Step | Hyp | Ref
| Expression |
1 | | stoweidlem59.8 |
. . . . . . . . . 10
⊢ 𝑌 = {𝑦 ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1)} |
2 | | nfrab1 3344 |
. . . . . . . . . 10
⊢
Ⅎ𝑦{𝑦 ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1)} |
3 | 1, 2 | nfcxfr 2947 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝑌 |
4 | | nfcv 2949 |
. . . . . . . . 9
⊢
Ⅎ𝑧𝑌 |
5 | | nfv 1892 |
. . . . . . . . 9
⊢
Ⅎ𝑧(∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡)) |
6 | | nfv 1892 |
. . . . . . . . 9
⊢
Ⅎ𝑦(∀𝑡 ∈ (𝐷‘𝑗)(𝑧‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑧‘𝑡)) |
7 | | fveq1 6542 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝑦‘𝑡) = (𝑧‘𝑡)) |
8 | 7 | breq1d 4976 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((𝑦‘𝑡) < (𝐸 / 𝑁) ↔ (𝑧‘𝑡) < (𝐸 / 𝑁))) |
9 | 8 | ralbidv 3164 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ↔ ∀𝑡 ∈ (𝐷‘𝑗)(𝑧‘𝑡) < (𝐸 / 𝑁))) |
10 | 7 | breq2d 4978 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((1 − (𝐸 / 𝑁)) < (𝑦‘𝑡) ↔ (1 − (𝐸 / 𝑁)) < (𝑧‘𝑡))) |
11 | 10 | ralbidv 3164 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡) ↔ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑧‘𝑡))) |
12 | 9, 11 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡)) ↔ (∀𝑡 ∈ (𝐷‘𝑗)(𝑧‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑧‘𝑡)))) |
13 | 3, 4, 5, 6, 12 | cbvrab 3433 |
. . . . . . . 8
⊢ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} = {𝑧 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑧‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑧‘𝑡))} |
14 | | ovexd 7055 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐽 Cn 𝐾) ∈ V) |
15 | | stoweidlem59.11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
16 | | stoweidlem59.5 |
. . . . . . . . . . 11
⊢ 𝐶 = (𝐽 Cn 𝐾) |
17 | 15, 16 | syl6sseq 3942 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ (𝐽 Cn 𝐾)) |
18 | 14, 17 | ssexd 5124 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ V) |
19 | 1, 18 | rabexd 5132 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ V) |
20 | 13, 19 | rabexd 5132 |
. . . . . . 7
⊢ (𝜑 → {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ∈ V) |
21 | 20 | ralrimivw 3150 |
. . . . . 6
⊢ (𝜑 → ∀𝑗 ∈ (0...𝑁){𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ∈ V) |
22 | | stoweidlem59.9 |
. . . . . . 7
⊢ 𝐻 = (𝑗 ∈ (0...𝑁) ↦ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) |
23 | 22 | fnmpt 6361 |
. . . . . 6
⊢
(∀𝑗 ∈
(0...𝑁){𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ∈ V → 𝐻 Fn (0...𝑁)) |
24 | 21, 23 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐻 Fn (0...𝑁)) |
25 | | fzfi 13195 |
. . . . 5
⊢
(0...𝑁) ∈
Fin |
26 | | fnfi 8647 |
. . . . 5
⊢ ((𝐻 Fn (0...𝑁) ∧ (0...𝑁) ∈ Fin) → 𝐻 ∈ Fin) |
27 | 24, 25, 26 | sylancl 586 |
. . . 4
⊢ (𝜑 → 𝐻 ∈ Fin) |
28 | | rnfi 8658 |
. . . 4
⊢ (𝐻 ∈ Fin → ran 𝐻 ∈ Fin) |
29 | 27, 28 | syl 17 |
. . 3
⊢ (𝜑 → ran 𝐻 ∈ Fin) |
30 | | fnchoice 40850 |
. . 3
⊢ (ran
𝐻 ∈ Fin →
∃ℎ(ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) |
31 | 29, 30 | syl 17 |
. 2
⊢ (𝜑 → ∃ℎ(ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) |
32 | | simprl 767 |
. . . . 5
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ℎ Fn ran 𝐻) |
33 | | ovex 7053 |
. . . . . . . 8
⊢
(0...𝑁) ∈
V |
34 | 33 | mptex 6857 |
. . . . . . 7
⊢ (𝑗 ∈ (0...𝑁) ↦ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) ∈ V |
35 | 22, 34 | eqeltri 2879 |
. . . . . 6
⊢ 𝐻 ∈ V |
36 | 35 | rnex 7478 |
. . . . 5
⊢ ran 𝐻 ∈ V |
37 | | fnex 6851 |
. . . . 5
⊢ ((ℎ Fn ran 𝐻 ∧ ran 𝐻 ∈ V) → ℎ ∈ V) |
38 | 32, 36, 37 | sylancl 586 |
. . . 4
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ℎ ∈ V) |
39 | | coexg 7495 |
. . . 4
⊢ ((ℎ ∈ V ∧ 𝐻 ∈ V) → (ℎ ∘ 𝐻) ∈ V) |
40 | 38, 35, 39 | sylancl 586 |
. . 3
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → (ℎ ∘ 𝐻) ∈ V) |
41 | | dffn3 6398 |
. . . . . . 7
⊢ (ℎ Fn ran 𝐻 ↔ ℎ:ran 𝐻⟶ran ℎ) |
42 | 32, 41 | sylib 219 |
. . . . . 6
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ℎ:ran 𝐻⟶ran ℎ) |
43 | | nfv 1892 |
. . . . . . . . . 10
⊢
Ⅎ𝑤𝜑 |
44 | | nfv 1892 |
. . . . . . . . . . 11
⊢
Ⅎ𝑤 ℎ Fn ran 𝐻 |
45 | | nfra1 3186 |
. . . . . . . . . . 11
⊢
Ⅎ𝑤∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤) |
46 | 44, 45 | nfan 1881 |
. . . . . . . . . 10
⊢
Ⅎ𝑤(ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤)) |
47 | 43, 46 | nfan 1881 |
. . . . . . . . 9
⊢
Ⅎ𝑤(𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) |
48 | | simplrr 774 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑤 ∈ ran 𝐻) → ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤)) |
49 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑤 ∈ ran 𝐻) → 𝑤 ∈ ran 𝐻) |
50 | | fvelrnb 6599 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻 Fn (0...𝑁) → (𝑤 ∈ ran 𝐻 ↔ ∃𝑎 ∈ (0...𝑁)(𝐻‘𝑎) = 𝑤)) |
51 | | nfv 1892 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑎(𝐻‘𝑗) = 𝑤 |
52 | | nfmpt1 5063 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑗(𝑗 ∈ (0...𝑁) ↦ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) |
53 | 22, 52 | nfcxfr 2947 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗𝐻 |
54 | | nfcv 2949 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗𝑎 |
55 | 53, 54 | nffv 6553 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗(𝐻‘𝑎) |
56 | | nfcv 2949 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗𝑤 |
57 | 55, 56 | nfeq 2960 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑗(𝐻‘𝑎) = 𝑤 |
58 | | fveq2 6543 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑎 → (𝐻‘𝑗) = (𝐻‘𝑎)) |
59 | 58 | eqeq1d 2797 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑎 → ((𝐻‘𝑗) = 𝑤 ↔ (𝐻‘𝑎) = 𝑤)) |
60 | 51, 57, 59 | cbvrex 3400 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑗 ∈
(0...𝑁)(𝐻‘𝑗) = 𝑤 ↔ ∃𝑎 ∈ (0...𝑁)(𝐻‘𝑎) = 𝑤) |
61 | 50, 60 | syl6bbr 290 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 Fn (0...𝑁) → (𝑤 ∈ ran 𝐻 ↔ ∃𝑗 ∈ (0...𝑁)(𝐻‘𝑗) = 𝑤)) |
62 | 24, 61 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑤 ∈ ran 𝐻 ↔ ∃𝑗 ∈ (0...𝑁)(𝐻‘𝑗) = 𝑤)) |
63 | 62 | biimpa 477 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ ran 𝐻) → ∃𝑗 ∈ (0...𝑁)(𝐻‘𝑗) = 𝑤) |
