Step | Hyp | Ref
| Expression |
1 | | stoweidlem59.8 |
. . . . . . . . . 10
⊢ 𝑌 = {𝑦 ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1)} |
2 | | nfrab1 3317 |
. . . . . . . . . 10
⊢
Ⅎ𝑦{𝑦 ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1)} |
3 | 1, 2 | nfcxfr 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝑌 |
4 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑧𝑌 |
5 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑧(∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡)) |
6 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑦(∀𝑡 ∈ (𝐷‘𝑗)(𝑧‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑧‘𝑡)) |
7 | | fveq1 6773 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝑦‘𝑡) = (𝑧‘𝑡)) |
8 | 7 | breq1d 5084 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((𝑦‘𝑡) < (𝐸 / 𝑁) ↔ (𝑧‘𝑡) < (𝐸 / 𝑁))) |
9 | 8 | ralbidv 3112 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ↔ ∀𝑡 ∈ (𝐷‘𝑗)(𝑧‘𝑡) < (𝐸 / 𝑁))) |
10 | 7 | breq2d 5086 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((1 − (𝐸 / 𝑁)) < (𝑦‘𝑡) ↔ (1 − (𝐸 / 𝑁)) < (𝑧‘𝑡))) |
11 | 10 | ralbidv 3112 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡) ↔ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑧‘𝑡))) |
12 | 9, 11 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡)) ↔ (∀𝑡 ∈ (𝐷‘𝑗)(𝑧‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑧‘𝑡)))) |
13 | 3, 4, 5, 6, 12 | cbvrabw 3424 |
. . . . . . . 8
⊢ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} = {𝑧 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑧‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑧‘𝑡))} |
14 | | ovexd 7310 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐽 Cn 𝐾) ∈ V) |
15 | | stoweidlem59.11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
16 | | stoweidlem59.5 |
. . . . . . . . . . 11
⊢ 𝐶 = (𝐽 Cn 𝐾) |
17 | 15, 16 | sseqtrdi 3971 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ (𝐽 Cn 𝐾)) |
18 | 14, 17 | ssexd 5248 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ V) |
19 | 1, 18 | rabexd 5257 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ V) |
20 | 13, 19 | rabexd 5257 |
. . . . . . 7
⊢ (𝜑 → {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ∈ V) |
21 | 20 | ralrimivw 3104 |
. . . . . 6
⊢ (𝜑 → ∀𝑗 ∈ (0...𝑁){𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ∈ V) |
22 | | stoweidlem59.9 |
. . . . . . 7
⊢ 𝐻 = (𝑗 ∈ (0...𝑁) ↦ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) |
23 | 22 | fnmpt 6573 |
. . . . . 6
⊢
(∀𝑗 ∈
(0...𝑁){𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ∈ V → 𝐻 Fn (0...𝑁)) |
24 | 21, 23 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐻 Fn (0...𝑁)) |
25 | | fzfi 13692 |
. . . . 5
⊢
(0...𝑁) ∈
Fin |
26 | | fnfi 8964 |
. . . . 5
⊢ ((𝐻 Fn (0...𝑁) ∧ (0...𝑁) ∈ Fin) → 𝐻 ∈ Fin) |
27 | 24, 25, 26 | sylancl 586 |
. . . 4
⊢ (𝜑 → 𝐻 ∈ Fin) |
28 | | rnfi 9102 |
. . . 4
⊢ (𝐻 ∈ Fin → ran 𝐻 ∈ Fin) |
29 | 27, 28 | syl 17 |
. . 3
⊢ (𝜑 → ran 𝐻 ∈ Fin) |
30 | | fnchoice 42572 |
. . 3
⊢ (ran
𝐻 ∈ Fin →
∃ℎ(ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) |
31 | 29, 30 | syl 17 |
. 2
⊢ (𝜑 → ∃ℎ(ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) |
32 | | simprl 768 |
. . . . 5
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ℎ Fn ran 𝐻) |
33 | | ovex 7308 |
. . . . . . . 8
⊢
(0...𝑁) ∈
V |
34 | 33 | mptex 7099 |
. . . . . . 7
⊢ (𝑗 ∈ (0...𝑁) ↦ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) ∈ V |
35 | 22, 34 | eqeltri 2835 |
. . . . . 6
⊢ 𝐻 ∈ V |
36 | 35 | rnex 7759 |
. . . . 5
⊢ ran 𝐻 ∈ V |
37 | | fnex 7093 |
. . . . 5
⊢ ((ℎ Fn ran 𝐻 ∧ ran 𝐻 ∈ V) → ℎ ∈ V) |
38 | 32, 36, 37 | sylancl 586 |
. . . 4
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ℎ ∈ V) |
39 | | coexg 7776 |
. . . 4
⊢ ((ℎ ∈ V ∧ 𝐻 ∈ V) → (ℎ ∘ 𝐻) ∈ V) |
40 | 38, 35, 39 | sylancl 586 |
. . 3
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → (ℎ ∘ 𝐻) ∈ V) |
41 | | dffn3 6613 |
. . . . . . 7
⊢ (ℎ Fn ran 𝐻 ↔ ℎ:ran 𝐻⟶ran ℎ) |
42 | 32, 41 | sylib 217 |
. . . . . 6
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ℎ:ran 𝐻⟶ran ℎ) |
43 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑤𝜑 |
44 | | nfv 1917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑤 ℎ Fn ran 𝐻 |
45 | | nfra1 3144 |
. . . . . . . . . . 11
⊢
Ⅎ𝑤∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤) |
46 | 44, 45 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑤(ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤)) |
47 | 43, 46 | nfan 1902 |
. . . . . . . . 9
⊢
Ⅎ𝑤(𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) |
48 | | simplrr 775 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑤 ∈ ran 𝐻) → ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤)) |
49 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑤 ∈ ran 𝐻) → 𝑤 ∈ ran 𝐻) |
50 | | fvelrnb 6830 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻 Fn (0...𝑁) → (𝑤 ∈ ran 𝐻 ↔ ∃𝑎 ∈ (0...𝑁)(𝐻‘𝑎) = 𝑤)) |
51 | | nfv 1917 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑎(𝐻‘𝑗) = 𝑤 |
52 | | nfmpt1 5182 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑗(𝑗 ∈ (0...𝑁) ↦ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) |
53 | 22, 52 | nfcxfr 2905 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗𝐻 |
54 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗𝑎 |
55 | 53, 54 | nffv 6784 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗(𝐻‘𝑎) |
56 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗𝑤 |
57 | 55, 56 | nfeq 2920 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑗(𝐻‘𝑎) = 𝑤 |
58 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑎 → (𝐻‘𝑗) = (𝐻‘𝑎)) |
59 | 58 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑎 → ((𝐻‘𝑗) = 𝑤 ↔ (𝐻‘𝑎) = 𝑤)) |
60 | 51, 57, 59 | cbvrexw 3374 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑗 ∈
(0...𝑁)(𝐻‘𝑗) = 𝑤 ↔ ∃𝑎 ∈ (0...𝑁)(𝐻‘𝑎) = 𝑤) |
61 | 50, 60 | bitr4di 289 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 Fn (0...𝑁) → (𝑤 ∈ ran 𝐻 ↔ ∃𝑗 ∈ (0...𝑁)(𝐻‘𝑗) = 𝑤)) |
62 | 24, 61 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑤 ∈ ran 𝐻 ↔ ∃𝑗 ∈ (0...𝑁)(𝐻‘𝑗) = 𝑤)) |
