 325syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐻 = (0...𝑁))
327326adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0...𝑁)) → dom 𝐻 = (0...𝑁))
32865, 327eleqtrrd 2916 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑗 ∈ dom 𝐻)
329328adantlr 713 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ dom 𝐻)
330 fvelrn 6843 . . . . . . . . . . . . . 14 ((Fun 𝐻𝑗 ∈ dom 𝐻) → (𝐻𝑗) ∈ ran 𝐻)
331324, 329, 330syl2anc 586 . . . . . . . . . . . . 13 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (𝐻𝑗) ∈ ran 𝐻)
332321, 331jca 514 . . . . . . . . . . . 12 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤) ∧ (𝐻𝑗) ∈ ran 𝐻))
333241adantlr 713 . . . . . . . . . . . 12 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (𝐻𝑗) ≠ ∅)
334 neeq1 3078 . . . . . . . . . . . . . 14 (𝑤 = (𝐻𝑗) → (𝑤 ≠ ∅ ↔ (𝐻𝑗) ≠ ∅))
335 fveq2 6669 . . . . . . . . . . . . . . 15 (𝑤 = (𝐻𝑗) → (𝑤) = (‘(𝐻𝑗)))
336 id 22 . . . . . . . . . . . . . . 15 (𝑤 = (𝐻𝑗) → 𝑤 = (𝐻𝑗))
337335, 336eleq12d 2907 . . . . . . . . . . . . . 14 (𝑤 = (𝐻𝑗) → ((𝑤) ∈ 𝑤 ↔ (‘(𝐻𝑗)) ∈ (𝐻𝑗)))
338334, 337imbi12d 347 . . . . . . . . . . . . 13 (𝑤 = (𝐻𝑗) → ((𝑤 ≠ ∅ → (𝑤) ∈ 𝑤) ↔ ((𝐻𝑗) ≠ ∅ → (‘(𝐻𝑗)) ∈ (𝐻𝑗))))
339338rspccva 3621 . . . . . . . . . . . 12 ((∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤) ∧ (𝐻𝑗) ∈ ran 𝐻) → ((𝐻𝑗) ≠ ∅ → (‘(𝐻𝑗)) ∈ (𝐻𝑗)))
340332, 333, 339sylc 65 . . . . . . . . . . 11 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (‘(𝐻𝑗)) ∈ (𝐻𝑗))
341320, 340eqeltrd 2913 . . . . . . . . . 10 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ((𝐻)‘𝑗) ∈ (𝐻𝑗))
342256, 260nfco 5735 . . . . . . . . . . . . 13 𝑦(𝐻)
343 nfcv 2977 . . . . . . . . . . . . 13 𝑦𝑗
344342, 343nffv 6679 . . . . . . . . . . . 12 𝑦((𝐻)‘𝑗)
345 nfv 1911 . . . . . . . . . . . . . 14 𝑦(𝜑𝑗 ∈ (0...𝑁))
346260, 343nffv 6679 . . . . . . . . . . . . . . 15 𝑦(𝐻𝑗)
347344, 346nfel 2992 . . . . . . . . . . . . . 14 𝑦((𝐻)‘𝑗) ∈ (𝐻𝑗)
348345, 347nfan 1896 . . . . . . . . . . . . 13 𝑦((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗))
349344, 3nfel 2992 . . . . . . . . . . . . 13 𝑦((𝐻)‘𝑗) ∈ 𝑌
350348, 349nfim 1893 . . . . . . . . . . . 12 𝑦(((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ((𝐻)‘𝑗) ∈ 𝑌)
351 eleq1 2900 . . . . . . . . . . . . . 14 (𝑦 = ((𝐻)‘𝑗) → (𝑦 ∈ (𝐻𝑗) ↔ ((𝐻)‘𝑗) ∈ (𝐻𝑗)))
352351anbi2d 630 . . . . . . . . . . . . 13 (𝑦 = ((𝐻)‘𝑗) → (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) ↔ ((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗))))
353 eleq1 2900 . . . . . . . . . . . . 13 (𝑦 = ((𝐻)‘𝑗) → (𝑦𝑌 ↔ ((𝐻)‘𝑗) ∈ 𝑌))
354352, 353imbi12d 347 . . . . . . . . . . . 12 (𝑦 = ((𝐻)‘𝑗) → ((((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) → 𝑦𝑌) ↔ (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ((𝐻)‘𝑗) ∈ 𝑌)))
355344, 350, 354, 292vtoclgf 3565 . . . . . . . . . . 11 (((𝐻)‘𝑗) ∈ (𝐻𝑗) → (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ((𝐻)‘𝑗) ∈ 𝑌))
356355anabsi7 669 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ((𝐻)‘𝑗) ∈ 𝑌)
357316, 317, 341, 356syl21anc 835 . . . . . . . . 9 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ((𝐻)‘𝑗) ∈ 𝑌)
3581eleq2i 2904 . . . . . . . . . 10 (((𝐻)‘𝑗) ∈ 𝑌 ↔ ((𝐻)‘𝑗) ∈ {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)})
359 nfcv 2977 . . . . . . . . . . 11 𝑦𝐴