64 | | simp3 1131 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁) ∧ (𝐻‘𝑗) = 𝑤) → (𝐻‘𝑗) = 𝑤) |
65 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑁)) |
66 | 20 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ∈ V) |
67 | 22 | fvmpt2 6650 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ (0...𝑁) ∧ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ∈ V) → (𝐻‘𝑗) = {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) |
68 | 65, 66, 67 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐻‘𝑗) = {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) |
69 | | stoweidlem59.6 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) |
70 | | nfcv 2949 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑡(0...𝑁) |
71 | | nfrab1 3344 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑡{𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} |
72 | 70, 71 | nfmpt 5062 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑡(𝑗 ∈ (0...𝑁) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) |
73 | 69, 72 | nfcxfr 2947 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑡𝐷 |
74 | | nfcv 2949 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑡𝑗 |
75 | 73, 74 | nffv 6553 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑡(𝐷‘𝑗) |
76 | | nfcv 2949 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑡𝑇 |
77 | | stoweidlem59.7 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) |
78 | | nfrab1 3344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
Ⅎ𝑡{𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)} |
79 | 70, 78 | nfmpt 5062 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑡(𝑗 ∈ (0...𝑁) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) |
80 | 77, 79 | nfcxfr 2947 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑡𝐵 |
81 | 80, 74 | nffv 6553 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑡(𝐵‘𝑗) |
82 | 76, 81 | nfdif 4027 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑡(𝑇 ∖ (𝐵‘𝑗)) |
83 | | stoweidlem59.2 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑡𝜑 |
84 | | nfv 1892 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑡 𝑗 ∈ (0...𝑁) |
85 | 83, 84 | nfan 1881 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑡(𝜑 ∧ 𝑗 ∈ (0...𝑁)) |
86 | | stoweidlem59.3 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐾 = (topGen‘ran
(,)) |
87 | | stoweidlem59.4 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑇 = ∪
𝐽 |
88 | | stoweidlem59.10 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐽 ∈ Comp) |
89 | 88 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝐽 ∈ Comp) |
90 | 15 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝐴 ⊆ 𝐶) |
91 | | stoweidlem59.12 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
92 | 91 | 3adant1r 1170 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
93 | | stoweidlem59.13 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
94 | 93 | 3adant1r 1170 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
95 | | stoweidlem59.14 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑦) ∈ 𝐴) |
96 | 95 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑦) ∈ 𝐴) |
97 | | stoweidlem59.15 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
98 | 97 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
99 | | uniexg 7330 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐽 ∈ Comp → ∪ 𝐽
∈ V) |
100 | 88, 99 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → ∪ 𝐽
∈ V) |
101 | 87, 100 | syl5eqel 2887 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑇 ∈ V) |
102 | 101 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝑇 ∈ V) |
103 | | rabexg 5130 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑇 ∈ V → {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)} ∈ V) |
104 | 102, 103 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)} ∈ V) |
105 | 77 | fvmpt2 6650 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑗 ∈ (0...𝑁) ∧ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)} ∈ V) → (𝐵‘𝑗) = {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) |
106 | 65, 104, 105 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐵‘𝑗) = {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) |
107 | | stoweidlem59.1 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑡𝐹 |
108 | | eqid 2795 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)} = {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)} |
109 | | elfzelz 12763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ) |
110 | 109 | zred 11941 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℝ) |
111 | | 3re 11570 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 3 ∈
ℝ |
112 | | 3ne0 11596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 3 ≠
0 |
113 | 111, 112 | rereccli 11258 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (1 / 3)
∈ ℝ |
114 | | readdcl 10471 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑗 ∈ ℝ ∧ (1 / 3)
∈ ℝ) → (𝑗 +
(1 / 3)) ∈ ℝ) |
115 | 110, 113,
114 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (0...𝑁) → (𝑗 + (1 / 3)) ∈ ℝ) |
116 | 115 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑗 + (1 / 3)) ∈ ℝ) |
117 | | stoweidlem59.17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
118 | 117 | rpred 12286 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐸 ∈ ℝ) |
119 | 118 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝐸 ∈ ℝ) |
120 | 116, 119 | remulcld 10522 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑗 + (1 / 3)) · 𝐸) ∈ ℝ) |
121 | | stoweidlem59.16 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐹 ∈ 𝐶) |
122 | 121, 16 | syl6eleq 2893 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
123 | 122 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
124 | 107, 86, 87, 108, 120, 123 | rfcnpre3 40854 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)} ∈ (Clsd‘𝐽)) |
125 | 106, 124 | eqeltrd 2883 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐵‘𝑗) ∈ (Clsd‘𝐽)) |
126 | | rabexg 5130 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑇 ∈ V → {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ V) |