63 | 62 | biimpa 477 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ ran 𝐻) → ∃𝑗 ∈ (0...𝑁)(𝐻‘𝑗) = 𝑤) |
64 | | simp3 1137 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁) ∧ (𝐻‘𝑗) = 𝑤) → (𝐻‘𝑗) = 𝑤) |
65 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑁)) |
66 | 20 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ∈ V) |
67 | 22 | fvmpt2 6886 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ (0...𝑁) ∧ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ∈ V) → (𝐻‘𝑗) = {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) |
68 | 65, 66, 67 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐻‘𝑗) = {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) |
69 | | stoweidlem59.6 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) |
70 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑡(0...𝑁) |
71 | | nfrab1 3317 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑡{𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} |
72 | 70, 71 | nfmpt 5181 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑡(𝑗 ∈ (0...𝑁) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) |
73 | 69, 72 | nfcxfr 2905 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑡𝐷 |
74 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑡𝑗 |
75 | 73, 74 | nffv 6784 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑡(𝐷‘𝑗) |
76 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑡𝑇 |
77 | | stoweidlem59.7 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) |
78 | | nfrab1 3317 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
Ⅎ𝑡{𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)} |
79 | 70, 78 | nfmpt 5181 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑡(𝑗 ∈ (0...𝑁) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) |
80 | 77, 79 | nfcxfr 2905 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑡𝐵 |
81 | 80, 74 | nffv 6784 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑡(𝐵‘𝑗) |
82 | 76, 81 | nfdif 4060 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑡(𝑇 ∖ (𝐵‘𝑗)) |
83 | | stoweidlem59.2 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑡𝜑 |
84 | | nfv 1917 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑡 𝑗 ∈ (0...𝑁) |
85 | 83, 84 | nfan 1902 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑡(𝜑 ∧ 𝑗 ∈ (0...𝑁)) |
86 | | stoweidlem59.3 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐾 = (topGen‘ran
(,)) |
87 | | stoweidlem59.4 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑇 = ∪
𝐽 |
88 | | stoweidlem59.10 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐽 ∈ Comp) |
89 | 88 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝐽 ∈ Comp) |
90 | 15 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝐴 ⊆ 𝐶) |
91 | | stoweidlem59.12 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
92 | 91 | 3adant1r 1176 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
93 | | stoweidlem59.13 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
94 | 93 | 3adant1r 1176 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
95 | | stoweidlem59.14 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑦) ∈ 𝐴) |
96 | 95 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑦) ∈ 𝐴) |
97 | | stoweidlem59.15 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
98 | 97 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
99 | 88 | uniexd 7595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → ∪ 𝐽
∈ V) |
100 | 87, 99 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑇 ∈ V) |
101 | 100 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝑇 ∈ V) |
102 | | rabexg 5255 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑇 ∈ V → {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)} ∈ V) |
103 | 101, 102 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)} ∈ V) |
104 | 77 | fvmpt2 6886 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑗 ∈ (0...𝑁) ∧ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)} ∈ V) → (𝐵‘𝑗) = {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) |
105 | 65, 103, 104 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐵‘𝑗) = {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) |
106 | | stoweidlem59.1 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑡𝐹 |
107 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)} = {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)} |
108 | | elfzelz 13256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ) |
109 | 108 | zred 12426 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℝ) |
110 | | 3re 12053 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 3 ∈
ℝ |
111 | | 3ne0 12079 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 3 ≠
0 |
112 | 110, 111 | rereccli 11740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (1 / 3)
∈ ℝ |
113 | | readdcl 10954 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑗 ∈ ℝ ∧ (1 / 3)
∈ ℝ) → (𝑗 +
(1 / 3)) ∈ ℝ) |
114 | 109, 112,
113 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (0...𝑁) → (𝑗 + (1 / 3)) ∈ ℝ) |
115 | 114 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑗 + (1 / 3)) ∈ ℝ) |
116 | | stoweidlem59.17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
117 | 116 | rpred 12772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐸 ∈ ℝ) |
118 | 117 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝐸 ∈ ℝ) |
119 | 115, 118 | remulcld 11005 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑗 + (1 / 3)) · 𝐸) ∈ ℝ) |
120 | | stoweidlem59.16 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐹 ∈ 𝐶) |
121 | 120, 16 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
122 | 121 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
123 | 106, 86, 87, 107, 119, 122 | rfcnpre3 42576 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)} ∈ (Clsd‘𝐽)) |
124 | 105, 123 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐵‘𝑗) ∈ (Clsd‘𝐽)) |
125 | | rabexg 5255 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑇 ∈ V → {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ V) |
126 | 101, 125 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ V) |