360 nfcv 2977 . . . . . . . . . . . 12 𝑦𝑇
361 nfcv 2977 . . . . . . . . . . . . . 14 𝑦0
362 nfcv 2977 . . . . . . . . . . . . . 14 𝑦
363 nfcv 2977 . . . . . . . . . . . . . . 15 𝑦𝑡
364344, 363nffv 6679 . . . . . . . . . . . . . 14 𝑦(((𝐻)‘𝑗)‘𝑡)
365361, 362, 364nfbr 5112 . . . . . . . . . . . . 13 𝑦0 ≤ (((𝐻)‘𝑗)‘𝑡)
366 nfcv 2977 . . . . . . . . . . . . . 14 𝑦1
367364, 362, 366nfbr 5112 . . . . . . . . . . . . 13 𝑦(((𝐻)‘𝑗)‘𝑡) ≤ 1
368365, 367nfan 1896 . . . . . . . . . . . 12 𝑦(0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1)
369360, 368nfralw 3225 . . . . . . . . . . 11 𝑦𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1)
370 nfcv 2977 . . . . . . . . . . . . 13 𝑡𝑦
371 nfcv 2977 . . . . . . . . . . . . . . 15 𝑡
372 nfra1 3219 . . . . . . . . . . . . . . . . . . 19 𝑡𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁)
373 nfra1 3219 . . . . . . . . . . . . . . . . . . 19 𝑡𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡)
374372, 373nfan 1896 . . . . . . . . . . . . . . . . . 18 𝑡(∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))
375 nfra1 3219 . . . . . . . . . . . . . . . . . . . 20 𝑡𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)
376 nfcv 2977 . . . . . . . . . . . . . . . . . . . 20 𝑡𝐴
377375, 376nfrabw 3385 . . . . . . . . . . . . . . . . . . 19 𝑡{𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)}
3781, 377nfcxfr 2975 . . . . . . . . . . . . . . . . . 18 𝑡𝑌
379374, 378nfrabw 3385 . . . . . . . . . . . . . . . . 17 𝑡{𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))}
38070, 379nfmpt 5162 . . . . . . . . . . . . . . . 16 𝑡(𝑗 ∈ (0...𝑁) ↦ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
38122, 380nfcxfr 2975 . . . . . . . . . . . . . . 15 𝑡𝐻
382371, 381nfco 5735 . . . . . . . . . . . . . 14 𝑡(𝐻)
383382, 74nffv 6679 . . . . . . . . . . . . 13 𝑡((𝐻)‘𝑗)
384370, 383nfeq 2991 . . . . . . . . . . . 12 𝑡 𝑦 = ((𝐻)‘𝑗)
385 fveq1 6668 . . . . . . . . . . . . . 14 (𝑦 = ((𝐻)‘𝑗) → (𝑦𝑡) = (((𝐻)‘𝑗)‘𝑡))
386385breq2d 5077 . . . . . . . . . . . . 13 (𝑦 = ((𝐻)‘𝑗) → (0 ≤ (𝑦𝑡) ↔ 0 ≤ (((𝐻)‘𝑗)‘𝑡)))
387385breq1d 5075 . . . . . . . . . . . . 13 (𝑦 = ((𝐻)‘𝑗) → ((𝑦𝑡) ≤ 1 ↔ (((𝐻)‘𝑗)‘𝑡) ≤ 1))
388386, 387anbi12d 632 . . . . . . . . . . . 12 (𝑦 = ((𝐻)‘𝑗) → ((0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ↔ (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1)))
389384, 388ralbid 3231 . . . . . . . . . . 11 (𝑦 = ((𝐻)‘𝑗) → (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1)))
390344, 359, 369, 389elrabf 3675 . . . . . . . . . 10 (((𝐻)‘𝑗) ∈ {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} ↔ (((𝐻)‘𝑗) ∈ 𝐴 ∧ ∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1)))
391358, 390bitri 277 . . . . . . . . 9 (((𝐻)‘𝑗) ∈ 𝑌 ↔ (((𝐻)‘𝑗) ∈ 𝐴 ∧ ∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1)))
392357, 391sylib 220 . . . . . . . 8 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (((𝐻)‘𝑗) ∈ 𝐴 ∧ ∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1)))
393392simprd 498 . . . . . . 7 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1))
394 nfcv 2977 . . . . . . . . . . . 12 𝑦(𝐷𝑗)
395 nfcv 2977 . . . . . . . . . . . . 13 𝑦 <
396 nfcv 2977 . . . . . . . . . . . . 13 𝑦(𝐸 / 𝑁)