127 | 102, 126 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ V) |
128 | 69 | fvmpt2 6650 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑗 ∈ (0...𝑁) ∧ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ V) → (𝐷‘𝑗) = {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) |
129 | 65, 127, 128 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐷‘𝑗) = {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) |
130 | | eqid 2795 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} = {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} |
131 | | resubcl 10803 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑗 ∈ ℝ ∧ (1 / 3)
∈ ℝ) → (𝑗
− (1 / 3)) ∈ ℝ) |
132 | 110, 113,
131 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (0...𝑁) → (𝑗 − (1 / 3)) ∈
ℝ) |
133 | 132 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑗 − (1 / 3)) ∈
ℝ) |
134 | 133, 119 | remulcld 10522 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑗 − (1 / 3)) · 𝐸) ∈ ℝ) |
135 | 107, 86, 87, 130, 134, 123 | rfcnpre4 40855 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ (Clsd‘𝐽)) |
136 | 129, 135 | eqeltrd 2883 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐷‘𝑗) ∈ (Clsd‘𝐽)) |
137 | 134 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → ((𝑗 − (1 / 3)) · 𝐸) ∈ ℝ) |
138 | 120 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → ((𝑗 + (1 / 3)) · 𝐸) ∈ ℝ) |
139 | 86, 87, 16, 121 | fcnre 40846 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
140 | 139 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → 𝐹:𝑇⟶ℝ) |
141 | | ssrab2 3981 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)} ⊆ 𝑇 |
142 | 106, 141 | syl6eqss 3946 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐵‘𝑗) ⊆ 𝑇) |
143 | 142 | sselda 3893 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → 𝑡 ∈ 𝑇) |
144 | 140, 143 | ffvelrnd 6722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → (𝐹‘𝑡) ∈ ℝ) |
145 | 113, 131 | mpan2 687 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑗 ∈ ℝ → (𝑗 − (1 / 3)) ∈
ℝ) |
146 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑗 ∈ ℝ → 𝑗 ∈
ℝ) |
147 | 113, 114 | mpan2 687 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑗 ∈ ℝ → (𝑗 + (1 / 3)) ∈
ℝ) |
148 | | 3pos 11595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ 0 <
3 |
149 | 111, 148 | recgt0ii 11399 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ 0 < (1
/ 3) |
150 | 113, 149 | elrpii 12247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (1 / 3)
∈ ℝ+ |
151 | | ltsubrp 12280 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑗 ∈ ℝ ∧ (1 / 3)
∈ ℝ+) → (𝑗 − (1 / 3)) < 𝑗) |
152 | 150, 151 | mpan2 687 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑗 ∈ ℝ → (𝑗 − (1 / 3)) < 𝑗) |
153 | | ltaddrp 12281 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑗 ∈ ℝ ∧ (1 / 3)
∈ ℝ+) → 𝑗 < (𝑗 + (1 / 3))) |
154 | 150, 153 | mpan2 687 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑗 ∈ ℝ → 𝑗 < (𝑗 + (1 / 3))) |
155 | 145, 146,
147, 152, 154 | lttrd 10653 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑗 ∈ ℝ → (𝑗 − (1 / 3)) < (𝑗 + (1 / 3))) |
156 | 110, 155 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑗 ∈ (0...𝑁) → (𝑗 − (1 / 3)) < (𝑗 + (1 / 3))) |
157 | 156 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑗 − (1 / 3)) < (𝑗 + (1 / 3))) |
158 | 117 | rpregt0d 12292 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸)) |
159 | 158 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐸 ∈ ℝ ∧ 0 < 𝐸)) |
160 | | ltmul1 11343 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑗 − (1 / 3)) ∈ ℝ
∧ (𝑗 + (1 / 3)) ∈
ℝ ∧ (𝐸 ∈
ℝ ∧ 0 < 𝐸))
→ ((𝑗 − (1 / 3))
< (𝑗 + (1 / 3)) ↔
((𝑗 − (1 / 3))
· 𝐸) < ((𝑗 + (1 / 3)) · 𝐸))) |
161 | 133, 116,
159, 160 | syl3anc 1364 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑗 − (1 / 3)) < (𝑗 + (1 / 3)) ↔ ((𝑗 − (1 / 3)) · 𝐸) < ((𝑗 + (1 / 3)) · 𝐸))) |
162 | 157, 161 | mpbid 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑗 − (1 / 3)) · 𝐸) < ((𝑗 + (1 / 3)) · 𝐸)) |
163 | 162 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → ((𝑗 − (1 / 3)) · 𝐸) < ((𝑗 + (1 / 3)) · 𝐸)) |
164 | 106 | eleq2d 2868 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑡 ∈ (𝐵‘𝑗) ↔ 𝑡 ∈ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)})) |
165 | 164 | biimpa 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → 𝑡 ∈ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) |
166 | | rabid 3337 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑡 ∈ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)} ↔ (𝑡 ∈ 𝑇 ∧ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡))) |
167 | 165, 166 | sylib 219 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → (𝑡 ∈ 𝑇 ∧ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡))) |
168 | 167 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)) |
169 | 137, 138,
144, 163, 168 | ltletrd 10652 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → ((𝑗 − (1 / 3)) · 𝐸) < (𝐹‘𝑡)) |
170 | 137, 144 | ltnled 10639 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → (((𝑗 − (1 / 3)) · 𝐸) < (𝐹‘𝑡) ↔ ¬ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))) |
171 | 169, 170 | mpbid 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → ¬ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) |
172 | 171 | intnand 489 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → ¬ (𝑡 ∈ 𝑇 ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))) |
173 | | rabid 3337 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑡 ∈ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ↔ (𝑡 ∈ 𝑇 ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))) |
174 | 172, 173 | sylnibr 330 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → ¬ 𝑡 ∈ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) |
175 | 129 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → (𝐷‘𝑗) = {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) |
176 | 174, 175 | neleqtrrd 2905 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵‘𝑗)) → ¬ 𝑡 ∈ (𝐷‘𝑗)) |
177 | 176 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑡 ∈ (𝐵‘𝑗) → ¬ 𝑡 ∈ (𝐷‘𝑗))) |