127 | 69 | fvmpt2 6886 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑗 ∈ (0...𝑁) ∧ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ V) → (𝐷‘𝑗) = {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) |
128 | 65, 126, 127 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐷‘𝑗) = {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) |
129 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} = {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} |
130 | | resubcl 11285 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑗 ∈ ℝ ∧ (1 / 3)
∈ ℝ) → (𝑗
− (1 / 3)) ∈ ℝ) |
131 | 109, 112,
130 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (0...𝑁) → (𝑗 − (1 / 3)) ∈
ℝ) |
132 | 131 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑗 − (1 / 3)) ∈
ℝ) |
133 | 132, 118 | remulcld 11005 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑗 − (1 / 3)) · 𝐸) ∈ ℝ) |
134 | 106, 86, 87, 129, 133, 122 | rfcnpre4 42577 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ (Clsd‘𝐽)) |
135 | 128, 134 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐷‘𝑗) ∈ (Clsd‘𝐽)) |
136 | 133 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → ((𝑗 − (1 / 3)) · 𝐸) ∈ ℝ) |
137 | 119 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → ((𝑗 + (1 / 3)) · 𝐸) ∈ ℝ) |
138 | 86, 87, 16, 120 | fcnre 42568 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
139 | 138 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → 𝐹:𝑇⟶ℝ) |
140 | | ssrab2 4013 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)} ⊆ 𝑇 |
141 | 105, 140 | eqsstrdi 3975 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐵‘𝑗) ⊆ 𝑇) |
142 | 141 | sselda 3921 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → 𝑡 ∈ 𝑇) |
143 | 139, 142 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → (𝐹‘𝑡) ∈ ℝ) |
144 | 112, 130 | mpan2 688 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑗 ∈ ℝ → (𝑗 − (1 / 3)) ∈
ℝ) |
145 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑗 ∈ ℝ → 𝑗 ∈
ℝ) |
146 | 112, 113 | mpan2 688 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑗 ∈ ℝ → (𝑗 + (1 / 3)) ∈
ℝ) |
147 | | 3pos 12078 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ 0 <
3 |
148 | 110, 147 | recgt0ii 11881 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ 0 < (1
/ 3) |
149 | 112, 148 | elrpii 12733 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (1 / 3)
∈ ℝ+ |
150 | | ltsubrp 12766 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑗 ∈ ℝ ∧ (1 / 3)
∈ ℝ+) → (𝑗 − (1 / 3)) < 𝑗) |
151 | 149, 150 | mpan2 688 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑗 ∈ ℝ → (𝑗 − (1 / 3)) < 𝑗) |
152 | | ltaddrp 12767 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑗 ∈ ℝ ∧ (1 / 3)
∈ ℝ+) → 𝑗 < (𝑗 + (1 / 3))) |
153 | 149, 152 | mpan2 688 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑗 ∈ ℝ → 𝑗 < (𝑗 + (1 / 3))) |
154 | 144, 145,
146, 151, 153 | lttrd 11136 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑗 ∈ ℝ → (𝑗 − (1 / 3)) < (𝑗 + (1 / 3))) |
155 | 109, 154 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑗 ∈ (0...𝑁) → (𝑗 − (1 / 3)) < (𝑗 + (1 / 3))) |
156 | 155 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑗 − (1 / 3)) < (𝑗 + (1 / 3))) |
157 | 116 | rpregt0d 12778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸)) |
158 | 157 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐸 ∈ ℝ ∧ 0 < 𝐸)) |
159 | | ltmul1 11825 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑗 − (1 / 3)) ∈ ℝ
∧ (𝑗 + (1 / 3)) ∈
ℝ ∧ (𝐸 ∈
ℝ ∧ 0 < 𝐸))
→ ((𝑗 − (1 / 3))
< (𝑗 + (1 / 3)) ↔
((𝑗 − (1 / 3))
· 𝐸) < ((𝑗 + (1 / 3)) · 𝐸))) |
160 | 132, 115,
158, 159 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑗 − (1 / 3)) < (𝑗 + (1 / 3)) ↔ ((𝑗 − (1 / 3)) · 𝐸) < ((𝑗 + (1 / 3)) · 𝐸))) |
161 | 156, 160 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑗 − (1 / 3)) · 𝐸) < ((𝑗 + (1 / 3)) · 𝐸)) |
162 | 161 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → ((𝑗 − (1 / 3)) · 𝐸) < ((𝑗 + (1 / 3)) · 𝐸)) |
163 | 105 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑡 ∈ (𝐵‘𝑗) ↔ 𝑡 ∈ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)})) |
164 | 163 | biimpa 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → 𝑡 ∈ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) |
165 | | rabid 3310 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑡 ∈ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)} ↔ (𝑡 ∈ 𝑇 ∧ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡))) |
166 | 164, 165 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → (𝑡 ∈ 𝑇 ∧ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡))) |
167 | 166 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)) |
168 | 136, 137,
143, 162, 167 | ltletrd 11135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → ((𝑗 − (1 / 3)) · 𝐸) < (𝐹‘𝑡)) |
169 | 136, 143 | ltnled 11122 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → (((𝑗 − (1 / 3)) · 𝐸) < (𝐹‘𝑡) ↔ ¬ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))) |
170 | 168, 169 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → ¬ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) |
171 | 170 | intnand 489 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → ¬ (𝑡 ∈ 𝑇 ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))) |
172 | | rabid 3310 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑡 ∈ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ↔ (𝑡 ∈ 𝑇 ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))) |
173 | 171, 172 | sylnibr 329 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → ¬ 𝑡 ∈ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) |
174 | 128 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → (𝐷‘𝑗) = {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) |
175 | 173, 174 | neleqtrrd 2861 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → ¬ 𝑡 ∈ (𝐷‘𝑗)) |
176 | 175 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑡 ∈ (𝐵‘𝑗) → ¬ 𝑡 ∈ (𝐷‘𝑗))) |
177 | 85, 176 | ralrimi 3141 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑡 ∈ (𝐵‘𝑗) ¬ 𝑡 ∈ (𝐷‘𝑗)) |