397364, 395, 396nfbr 5112 . . . . . . . . . . . 12 𝑦(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)
398394, 397nfralw 3225 . . . . . . . . . . 11 𝑦𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)
399348, 398nfim 1893 . . . . . . . . . 10 𝑦(((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁))
400385breq1d 5075 . . . . . . . . . . . 12 (𝑦 = ((𝐻)‘𝑗) → ((𝑦𝑡) < (𝐸 / 𝑁) ↔ (((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)))
401384, 400ralbid 3231 . . . . . . . . . . 11 (𝑦 = ((𝐻)‘𝑗) → (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ↔ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)))
402352, 401imbi12d 347 . . . . . . . . . 10 (𝑦 = ((𝐻)‘𝑗) → ((((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁)) ↔ (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁))))
403291simprd 498 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) → (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡)))
404403simpld 497 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁))
405344, 399, 402, 404vtoclgf 3565 . . . . . . . . 9 (((𝐻)‘𝑗) ∈ (𝐻𝑗) → (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)))
406405anabsi7 669 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁))
407316, 317, 341, 406syl21anc 835 . . . . . . 7 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁))
408 nfcv 2977 . . . . . . . . . . . 12 𝑦(𝐵𝑗)
409 nfcv 2977 . . . . . . . . . . . . 13 𝑦(1 − (𝐸 / 𝑁))
410409, 395, 364nfbr 5112 . . . . . . . . . . . 12 𝑦(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)
411408, 410nfralw 3225 . . . . . . . . . . 11 𝑦𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)
412348, 411nfim 1893 . . . . . . . . . 10 𝑦(((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡))
413385breq2d 5077 . . . . . . . . . . . 12 (𝑦 = ((𝐻)‘𝑗) → ((1 − (𝐸 / 𝑁)) < (𝑦𝑡) ↔ (1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)))
414384, 413ralbid 3231 . . . . . . . . . . 11 (𝑦 = ((𝐻)‘𝑗) → (∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡) ↔ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)))
415352, 414imbi12d 347 . . . . . . . . . 10 (𝑦 = ((𝐻)‘𝑗) → ((((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡)) ↔ (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡))))
416403simprd 498 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))
417344, 412, 415, 416vtoclgf 3565 . . . . . . . . 9 (((𝐻)‘𝑗) ∈ (𝐻𝑗) → (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)))
418417anabsi7 669 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡))
419316, 317, 341, 418syl21anc 835 . . . . . . 7 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡))
420393, 407, 4193jca 1124 . . . . . 6 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)))
421420ex 415 . . . . 5 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → (𝑗 ∈ (0...𝑁) → (∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡))))
422315, 421ralrimi 3216 . . . 4 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)))
423309, 422jca 514 . . 3 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → ((𝐻):(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡))))
424 feq1 6494 . . . . 5 (𝑥 = (𝐻) → (𝑥:(0...𝑁)⟶𝐴 ↔ (𝐻):(0...𝑁)⟶𝐴))
425 nfcv 2977 . . . . . . 7 𝑗𝑥
426310, 53nfco 5735 . . . . . . 7 𝑗(𝐻)