178 | 85, 177 | ralrimi 3183 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑡 ∈ (𝐵‘𝑗) ¬ 𝑡 ∈ (𝐷‘𝑗)) |
179 | | disj 4317 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐵‘𝑗) ∩ (𝐷‘𝑗)) = ∅ ↔ ∀𝑎 ∈ (𝐵‘𝑗) ¬ 𝑎 ∈ (𝐷‘𝑗)) |
180 | | nfcv 2949 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑎(𝐵‘𝑗) |
181 | 75 | nfcri 2943 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
Ⅎ𝑡 𝑎 ∈ (𝐷‘𝑗) |
182 | 181 | nfn 1838 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑡 ¬ 𝑎 ∈ (𝐷‘𝑗) |
183 | | nfv 1892 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑎 ¬ 𝑡 ∈ (𝐷‘𝑗) |
184 | | eleq1 2870 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 = 𝑡 → (𝑎 ∈ (𝐷‘𝑗) ↔ 𝑡 ∈ (𝐷‘𝑗))) |
185 | 184 | notbid 319 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = 𝑡 → (¬ 𝑎 ∈ (𝐷‘𝑗) ↔ ¬ 𝑡 ∈ (𝐷‘𝑗))) |
186 | 180, 81, 182, 183, 185 | cbvralf 3397 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∀𝑎 ∈
(𝐵‘𝑗) ¬ 𝑎 ∈ (𝐷‘𝑗) ↔ ∀𝑡 ∈ (𝐵‘𝑗) ¬ 𝑡 ∈ (𝐷‘𝑗)) |
187 | 179, 186 | bitri 276 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐵‘𝑗) ∩ (𝐷‘𝑗)) = ∅ ↔ ∀𝑡 ∈ (𝐵‘𝑗) ¬ 𝑡 ∈ (𝐷‘𝑗)) |
188 | 178, 187 | sylibr 235 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝐵‘𝑗) ∩ (𝐷‘𝑗)) = ∅) |
189 | | eqid 2795 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑇 ∖ (𝐵‘𝑗)) = (𝑇 ∖ (𝐵‘𝑗)) |
190 | | stoweidlem59.19 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑁 ∈ ℕ) |
191 | 190 | nnrpd 12284 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑁 ∈
ℝ+) |
192 | 117, 191 | rpdivcld 12303 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝐸 / 𝑁) ∈
ℝ+) |
193 | 192 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐸 / 𝑁) ∈
ℝ+) |
194 | 118, 190 | nndivred 11544 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝐸 / 𝑁) ∈ ℝ) |
195 | 113 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (1 / 3) ∈
ℝ) |
196 | 190 | nnge1d 11538 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 1 ≤ 𝑁) |
197 | | 1re 10492 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 1 ∈
ℝ |
198 | | 0lt1 11015 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 0 <
1 |
199 | 197, 198 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (1 ∈
ℝ ∧ 0 < 1) |
200 | 199 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (1 ∈ ℝ ∧ 0
< 1)) |
201 | 190 | nnred 11506 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑁 ∈ ℝ) |
202 | 190 | nngt0d 11539 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 0 < 𝑁) |
203 | | lediv2 11383 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (1 ≤ 𝑁 ↔ (𝐸 / 𝑁) ≤ (𝐸 / 1))) |
204 | 200, 201,
202, 158, 203 | syl121anc 1368 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (1 ≤ 𝑁 ↔ (𝐸 / 𝑁) ≤ (𝐸 / 1))) |
205 | 196, 204 | mpbid 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐸 / 𝑁) ≤ (𝐸 / 1)) |
206 | 117 | rpcnd 12288 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐸 ∈ ℂ) |
207 | 206 | div1d 11261 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐸 / 1) = 𝐸) |
208 | 205, 207 | breqtrd 4992 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝐸 / 𝑁) ≤ 𝐸) |
209 | | stoweidlem59.18 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐸 < (1 / 3)) |
210 | 194, 118,
195, 208, 209 | lelttrd 10650 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝐸 / 𝑁) < (1 / 3)) |
211 | 210 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐸 / 𝑁) < (1 / 3)) |
212 | 75, 82, 85, 86, 87, 16, 89, 90, 92, 94, 96, 98, 125, 136, 188, 189, 193, 211 | stoweidlem58 41911 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡))) |
213 | | df-rex 3111 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃𝑥 ∈
𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) |
214 | 212, 213 | sylib 219 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ∃𝑥(𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) |
215 | | simprl 767 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) → 𝑥 ∈ 𝐴) |
216 | | simprr1 1214 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1)) |
217 | | fveq1 6542 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 = 𝑥 → (𝑦‘𝑡) = (𝑥‘𝑡)) |
218 | 217 | breq2d 4978 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 = 𝑥 → (0 ≤ (𝑦‘𝑡) ↔ 0 ≤ (𝑥‘𝑡))) |
219 | 217 | breq1d 4976 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 = 𝑥 → ((𝑦‘𝑡) ≤ 1 ↔ (𝑥‘𝑡) ≤ 1)) |
220 | 218, 219 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 = 𝑥 → ((0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ↔ (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1))) |
221 | 220 | ralbidv 3164 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑥 → (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1))) |
222 | 221, 1 | elrab2 3622 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ 𝑌 ↔ (𝑥 ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1))) |
223 | 215, 216,
222 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) → 𝑥 ∈ 𝑌) |
224 | | simprr2 1215 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) → ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁)) |
225 | | simprr3 1216 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) → ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)) |
226 | 224, 225 | jca 512 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) → (∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡))) |
227 | | nfcv 2949 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑦𝑥 |
228 | | nfv 1892 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑦(∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)) |
229 | 217 | breq1d 4976 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 = 𝑥 → ((𝑦‘𝑡) < (𝐸 / 𝑁) ↔ (𝑥‘𝑡) < (𝐸 / 𝑁))) |
230 | 229 | ralbidv 3164 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑥 → (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ↔ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁))) |
231 | 217 | breq2d 4978 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 = 𝑥 → ((1 − (𝐸 / 𝑁)) < (𝑦‘𝑡) ↔ (1 − (𝐸 / 𝑁)) < (𝑥‘𝑡))) |
232 | 231 | ralbidv 3164 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑥 → (∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡) ↔ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡))) |