178 | | disj 4381 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐵‘𝑗) ∩ (𝐷‘𝑗)) = ∅ ↔ ∀𝑎 ∈ (𝐵‘𝑗) ¬ 𝑎 ∈ (𝐷‘𝑗)) |
179 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑎(𝐵‘𝑗) |
180 | 75 | nfcri 2894 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
Ⅎ𝑡 𝑎 ∈ (𝐷‘𝑗) |
181 | 180 | nfn 1860 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑡 ¬ 𝑎 ∈ (𝐷‘𝑗) |
182 | | nfv 1917 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑎 ¬ 𝑡 ∈ (𝐷‘𝑗) |
183 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 = 𝑡 → (𝑎 ∈ (𝐷‘𝑗) ↔ 𝑡 ∈ (𝐷‘𝑗))) |
184 | 183 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = 𝑡 → (¬ 𝑎 ∈ (𝐷‘𝑗) ↔ ¬ 𝑡 ∈ (𝐷‘𝑗))) |
185 | 179, 81, 181, 182, 184 | cbvralfw 3368 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∀𝑎 ∈
(𝐵‘𝑗) ¬ 𝑎 ∈ (𝐷‘𝑗) ↔ ∀𝑡 ∈ (𝐵‘𝑗) ¬ 𝑡 ∈ (𝐷‘𝑗)) |
186 | 178, 185 | bitri 274 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐵‘𝑗) ∩ (𝐷‘𝑗)) = ∅ ↔ ∀𝑡 ∈ (𝐵‘𝑗) ¬ 𝑡 ∈ (𝐷‘𝑗)) |
187 | 177, 186 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝐵‘𝑗) ∩ (𝐷‘𝑗)) = ∅) |
188 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑇 ∖ (𝐵‘𝑗)) = (𝑇 ∖ (𝐵‘𝑗)) |
189 | | stoweidlem59.19 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑁 ∈ ℕ) |
190 | 189 | nnrpd 12770 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑁 ∈
ℝ+) |
191 | 116, 190 | rpdivcld 12789 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝐸 / 𝑁) ∈
ℝ+) |
192 | 191 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐸 / 𝑁) ∈
ℝ+) |
193 | 117, 189 | nndivred 12027 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝐸 / 𝑁) ∈ ℝ) |
194 | 112 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (1 / 3) ∈
ℝ) |
195 | 189 | nnge1d 12021 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 1 ≤ 𝑁) |
196 | | 1re 10975 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 1 ∈
ℝ |
197 | | 0lt1 11497 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 0 <
1 |
198 | 196, 197 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (1 ∈
ℝ ∧ 0 < 1) |
199 | 198 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (1 ∈ ℝ ∧ 0
< 1)) |
200 | 189 | nnred 11988 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑁 ∈ ℝ) |
201 | 189 | nngt0d 12022 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 0 < 𝑁) |
202 | | lediv2 11865 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (1 ≤ 𝑁 ↔ (𝐸 / 𝑁) ≤ (𝐸 / 1))) |
203 | 199, 200,
201, 157, 202 | syl121anc 1374 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (1 ≤ 𝑁 ↔ (𝐸 / 𝑁) ≤ (𝐸 / 1))) |
204 | 195, 203 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐸 / 𝑁) ≤ (𝐸 / 1)) |
205 | 116 | rpcnd 12774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐸 ∈ ℂ) |
206 | 205 | div1d 11743 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐸 / 1) = 𝐸) |
207 | 204, 206 | breqtrd 5100 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝐸 / 𝑁) ≤ 𝐸) |
208 | | stoweidlem59.18 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐸 < (1 / 3)) |
209 | 193, 117,
194, 207, 208 | lelttrd 11133 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝐸 / 𝑁) < (1 / 3)) |
210 | 209 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐸 / 𝑁) < (1 / 3)) |
211 | 75, 82, 85, 86, 87, 16, 89, 90, 92, 94, 96, 98, 124, 135, 187, 188, 192, 210 | stoweidlem58 43599 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡))) |
212 | | df-rex 3070 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃𝑥 ∈
𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) |
213 | 211, 212 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ∃𝑥(𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) |
214 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) → 𝑥 ∈ 𝐴) |
215 | | simprr1 1220 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1)) |
216 | | fveq1 6773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 = 𝑥 → (𝑦‘𝑡) = (𝑥‘𝑡)) |
217 | 216 | breq2d 5086 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 = 𝑥 → (0 ≤ (𝑦‘𝑡) ↔ 0 ≤ (𝑥‘𝑡))) |
218 | 216 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 = 𝑥 → ((𝑦‘𝑡) ≤ 1 ↔ (𝑥‘𝑡) ≤ 1)) |
219 | 217, 218 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 = 𝑥 → ((0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ↔ (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1))) |
220 | 219 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑥 → (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1))) |
221 | 220, 1 | elrab2 3627 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ 𝑌 ↔ (𝑥 ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1))) |
222 | 214, 215,
221 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) → 𝑥 ∈ 𝑌) |
223 | | simprr2 1221 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) → ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁)) |
224 | | simprr3 1222 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) → ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)) |
225 | 223, 224 | jca 512 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) → (∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡))) |
226 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑦𝑥 |
227 | | nfv 1917 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑦(∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)) |
228 | 216 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 = 𝑥 → ((𝑦‘𝑡) < (𝐸 / 𝑁) ↔ (𝑥‘𝑡) < (𝐸 / 𝑁))) |
229 | 228 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑥 → (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ↔ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁))) |
230 | 216 | breq2d 5086 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 = 𝑥 → ((1 − (𝐸 / 𝑁)) < (𝑦‘𝑡) ↔ (1 − (𝐸 / 𝑁)) < (𝑥‘𝑡))) |
231 | 230 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑥 → (∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡) ↔ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡))) |
232 | 229, 231 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑥 → ((∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡)) ↔ (∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) |
233 | 226, 3, 227, 232 | elrabf 3620 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ↔ (𝑥 ∈ 𝑌 ∧ (∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) |