427425, 426nfeq 2991 . . . . . 6 𝑗 𝑥 = (𝐻)
428 nfcv 2977 . . . . . . . . 9 𝑡𝑥
429428, 382nfeq 2991 . . . . . . . 8 𝑡 𝑥 = (𝐻)
430 fveq1 6668 . . . . . . . . . . 11 (𝑥 = (𝐻) → (𝑥𝑗) = ((𝐻)‘𝑗))
431430fveq1d 6671 . . . . . . . . . 10 (𝑥 = (𝐻) → ((𝑥𝑗)‘𝑡) = (((𝐻)‘𝑗)‘𝑡))
432431breq2d 5077 . . . . . . . . 9 (𝑥 = (𝐻) → (0 ≤ ((𝑥𝑗)‘𝑡) ↔ 0 ≤ (((𝐻)‘𝑗)‘𝑡)))
433431breq1d 5075 . . . . . . . . 9 (𝑥 = (𝐻) → (((𝑥𝑗)‘𝑡) ≤ 1 ↔ (((𝐻)‘𝑗)‘𝑡) ≤ 1))
434432, 433anbi12d 632 . . . . . . . 8 (𝑥 = (𝐻) → ((0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ↔ (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1)))
435429, 434ralbid 3231 . . . . . . 7 (𝑥 = (𝐻) → (∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1)))
436431breq1d 5075 . . . . . . . 8 (𝑥 = (𝐻) → (((𝑥𝑗)‘𝑡) < (𝐸 / 𝑁) ↔ (((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)))
437429, 436ralbid 3231 . . . . . . 7 (𝑥 = (𝐻) → (∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑁) ↔ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)))
438431breq2d 5077 . . . . . . . 8 (𝑥 = (𝐻) → ((1 − (𝐸 / 𝑁)) < ((𝑥𝑗)‘𝑡) ↔ (1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)))
439429, 438ralbid 3231 . . . . . . 7 (𝑥 = (𝐻) → (∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥𝑗)‘𝑡) ↔ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)))
440435, 437, 4393anbi123d 1432 . . . . . 6 (𝑥 = (𝐻) → ((∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥𝑗)‘𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡))))
441427, 440ralbid 3231 . . . . 5 (𝑥 = (𝐻) → (∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥𝑗)‘𝑡)) ↔ ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡))))
442424, 441anbi12d 632 . . . 4 (𝑥 = (𝐻) → ((𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥𝑗)‘𝑡))) ↔ ((𝐻):(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)))))
443442spcegv 3596 . . 3 ((𝐻) ∈ V → (((𝐻):(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡))) → ∃𝑥(𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥𝑗)‘𝑡)))))
44440, 423, 443sylc 65 . 2 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → ∃𝑥(𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥𝑗)‘𝑡))))
44531, 444exlimddv 1932 1 (𝜑 → ∃𝑥(𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥𝑗)‘𝑡))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wnf 1780  wcel 2110  wnfc 2961  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  cdif 3932  cin 3934  wss 3935  c0 4290   cuni 4837   class class class wbr 5065  cmpt 5145  dom cdm 5554  ran crn 5555  ccom 5558  Fun wfun 6348   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  Fincfn 8508  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541   < clt 10674  cle 10675  cmin 10869   / cdiv 11296  cn 11637  3c3 11692  +crp 12388  (,)cioo 12737  ...cfz 12891  topGenctg 16710  Clsdccld 21623   Cn ccn 21831  Compccmp 21993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ioc 12742  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-rlim 14845  df-sum 15042  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-cn 21834  df-cnp 21835  df-cmp 21994  df-tx 22169  df-hmeo 22362  df-xms 22929  df-ms 22930  df-tms 22931
This theorem is referenced by:  stoweidlem60  42344
  Copyright terms: Public domain W3C validator