233 | 230, 232 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑥 → ((∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡)) ↔ (∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) |
234 | 227, 3, 228, 233 | elrabf 3615 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ↔ (𝑥 ∈ 𝑌 ∧ (∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) |
235 | 223, 226,
234 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡)))) → 𝑥 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) |
236 | 235 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡))) → 𝑥 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))})) |
237 | 236 | eximdv 1895 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (∃𝑥(𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(𝑥‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑥‘𝑡))) → ∃𝑥 𝑥 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))})) |
238 | 214, 237 | mpd 15 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ∃𝑥 𝑥 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) |
239 | | ne0i 4224 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} → {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ≠ ∅) |
240 | 239 | exlimiv 1908 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑥 𝑥 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} → {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ≠ ∅) |
241 | 238, 240 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ≠ ∅) |
242 | 68, 241 | eqnetrd 3051 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐻‘𝑗) ≠ ∅) |
243 | 242 | 3adant3 1125 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁) ∧ (𝐻‘𝑗) = 𝑤) → (𝐻‘𝑗) ≠ ∅) |
244 | 64, 243 | eqnetrrd 3052 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁) ∧ (𝐻‘𝑗) = 𝑤) → 𝑤 ≠ ∅) |
245 | 244 | 3exp 1112 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑗 ∈ (0...𝑁) → ((𝐻‘𝑗) = 𝑤 → 𝑤 ≠ ∅))) |
246 | 245 | rexlimdv 3246 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (∃𝑗 ∈ (0...𝑁)(𝐻‘𝑗) = 𝑤 → 𝑤 ≠ ∅)) |
247 | 246 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ ran 𝐻) → (∃𝑗 ∈ (0...𝑁)(𝐻‘𝑗) = 𝑤 → 𝑤 ≠ ∅)) |
248 | 63, 247 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ran 𝐻) → 𝑤 ≠ ∅) |
249 | 248 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑤 ∈ ran 𝐻) → 𝑤 ≠ ∅) |
250 | | rsp 3172 |
. . . . . . . . . . 11
⊢
(∀𝑤 ∈
ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤) → (𝑤 ∈ ran 𝐻 → (𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) |
251 | 48, 49, 249, 250 | syl3c 66 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑤 ∈ ran 𝐻) → (ℎ‘𝑤) ∈ 𝑤) |
252 | 251 | ex 413 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → (𝑤 ∈ ran 𝐻 → (ℎ‘𝑤) ∈ 𝑤)) |
253 | 47, 252 | ralrimi 3183 |
. . . . . . . 8
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ∀𝑤 ∈ ran 𝐻(ℎ‘𝑤) ∈ 𝑤) |
254 | | chfnrn 6689 |
. . . . . . . 8
⊢ ((ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(ℎ‘𝑤) ∈ 𝑤) → ran ℎ ⊆ ∪ ran
𝐻) |
255 | 32, 253, 254 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ran ℎ ⊆ ∪ ran
𝐻) |
256 | | nfv 1892 |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝜑 |
257 | | nfcv 2949 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦ℎ |
258 | | nfcv 2949 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦(0...𝑁) |
259 | | nfrab1 3344 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦{𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} |
260 | 258, 259 | nfmpt 5062 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦(𝑗 ∈ (0...𝑁) ↦ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) |
261 | 22, 260 | nfcxfr 2947 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦𝐻 |
262 | 261 | nfrn 5711 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦ran
𝐻 |
263 | 257, 262 | nffn 6327 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦 ℎ Fn ran 𝐻 |
264 | | nfv 1892 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤) |
265 | 262, 264 | nfral 3191 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤) |
266 | 263, 265 | nfan 1881 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤)) |
267 | 256, 266 | nfan 1881 |
. . . . . . . . 9
⊢
Ⅎ𝑦(𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) |
268 | 262 | nfuni 4755 |
. . . . . . . . 9
⊢
Ⅎ𝑦∪ ran 𝐻 |
269 | | fnunirn 6882 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 Fn (0...𝑁) → (𝑦 ∈ ∪ ran
𝐻 ↔ ∃𝑧 ∈ (0...𝑁)𝑦 ∈ (𝐻‘𝑧))) |
270 | | nfcv 2949 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗𝑧 |
271 | 53, 270 | nffv 6553 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑗(𝐻‘𝑧) |
272 | 271 | nfcri 2943 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗 𝑦 ∈ (𝐻‘𝑧) |
273 | | nfv 1892 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑧 𝑦 ∈ (𝐻‘𝑗) |
274 | | fveq2 6543 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑗 → (𝐻‘𝑧) = (𝐻‘𝑗)) |
275 | 274 | eleq2d 2868 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑗 → (𝑦 ∈ (𝐻‘𝑧) ↔ 𝑦 ∈ (𝐻‘𝑗))) |
276 | 272, 273,
275 | cbvrex 3400 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑧 ∈
(0...𝑁)𝑦 ∈ (𝐻‘𝑧) ↔ ∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻‘𝑗)) |
277 | 269, 276 | syl6bb 288 |
. . . . . . . . . . . . . 14
⊢ (𝐻 Fn (0...𝑁) → (𝑦 ∈ ∪ ran
𝐻 ↔ ∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻‘𝑗))) |
278 | 24, 277 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑦 ∈ ∪ ran
𝐻 ↔ ∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻‘𝑗))) |
279 | 278 | biimpa 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ ran
𝐻) → ∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻‘𝑗)) |
280 | | nfv 1892 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗𝜑 |
281 | 53 | nfrn 5711 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗ran
𝐻 |
282 | 281 | nfuni 4755 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗∪ ran 𝐻 |
283 | 282 | nfcri 2943 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗 𝑦 ∈ ∪ ran 𝐻 |
284 | 280, 283 | nfan 1881 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗(𝜑 ∧ 𝑦 ∈ ∪ ran
𝐻) |
285 | | nfv 1892 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗 𝑦 ∈ 𝑌 |
286 | | simp1l 1190 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ∪ ran