234 | 222, 225,
233 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) → 𝑥 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) |
235 | 234 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡))) → 𝑥 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))})) |
236 | 235 | eximdv 1920 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (∃𝑥(𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡))) → ∃𝑥 𝑥 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))})) |
237 | 213, 236 | mpd 15 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ∃𝑥 𝑥 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) |
238 | | ne0i 4268 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} → {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ≠ ∅) |
239 | 238 | exlimiv 1933 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑥 𝑥 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} → {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ≠ ∅) |
240 | 237, 239 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ≠ ∅) |
241 | 68, 240 | eqnetrd 3011 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐻‘𝑗) ≠ ∅) |
242 | 241 | 3adant3 1131 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁) ∧ (𝐻‘𝑗) = 𝑤) → (𝐻‘𝑗) ≠ ∅) |
243 | 64, 242 | eqnetrrd 3012 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁) ∧ (𝐻‘𝑗) = 𝑤) → 𝑤 ≠ ∅) |
244 | 243 | 3exp 1118 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑗 ∈ (0...𝑁) → ((𝐻‘𝑗) = 𝑤 → 𝑤 ≠ ∅))) |
245 | 244 | rexlimdv 3212 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (∃𝑗 ∈ (0...𝑁)(𝐻‘𝑗) = 𝑤 → 𝑤 ≠ ∅)) |
246 | 245 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ ran 𝐻) → (∃𝑗 ∈ (0...𝑁)(𝐻‘𝑗) = 𝑤 → 𝑤 ≠ ∅)) |
247 | 63, 246 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ran 𝐻) → 𝑤 ≠ ∅) |
248 | 247 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑤 ∈ ran 𝐻) → 𝑤 ≠ ∅) |
249 | | rsp 3131 |
. . . . . . . . . . 11
⊢
(∀𝑤 ∈
ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤) → (𝑤 ∈ ran 𝐻 → (𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) |
250 | 48, 49, 248, 249 | syl3c 66 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑤 ∈ ran 𝐻) → (ℎ‘𝑤) ∈ 𝑤) |
251 | 250 | ex 413 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → (𝑤 ∈ ran 𝐻 → (ℎ‘𝑤) ∈ 𝑤)) |
252 | 47, 251 | ralrimi 3141 |
. . . . . . . 8
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ∀𝑤 ∈ ran 𝐻(ℎ‘𝑤) ∈ 𝑤) |
253 | | chfnrn 6926 |
. . . . . . . 8
⊢ ((ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(ℎ‘𝑤) ∈ 𝑤) → ran ℎ ⊆ ∪ ran
𝐻) |
254 | 32, 252, 253 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ran ℎ ⊆ ∪ ran
𝐻) |
255 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝜑 |
256 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦ℎ |
257 | | nfcv 2907 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦(0...𝑁) |
258 | | nfrab1 3317 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦{𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} |
259 | 257, 258 | nfmpt 5181 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦(𝑗 ∈ (0...𝑁) ↦ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) |
260 | 22, 259 | nfcxfr 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦𝐻 |
261 | 260 | nfrn 5861 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦ran
𝐻 |
262 | 256, 261 | nffn 6532 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦 ℎ Fn ran 𝐻 |
263 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤) |
264 | 261, 263 | nfralw 3151 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤) |
265 | 262, 264 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤)) |
266 | 255, 265 | nfan 1902 |
. . . . . . . . 9
⊢
Ⅎ𝑦(𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) |
267 | 261 | nfuni 4846 |
. . . . . . . . 9
⊢
Ⅎ𝑦∪ ran 𝐻 |
268 | | fnunirn 7127 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 Fn (0...𝑁) → (𝑦 ∈ ∪ ran
𝐻 ↔ ∃𝑧 ∈ (0...𝑁)𝑦 ∈ (𝐻‘𝑧))) |
269 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗𝑧 |
270 | 53, 269 | nffv 6784 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑗(𝐻‘𝑧) |
271 | 270 | nfcri 2894 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗 𝑦 ∈ (𝐻‘𝑧) |
272 | | nfv 1917 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑧 𝑦 ∈ (𝐻‘𝑗) |
273 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑗 → (𝐻‘𝑧) = (𝐻‘𝑗)) |
274 | 273 | eleq2d 2824 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑗 → (𝑦 ∈ (𝐻‘𝑧) ↔ 𝑦 ∈ (𝐻‘𝑗))) |
275 | 271, 272,
274 | cbvrexw 3374 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑧 ∈
(0...𝑁)𝑦 ∈ (𝐻‘𝑧) ↔ ∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻‘𝑗)) |
276 | 268, 275 | bitrdi 287 |
. . . . . . . . . . . . . 14
⊢ (𝐻 Fn (0...𝑁) → (𝑦 ∈ ∪ ran
𝐻 ↔ ∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻‘𝑗))) |
277 | 24, 276 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑦 ∈ ∪ ran
𝐻 ↔ ∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻‘𝑗))) |
278 | 277 | biimpa 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ ran
𝐻) → ∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻‘𝑗)) |
279 | | nfv 1917 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗𝜑 |
280 | 53 | nfrn 5861 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗ran
𝐻 |
281 | 280 | nfuni 4846 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗∪ ran 𝐻 |
282 | 281 | nfcri 2894 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗 𝑦 ∈ ∪ ran 𝐻 |
283 | 279, 282 | nfan 1902 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗(𝜑 ∧ 𝑦 ∈ ∪ ran
𝐻) |
284 | | nfv 1917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗 𝑦 ∈ 𝑌 |
285 | | simp1l 1196 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ∪ ran
𝐻) ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑦 ∈ (𝐻‘𝑗)) → 𝜑) |
286 | | simp2 1136 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ∪ ran
𝐻) ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑦 ∈ (𝐻‘𝑗)) → 𝑗 ∈ (0...𝑁)) |
287 | | simp3 1137 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ∪ ran
𝐻) ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑦 ∈ (𝐻‘𝑗)) → 𝑦 ∈ (𝐻‘𝑗)) |