𝐻) ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑦 ∈ (𝐻‘𝑗)) → 𝜑) |
287 | | simp2 1130 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ∪ ran
𝐻) ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑦 ∈ (𝐻‘𝑗)) → 𝑗 ∈ (0...𝑁)) |
288 | | simp3 1131 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ∪ ran
𝐻) ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑦 ∈ (𝐻‘𝑗)) → 𝑦 ∈ (𝐻‘𝑗)) |
289 | 68 | eleq2d 2868 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑦 ∈ (𝐻‘𝑗) ↔ 𝑦 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))})) |
290 | 289 | biimpa 477 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) → 𝑦 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) |
291 | | rabid 3337 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} ↔ (𝑦 ∈ 𝑌 ∧ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡)))) |
292 | 290, 291 | sylib 219 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) → (𝑦 ∈ 𝑌 ∧ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡)))) |
293 | 292 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) → 𝑦 ∈ 𝑌) |
294 | 286, 287,
288, 293 | syl21anc 834 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ∪ ran
𝐻) ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑦 ∈ (𝐻‘𝑗)) → 𝑦 ∈ 𝑌) |
295 | 294 | 3exp 1112 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ ran
𝐻) → (𝑗 ∈ (0...𝑁) → (𝑦 ∈ (𝐻‘𝑗) → 𝑦 ∈ 𝑌))) |
296 | 284, 285,
295 | rexlimd 3278 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ ran
𝐻) → (∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻‘𝑗) → 𝑦 ∈ 𝑌)) |
297 | 279, 296 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ∪ ran
𝐻) → 𝑦 ∈ 𝑌) |
298 | 297 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑦 ∈ ∪ ran
𝐻) → 𝑦 ∈ 𝑌) |
299 | 298 | ex 413 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → (𝑦 ∈ ∪ ran
𝐻 → 𝑦 ∈ 𝑌)) |
300 | 267, 268,
3, 299 | ssrd 3898 |
. . . . . . . 8
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ∪ ran
𝐻 ⊆ 𝑌) |
301 | | ssrab2 3981 |
. . . . . . . . 9
⊢ {𝑦 ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1)} ⊆ 𝐴 |
302 | 1, 301 | eqsstri 3926 |
. . . . . . . 8
⊢ 𝑌 ⊆ 𝐴 |
303 | 300, 302 | syl6ss 3905 |
. . . . . . 7
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ∪ ran
𝐻 ⊆ 𝐴) |
304 | 255, 303 | sstrd 3903 |
. . . . . 6
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ran ℎ ⊆ 𝐴) |
305 | 42, 304 | fssd 6401 |
. . . . 5
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ℎ:ran 𝐻⟶𝐴) |
306 | | dffn3 6398 |
. . . . . . 7
⊢ (𝐻 Fn (0...𝑁) ↔ 𝐻:(0...𝑁)⟶ran 𝐻) |
307 | 24, 306 | sylib 219 |
. . . . . 6
⊢ (𝜑 → 𝐻:(0...𝑁)⟶ran 𝐻) |
308 | 307 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → 𝐻:(0...𝑁)⟶ran 𝐻) |
309 | | fco 6404 |
. . . . 5
⊢ ((ℎ:ran 𝐻⟶𝐴 ∧ 𝐻:(0...𝑁)⟶ran 𝐻) → (ℎ ∘ 𝐻):(0...𝑁)⟶𝐴) |
310 | 305, 308,
309 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → (ℎ ∘ 𝐻):(0...𝑁)⟶𝐴) |
311 | | nfcv 2949 |
. . . . . . . 8
⊢
Ⅎ𝑗ℎ |
312 | 311, 281 | nffn 6327 |
. . . . . . 7
⊢
Ⅎ𝑗 ℎ Fn ran 𝐻 |
313 | | nfv 1892 |
. . . . . . . 8
⊢
Ⅎ𝑗(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤) |
314 | 281, 313 | nfral 3191 |
. . . . . . 7
⊢
Ⅎ𝑗∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤) |
315 | 312, 314 | nfan 1881 |
. . . . . 6
⊢
Ⅎ𝑗(ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤)) |
316 | 280, 315 | nfan 1881 |
. . . . 5
⊢
Ⅎ𝑗(𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) |
317 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → 𝜑) |
318 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑁)) |
319 | 24 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → 𝐻 Fn (0...𝑁)) |
320 | | fvco2 6630 |
. . . . . . . . . . . 12
⊢ ((𝐻 Fn (0...𝑁) ∧ 𝑗 ∈ (0...𝑁)) → ((ℎ ∘ 𝐻)‘𝑗) = (ℎ‘(𝐻‘𝑗))) |
321 | 319, 320 | sylancom 588 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ((ℎ ∘ 𝐻)‘𝑗) = (ℎ‘(𝐻‘𝑗))) |
322 | | simplrr 774 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤)) |
323 | | fnfun 6328 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻 Fn (0...𝑁) → Fun 𝐻) |
324 | 24, 323 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → Fun 𝐻) |
325 | 324 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → Fun 𝐻) |
326 | | fndm 6330 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐻 Fn (0...𝑁) → dom 𝐻 = (0...𝑁)) |
327 | 24, 326 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → dom 𝐻 = (0...𝑁)) |
328 | 327 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → dom 𝐻 = (0...𝑁)) |
329 | 65, 328 | eleqtrrd 2886 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ dom 𝐻) |
330 | 329 | adantlr 711 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ dom 𝐻) |
331 | | fvelrn 6714 |
. . . . . . . . . . . . . 14
⊢ ((Fun
𝐻 ∧ 𝑗 ∈ dom 𝐻) → (𝐻‘𝑗) ∈ ran 𝐻) |
332 | 325, 330,
331 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (𝐻‘𝑗) ∈ ran 𝐻) |
333 | 322, 332 | jca 512 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤) ∧ (𝐻‘𝑗) ∈ ran 𝐻)) |
334 | 242 | adantlr 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (𝐻‘𝑗) ≠ ∅) |
335 | | neeq1 3046 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝐻‘𝑗) → (𝑤 ≠ ∅ ↔ (𝐻‘𝑗) ≠ ∅)) |
336 | | fveq2 6543 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝐻‘𝑗) → (ℎ‘𝑤) = (ℎ‘(𝐻‘𝑗))) |
337 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝐻‘𝑗) → 𝑤 = (𝐻‘𝑗)) |
338 | 336, 337 | eleq12d 2877 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝐻‘𝑗) → ((ℎ‘𝑤) ∈ 𝑤 ↔ (ℎ‘(𝐻‘𝑗)) ∈ (𝐻‘𝑗))) |
339 | 335, 338 | imbi12d 346 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝐻‘𝑗) → ((𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤) ↔ ((𝐻‘𝑗) ≠ ∅ → (ℎ‘(𝐻‘𝑗)) ∈ (𝐻‘𝑗)))) |
340 | 339 | rspccva 3558 |
. . . . . . . . . . . 12
⊢
((∀𝑤 ∈
ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤) ∧ (𝐻‘𝑗) ∈ ran 𝐻) → ((𝐻‘𝑗) ≠ ∅ → (ℎ‘(𝐻‘𝑗)) ∈ (𝐻‘𝑗))) |
341 | 333, 334,
340 | sylc 65 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (ℎ‘(𝐻‘𝑗)) ∈ (𝐻‘𝑗)) |
342 | 321, 341 | eqeltrd 2883 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) |
343 | 257, 261 | nfco 5627 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(ℎ ∘ 𝐻) |
344 | | nfcv 2949 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦𝑗 |
345 | 343, 344 | nffv 6553 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦((ℎ ∘ 𝐻)‘𝑗) |
346 | | nfv 1892 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦(𝜑 ∧ 𝑗 ∈ (0...𝑁)) |
347 | 261, 344 | nffv 6553 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦(𝐻‘𝑗) |
348 | 345, 347 | nfel 2961 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗) |
349 | 346, 348 | nfan 1881 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) |
350 | 345, 3 | nfel 2961 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦((ℎ ∘ 𝐻)‘𝑗) ∈ 𝑌 |
351 | 349, 350 | nfim 1878 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ((ℎ ∘ 𝐻)‘𝑗) ∈ 𝑌) |
352 | | eleq1 2870 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → (𝑦 ∈ (𝐻‘𝑗) ↔ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗))) |
353 | 352 | anbi2d 628 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) ↔ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)))) |
354 | | eleq1 2870 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → (𝑦 ∈ 𝑌 ↔ ((ℎ ∘ 𝐻)‘𝑗) ∈ 𝑌)) |
355 | 353, 354 | imbi12d 346 |
. . . . . . . . . . . 12
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → ((((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) → 𝑦 ∈ 𝑌) ↔ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ((ℎ ∘ 𝐻)‘𝑗) ∈ 𝑌))) |
356 | 345, 351,
355, 293 | vtoclgf 3508 |
. . . . . . . . . . 11
⊢ (((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ((ℎ ∘ 𝐻)‘𝑗) ∈ 𝑌)) |
357 | 356 | anabsi7 667 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ((ℎ ∘ 𝐻)‘𝑗) ∈ 𝑌) |
358 | 317, 318,
342, 357 | syl21anc 834 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ((ℎ ∘ 𝐻)‘𝑗) ∈ 𝑌) |
359 | 1 | eleq2i 2874 |
. . . . . . . . . 10
⊢ (((ℎ ∘ 𝐻)‘𝑗) ∈ 𝑌 ↔ ((ℎ ∘ 𝐻)‘𝑗) ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1)}) |
360 | | nfcv 2949 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦𝐴 |
361 | | nfcv 2949 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦𝑇 |
362 | | nfcv 2949 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦0 |
363 | | nfcv 2949 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦
≤ |
364 | | nfcv 2949 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦𝑡 |
365 | 345, 364 | nffv 6553 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) |
366 | 362, 363,
365 | nfbr 5013 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦0 ≤
(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) |
367 | | nfcv 2949 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦1 |
368 | 365, 363,
367 | nfbr 5013 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1 |
369 | 366, 368 | nfan 1881 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(0 ≤
(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) |
370 | 361, 369 | nfral 3191 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) |
371 | | nfcv 2949 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡𝑦 |
372 | | nfcv 2949 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑡ℎ |
373 | | nfra1 3186 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) |
374 | | nfra1 3186 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡) |
375 | 373, 374 | nfan 1881 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑡(∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡)) |
376 | | nfra1 3186 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) |
377 | | nfcv 2949 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡𝐴 |
378 | 376, 377 | nfrab 3345 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡{𝑦 ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1)} |
379 | 1, 378 | nfcxfr 2947 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑡𝑌 |
380 | 375, 379 | nfrab 3345 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡{𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))} |
381 | 70, 380 | nfmpt 5062 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑡(𝑗 ∈ (0...𝑁) ↦ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) |
382 | 22, 381 | nfcxfr 2947 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑡𝐻 |
383 | 372, 382 | nfco 5627 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡(ℎ ∘ 𝐻) |
384 | 383, 74 | nffv 6553 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡((ℎ ∘ 𝐻)‘𝑗) |
385 | 371, 384 | nfeq 2960 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡 𝑦 = ((ℎ ∘ 𝐻)‘𝑗) |
386 | | fveq1 6542 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → (𝑦‘𝑡) = (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)) |
387 | 386 | breq2d 4978 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → (0 ≤ (𝑦‘𝑡) ↔ 0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) |
388 | 386 | breq1d 4976 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → ((𝑦‘𝑡) ≤ 1 ↔ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1)) |
389 | 387, 388 | anbi12d 630 |
. . . . . . . . . . . 12
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → ((0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ↔ (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1))) |
390 | 385, 389 | ralbid 3195 |
. . . . . . . . . . 11
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1))) |
391 | 345, 360,
370, 390 | elrabf 3615 |
. . . . . . . . . 10
⊢ (((ℎ ∘ 𝐻)‘𝑗) ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1)} ↔ (((ℎ ∘ 𝐻)‘𝑗) ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1))) |
392 | 359, 391 | bitri 276 |
. . . . . . . . 9
⊢ (((ℎ ∘ 𝐻)‘𝑗) ∈ 𝑌 ↔ (((ℎ ∘ 𝐻)‘𝑗) ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1))) |
393 | 358, 392 | sylib 219 |
. . . . . . . 8
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (((ℎ ∘ 𝐻)‘𝑗) ∈ 𝐴 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1))) |
394 | 393 | simprd 496 |
. . . . . . 7
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1)) |
395 | | nfcv 2949 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(𝐷‘𝑗) |
396 | | nfcv 2949 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦
< |
397 | | nfcv 2949 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(𝐸 / 𝑁) |
398 | 365, 396,
397 | nfbr 5013 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) |
399 | 395, 398 | nfral 3191 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) |
400 | 349, 399 | nfim 1878 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)) |