288 | 68 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑦 ∈ (𝐻‘𝑗) ↔ 𝑦 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))})) |
289 | 288 | biimpa 477 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) → 𝑦 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) |
290 | | rabid 3310 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ↔ (𝑦 ∈ 𝑌 ∧ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡)))) |
291 | 289, 290 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) → (𝑦 ∈ 𝑌 ∧ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡)))) |
292 | 291 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) → 𝑦 ∈ 𝑌) |
293 | 285, 286,
287, 292 | syl21anc 835 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ∪ ran
𝐻) ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑦 ∈ (𝐻‘𝑗)) → 𝑦 ∈ 𝑌) |
294 | 293 | 3exp 1118 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ ran
𝐻) → (𝑗 ∈ (0...𝑁) → (𝑦 ∈ (𝐻‘𝑗) → 𝑦 ∈ 𝑌))) |
295 | 283, 284,
294 | rexlimd 3250 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ ran
𝐻) → (∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻‘𝑗) → 𝑦 ∈ 𝑌)) |
296 | 278, 295 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ ran
𝐻) → 𝑦 ∈ 𝑌) |
297 | 296 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑦 ∈ ∪ ran
𝐻) → 𝑦 ∈ 𝑌) |
298 | 297 | ex 413 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → (𝑦 ∈ ∪ ran
𝐻 → 𝑦 ∈ 𝑌)) |
299 | 266, 267,
3, 298 | ssrd 3926 |
. . . . . . . 8
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ∪ ran
𝐻 ⊆ 𝑌) |
300 | | ssrab2 4013 |
. . . . . . . . 9
⊢ {𝑦 ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1)} ⊆ 𝐴 |
301 | 1, 300 | eqsstri 3955 |
. . . . . . . 8
⊢ 𝑌 ⊆ 𝐴 |
302 | 299, 301 | sstrdi 3933 |
. . . . . . 7
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ∪ ran
𝐻 ⊆ 𝐴) |
303 | 254, 302 | sstrd 3931 |
. . . . . 6
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ran ℎ ⊆ 𝐴) |
304 | 42, 303 | fssd 6618 |
. . . . 5
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ℎ:ran 𝐻⟶𝐴) |
305 | | dffn3 6613 |
. . . . . . 7
⊢ (𝐻 Fn (0...𝑁) ↔ 𝐻:(0...𝑁)⟶ran 𝐻) |
306 | 24, 305 | sylib 217 |
. . . . . 6
⊢ (𝜑 → 𝐻:(0...𝑁)⟶ran 𝐻) |
307 | 306 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → 𝐻:(0...𝑁)⟶ran 𝐻) |
308 | | fco 6624 |
. . . . 5
⊢ ((ℎ:ran 𝐻⟶𝐴 ∧ 𝐻:(0...𝑁)⟶ran 𝐻) → (ℎ ∘ 𝐻):(0...𝑁)⟶𝐴) |
309 | 304, 307,
308 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → (ℎ ∘ 𝐻):(0...𝑁)⟶𝐴) |
310 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑗ℎ |
311 | 310, 280 | nffn 6532 |
. . . . . . 7
⊢
Ⅎ𝑗 ℎ Fn ran 𝐻 |
312 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑗(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤) |
313 | 280, 312 | nfralw 3151 |
. . . . . . 7
⊢
Ⅎ𝑗∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤) |
314 | 311, 313 | nfan 1902 |
. . . . . 6
⊢
Ⅎ𝑗(ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤)) |
315 | 279, 314 | nfan 1902 |
. . . . 5
⊢
Ⅎ𝑗(𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) |
316 | | simpll 764 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → 𝜑) |
317 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑁)) |
318 | 24 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → 𝐻 Fn (0...𝑁)) |
319 | | fvco2 6865 |
. . . . . . . . . . . 12
⊢ ((𝐻 Fn (0...𝑁) ∧ 𝑗 ∈ (0...𝑁)) → ((ℎ ∘ 𝐻)‘𝑗) = (ℎ‘(𝐻‘𝑗))) |
320 | 318, 319 | sylancom 588 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ((ℎ ∘ 𝐻)‘𝑗) = (ℎ‘(𝐻‘𝑗))) |
321 | | simplrr 775 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤)) |
322 | | fnfun 6533 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻 Fn (0...𝑁) → Fun 𝐻) |
323 | 24, 322 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → Fun 𝐻) |
324 | 323 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → Fun 𝐻) |
325 | 24 | fndmd 6538 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → dom 𝐻 = (0...𝑁)) |
326 | 325 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → dom 𝐻 = (0...𝑁)) |
327 | 65, 326 | eleqtrrd 2842 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ dom 𝐻) |
328 | 327 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ dom 𝐻) |
329 | | fvelrn 6954 |
. . . . . . . . . . . . . 14
⊢ ((Fun
𝐻 ∧ 𝑗 ∈ dom 𝐻) → (𝐻‘𝑗) ∈ ran 𝐻) |
330 | 324, 328,
329 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (𝐻‘𝑗) ∈ ran 𝐻) |
331 | 321, 330 | jca 512 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤) ∧ (𝐻‘𝑗) ∈ ran 𝐻)) |
332 | 241 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (𝐻‘𝑗) ≠ ∅) |
333 | | neeq1 3006 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝐻‘𝑗) → (𝑤 ≠ ∅ ↔ (𝐻‘𝑗) ≠ ∅)) |
334 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝐻‘𝑗) → (ℎ‘𝑤) = (ℎ‘(𝐻‘𝑗))) |
335 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝐻‘𝑗) → 𝑤 = (𝐻‘𝑗)) |
336 | 334, 335 | eleq12d 2833 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝐻‘𝑗) → ((ℎ‘𝑤) ∈ 𝑤 ↔ (ℎ‘(𝐻‘𝑗)) ∈ (𝐻‘𝑗))) |
337 | 333, 336 | imbi12d 345 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝐻‘𝑗) → ((𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤) ↔ ((𝐻‘𝑗) ≠ ∅ → (ℎ‘(𝐻‘𝑗)) ∈ (𝐻‘𝑗)))) |
338 | 337 | rspccva 3560 |
. . . . . . . . . . . 12
⊢
((∀𝑤 ∈
ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤) ∧ (𝐻‘𝑗) ∈ ran 𝐻) → ((𝐻‘𝑗) ≠ ∅ → (ℎ‘(𝐻‘𝑗)) ∈ (𝐻‘𝑗))) |
339 | 331, 332,
338 | sylc 65 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (ℎ‘(𝐻‘𝑗)) ∈ (𝐻‘𝑗)) |
340 | 320, 339 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) |
341 | 256, 260 | nfco 5774 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(ℎ ∘ 𝐻) |
342 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦𝑗 |
343 | 341, 342 | nffv 6784 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦((ℎ ∘ 𝐻)‘𝑗) |
344 | | nfv 1917 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦(𝜑 ∧ 𝑗 ∈ (0...𝑁)) |
345 | 260, 342 | nffv 6784 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦(𝐻‘𝑗) |
346 | 343, 345 | nfel 2921 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗) |
347 | 344, 346 | nfan 1902 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) |
348 | 343, 3 | nfel 2921 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦((ℎ ∘ 𝐻)‘𝑗) ∈ 𝑌 |
349 | 347, 348 | nfim 1899 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ((ℎ ∘ 𝐻)‘𝑗) ∈ 𝑌) |
350 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → (𝑦 ∈ (𝐻‘𝑗) ↔ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗))) |
351 | 350 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) ↔ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)))) |
352 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → (𝑦 ∈ 𝑌 ↔ ((ℎ ∘ 𝐻)‘𝑗) ∈ 𝑌)) |
353 | 351, 352 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → ((((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) → 𝑦 ∈ 𝑌) ↔ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ((ℎ ∘ 𝐻)‘𝑗) ∈ 𝑌))) |
354 | 343, 349,
353, 292 | vtoclgf 3503 |
. . . . . . . . . . 11
⊢ (((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ((ℎ ∘ 𝐻)‘𝑗) ∈ 𝑌)) |
355 | 354 | anabsi7 668 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ((ℎ ∘ 𝐻)‘𝑗) ∈ 𝑌) |
356 | 316, 317,
340, 355 | syl21anc 835 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ((ℎ ∘ 𝐻)‘𝑗) ∈ 𝑌) |
357 | 1 | eleq2i 2830 |
. . . . . . . . . 10
⊢ (((ℎ ∘ 𝐻)‘𝑗) ∈ 𝑌 ↔ ((ℎ ∘ 𝐻)‘𝑗) ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1)}) |
358 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦𝐴 |
359 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦𝑇 |
360 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦0 |
361 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦
≤ |
362 | | nfcv 2907 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦𝑡 |
363 | 343, 362 | nffv 6784 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) |
364 | 360, 361,
363 | nfbr 5121 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦0 ≤
(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) |
365 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦1 |
366 | 363, 361,
365 | nfbr 5121 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1 |
367 | 364, 366 | nfan 1902 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(0 ≤
(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) |
368 | 359, 367 | nfralw 3151 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) |
369 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡𝑦 |
370 | | nfcv 2907 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑡ℎ |
371 | | nfra1 3144 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) |
372 | | nfra1 3144 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡) |
373 | 371, 372 | nfan 1902 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑡(∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡)) |
374 | | nfra1 3144 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) |
375 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡𝐴 |
376 | 374, 375 | nfrabw 3318 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡{𝑦 ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1)} |
377 | 1, 376 | nfcxfr 2905 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑡𝑌 |
378 | 373, 377 | nfrabw 3318 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡{𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} |
379 | 70, 378 | nfmpt 5181 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑡(𝑗 ∈ (0...𝑁) ↦ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) |
380 | 22, 379 | nfcxfr 2905 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑡𝐻 |
381 | 370, 380 | nfco 5774 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡(ℎ ∘ 𝐻) |
382 | 381, 74 | nffv 6784 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡((ℎ ∘ 𝐻)‘𝑗) |
383 | 369, 382 | nfeq 2920 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡 𝑦 = ((ℎ ∘ 𝐻)‘𝑗) |
384 | | fveq1 6773 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → (𝑦‘𝑡) = (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)) |
385 | 384 | breq2d 5086 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → (0 ≤ (𝑦‘𝑡) ↔ 0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) |
386 | 384 | breq1d 5084 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → ((𝑦‘𝑡) ≤ 1 ↔ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1)) |
387 | 385, 386 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → ((0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ↔ (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1))) |
388 | 383, 387 | ralbid 3161 |
. . . . . . . . . . 11
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1))) |
389 | 343, 358,
368, 388 | elrabf 3620 |
. . . . . . . . . 10
⊢ (((ℎ ∘ 𝐻)‘𝑗) ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1)} ↔ (((ℎ ∘ 𝐻)‘𝑗) ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1))) |
390 | 357, 389 | bitri 274 |
. . . . . . . . 9
⊢ (((ℎ ∘ 𝐻)‘𝑗) ∈ 𝑌 ↔ (((ℎ ∘ 𝐻)‘𝑗) ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1))) |
391 | 356, 390 | sylib 217 |
. . . . . . . 8
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (((ℎ ∘ 𝐻)‘𝑗) ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1))) |
392 | 391 | simprd 496 |
. . . . . . 7
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1)) |
393 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(𝐷‘𝑗) |
394 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦
< |
395 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(𝐸 / 𝑁) |
396 | 363, 394,
395 | nfbr 5121 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) |
397 | 393, 396 | nfralw 3151 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) |
398 | 347, 397 | nfim 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)) |
399 | 384 | breq1d 5084 |
. . . . . . . . . . . 12
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → ((𝑦‘𝑡) < (𝐸 / 𝑁) ↔ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁))) |
400 | 383, 399 | ralbid 3161 |
. . . . . . . . . . 11
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ↔ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁))) |
401 | 351, 400 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → ((((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁)) ↔ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)))) |
402 | 291 | simprd 496 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) → (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))) |
403 | 402 | simpld 495 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁)) |
404 | 343, 398,
401, 403 | vtoclgf 3503 |
. . . . . . . . 9
⊢ (((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁))) |
405 | 404 | anabsi7 668 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)) |
406 | 316, 317,
340, 405 | syl21anc 835 |
. . . . . . 7
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)) |
407 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(𝐵‘𝑗) |
408 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(1
− (𝐸 / 𝑁)) |
409 | 408, 394,
363 | nfbr 5121 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(1 −
(𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) |
410 | 407, 409 | nfralw 3151 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) |
411 | 347, 410 | nfim 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)) |
412 | 384 | breq2d 5086 |
. . . . . . . . . . . 12
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → ((1 − (𝐸 / 𝑁)) < (𝑦‘𝑡) ↔ (1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) |
413 | 383, 412 | ralbid 3161 |
. . . . . . . . . . 11
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → (∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡) ↔ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) |
414 | 351, 413 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → ((((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡)) ↔ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)))) |
415 | 402 | simprd 496 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡)) |
416 | 343, 411,
414, 415 | vtoclgf 3503 |
. . . . . . . . 9
⊢ (((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) |
417 | 416 | anabsi7 668 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)) |
418 | 316, 317,
340, 417 | syl21anc 835 |
. . . . . . 7
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)) |
419 | 392, 406,
418 | 3jca 1127 |
. . . . . 6
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) |
420 | 419 | ex 413 |
. . . . 5
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → (𝑗 ∈ (0...𝑁) → (∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)))) |
421 | 315, 420 | ralrimi 3141 |
. . . 4
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) |
422 | 309, 421 | jca 512 |
. . 3
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ((ℎ ∘ 𝐻):(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)))) |
423 | | feq1 6581 |
. . . . 5
⊢ (𝑥 = (ℎ ∘ 𝐻) → (𝑥:(0...𝑁)⟶𝐴 ↔ (ℎ ∘ 𝐻):(0...𝑁)⟶𝐴)) |
424 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑗𝑥 |
425 | 310, 53 | nfco 5774 |
. . . . . . 7
⊢
Ⅎ𝑗(ℎ ∘ 𝐻) |
426 | 424, 425 | nfeq 2920 |
. . . . . 6
⊢
Ⅎ𝑗 𝑥 = (ℎ ∘ 𝐻) |
427 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑡𝑥 |
428 | 427, 381 | nfeq 2920 |
. . . . . . . 8
⊢
Ⅎ𝑡 𝑥 = (ℎ ∘ 𝐻) |
429 | | fveq1 6773 |
. . . . . . . . . . 11
⊢ (𝑥 = (ℎ ∘ 𝐻) → (𝑥‘𝑗) = ((ℎ ∘ 𝐻)‘𝑗)) |
430 | 429 | fveq1d 6776 |
. . . . . . . . . 10
⊢ (𝑥 = (ℎ ∘ 𝐻) → ((𝑥‘𝑗)‘𝑡) = (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)) |
431 | 430 | breq2d 5086 |
. . . . . . . . 9
⊢ (𝑥 = (ℎ ∘ 𝐻) → (0 ≤ ((𝑥‘𝑗)‘𝑡) ↔ 0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) |
432 | 430 | breq1d 5084 |
. . . . . . . . 9
⊢ (𝑥 = (ℎ ∘ 𝐻) → (((𝑥‘𝑗)‘𝑡) ≤ 1 ↔ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1)) |
433 | 431, 432 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑥 = (ℎ ∘ 𝐻) → ((0 ≤ ((𝑥‘𝑗)‘𝑡) ∧ ((𝑥‘𝑗)‘𝑡) ≤ 1) ↔ (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1))) |
434 | 428, 433 | ralbid 3161 |
. . . . . . 7
⊢ (𝑥 = (ℎ ∘ 𝐻) → (∀𝑡 ∈ 𝑇 (0 ≤ ((𝑥‘𝑗)‘𝑡) ∧ ((𝑥‘𝑗)‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1))) |
435 | 430 | breq1d 5084 |
. . . . . . . 8
⊢ (𝑥 = (ℎ ∘ 𝐻) → (((𝑥‘𝑗)‘𝑡) < (𝐸 / 𝑁) ↔ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁))) |
436 | 428, 435 | ralbid 3161 |
. . . . . . 7
⊢ (𝑥 = (ℎ ∘ 𝐻) → (∀𝑡 ∈ (𝐷‘𝑗)((𝑥‘𝑗)‘𝑡) < (𝐸 / 𝑁) ↔ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁))) |
437 | 430 | breq2d 5086 |
. . . . . . . 8
⊢ (𝑥 = (ℎ ∘ 𝐻) → ((1 − (𝐸 / 𝑁)) < ((𝑥‘𝑗)‘𝑡) ↔ (1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) |
438 | 428, 437 | ralbid 3161 |
. . . . . . 7
⊢ (𝑥 = (ℎ ∘ 𝐻) → (∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥‘𝑗)‘𝑡) ↔ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) |
439 | 434, 436,
438 | 3anbi123d 1435 |
. . . . . 6
⊢ (𝑥 = (ℎ ∘ 𝐻) → ((∀𝑡 ∈ 𝑇 (0 ≤ ((𝑥‘𝑗)‘𝑡) ∧ ((𝑥‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)((𝑥‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥‘𝑗)‘𝑡)) ↔ (∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)))) |
440 | 426, 439 | ralbid 3161 |
. . . . 5
⊢ (𝑥 = (ℎ ∘ 𝐻) → (∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ ((𝑥‘𝑗)‘𝑡) ∧ ((𝑥‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)((𝑥‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥‘𝑗)‘𝑡)) ↔ ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)))) |
441 | 423, 440 | anbi12d 631 |
. . . 4
⊢ (𝑥 = (ℎ ∘ 𝐻) → ((𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ ((𝑥‘𝑗)‘𝑡) ∧ ((𝑥‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)((𝑥‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥‘𝑗)‘𝑡))) ↔ ((ℎ ∘ 𝐻):(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))))) |
442 | 441 | spcegv 3536 |
. . 3
⊢ ((ℎ ∘ 𝐻) ∈ V → (((ℎ ∘ 𝐻):(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) → ∃𝑥(𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ ((𝑥‘𝑗)‘𝑡) ∧ ((𝑥‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)((𝑥‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥‘𝑗)‘𝑡))))) |
443 | 40, 422, 442 | sylc 65 |
. 2
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ∃𝑥(𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ ((𝑥‘𝑗)‘𝑡) ∧ ((𝑥‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)((𝑥‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥‘𝑗)‘𝑡)))) |
444 | 31, 443 | exlimddv 1938 |
1
⊢ (𝜑 → ∃𝑥(𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ ((𝑥‘𝑗)‘𝑡) ∧ ((𝑥‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)((𝑥‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥‘𝑗)‘𝑡)))) |