401 | 386 | breq1d 4976 |
. . . . . . . . . . . 12
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → ((𝑦‘𝑡) < (𝐸 / 𝑁) ↔ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁))) |
402 | 385, 401 | ralbid 3195 |
. . . . . . . . . . 11
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ↔ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁))) |
403 | 353, 402 | imbi12d 346 |
. . . . . . . . . 10
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → ((((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁)) ↔ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)))) |
404 | 292 | simprd 496 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) → (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))) |
405 | 404 | simpld 495 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁)) |
406 | 345, 400,
403, 405 | vtoclgf 3508 |
. . . . . . . . 9
⊢ (((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁))) |
407 | 406 | anabsi7 667 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)) |
408 | 317, 318,
342, 407 | syl21anc 834 |
. . . . . . 7
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)) |
409 | | nfcv 2949 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(𝐵‘𝑗) |
410 | | nfcv 2949 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(1
− (𝐸 / 𝑁)) |
411 | 410, 396,
365 | nfbr 5013 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(1 −
(𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) |
412 | 409, 411 | nfral 3191 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) |
413 | 349, 412 | nfim 1878 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)) |
414 | 386 | breq2d 4978 |
. . . . . . . . . . . 12
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → ((1 − (𝐸 / 𝑁)) < (𝑦‘𝑡) ↔ (1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) |
415 | 385, 414 | ralbid 3195 |
. . . . . . . . . . 11
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → (∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡) ↔ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) |
416 | 353, 415 | imbi12d 346 |
. . . . . . . . . 10
⊢ (𝑦 = ((ℎ ∘ 𝐻)‘𝑗) → ((((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡)) ↔ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)))) |
417 | 404 | simprd 496 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡)) |
418 | 345, 413,
416, 417 | vtoclgf 3508 |
. . . . . . . . 9
⊢ (((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗) → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) |
419 | 418 | anabsi7 667 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ ((ℎ ∘ 𝐻)‘𝑗) ∈ (𝐻‘𝑗)) → ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)) |
420 | 317, 318,
342, 419 | syl21anc 834 |
. . . . . . 7
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)) |
421 | 394, 408,
420 | 3jca 1121 |
. . . . . 6
⊢ (((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) |
422 | 421 | ex 413 |
. . . . 5
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → (𝑗 ∈ (0...𝑁) → (∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)))) |
423 | 316, 422 | ralrimi 3183 |
. . . 4
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) |
424 | 310, 423 | jca 512 |
. . 3
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ((ℎ ∘ 𝐻):(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)))) |
425 | | feq1 6368 |
. . . . 5
⊢ (𝑥 = (ℎ ∘ 𝐻) → (𝑥:(0...𝑁)⟶𝐴 ↔ (ℎ ∘ 𝐻):(0...𝑁)⟶𝐴)) |
426 | | nfcv 2949 |
. . . . . . 7
⊢
Ⅎ𝑗𝑥 |
427 | 311, 53 | nfco 5627 |
. . . . . . 7
⊢
Ⅎ𝑗(ℎ ∘ 𝐻) |
428 | 426, 427 | nfeq 2960 |
. . . . . 6
⊢
Ⅎ𝑗 𝑥 = (ℎ ∘ 𝐻) |
429 | | nfcv 2949 |
. . . . . . . . 9
⊢
Ⅎ𝑡𝑥 |
430 | 429, 383 | nfeq 2960 |
. . . . . . . 8
⊢
Ⅎ𝑡 𝑥 = (ℎ ∘ 𝐻) |
431 | | fveq1 6542 |
. . . . . . . . . . 11
⊢ (𝑥 = (ℎ ∘ 𝐻) → (𝑥‘𝑗) = ((ℎ ∘ 𝐻)‘𝑗)) |
432 | 431 | fveq1d 6545 |
. . . . . . . . . 10
⊢ (𝑥 = (ℎ ∘ 𝐻) → ((𝑥‘𝑗)‘𝑡) = (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)) |
433 | 432 | breq2d 4978 |
. . . . . . . . 9
⊢ (𝑥 = (ℎ ∘ 𝐻) → (0 ≤ ((𝑥‘𝑗)‘𝑡) ↔ 0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) |
434 | 432 | breq1d 4976 |
. . . . . . . . 9
⊢ (𝑥 = (ℎ ∘ 𝐻) → (((𝑥‘𝑗)‘𝑡) ≤ 1 ↔ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1)) |
435 | 433, 434 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑥 = (ℎ ∘ 𝐻) → ((0 ≤ ((𝑥‘𝑗)‘𝑡) ∧ ((𝑥‘𝑗)‘𝑡) ≤ 1) ↔ (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1))) |
436 | 430, 435 | ralbid 3195 |
. . . . . . 7
⊢ (𝑥 = (ℎ ∘ 𝐻) → (∀𝑡 ∈ 𝑇 (0 ≤ ((𝑥‘𝑗)‘𝑡) ∧ ((𝑥‘𝑗)‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1))) |
437 | 432 | breq1d 4976 |
. . . . . . . 8
⊢ (𝑥 = (ℎ ∘ 𝐻) → (((𝑥‘𝑗)‘𝑡) < (𝐸 / 𝑁) ↔ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁))) |
438 | 430, 437 | ralbid 3195 |
. . . . . . 7
⊢ (𝑥 = (ℎ ∘ 𝐻) → (∀𝑡 ∈ (𝐷‘𝑗)((𝑥‘𝑗)‘𝑡) < (𝐸 / 𝑁) ↔ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁))) |
439 | 432 | breq2d 4978 |
. . . . . . . 8
⊢ (𝑥 = (ℎ ∘ 𝐻) → ((1 − (𝐸 / 𝑁)) < ((𝑥‘𝑗)‘𝑡) ↔ (1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) |
440 | 430, 439 | ralbid 3195 |
. . . . . . 7
⊢ (𝑥 = (ℎ ∘ 𝐻) → (∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥‘𝑗)‘𝑡) ↔ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) |
441 | 436, 438,
440 | 3anbi123d 1428 |
. . . . . 6
⊢ (𝑥 = (ℎ ∘ 𝐻) → ((∀𝑡 ∈ 𝑇 (0 ≤ ((𝑥‘𝑗)‘𝑡) ∧ ((𝑥‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)((𝑥‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥‘𝑗)‘𝑡)) ↔ (∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)))) |
442 | 428, 441 | ralbid 3195 |
. . . . 5
⊢ (𝑥 = (ℎ ∘ 𝐻) → (∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ ((𝑥‘𝑗)‘𝑡) ∧ ((𝑥‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)((𝑥‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥‘𝑗)‘𝑡)) ↔ ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡)))) |
443 | 425, 442 | anbi12d 630 |
. . . 4
⊢ (𝑥 = (ℎ ∘ 𝐻) → ((𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ ((𝑥‘𝑗)‘𝑡) ∧ ((𝑥‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)((𝑥‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥‘𝑗)‘𝑡))) ↔ ((ℎ ∘ 𝐻):(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))))) |
444 | 443 | spcegv 3540 |
. . 3
⊢ ((ℎ ∘ 𝐻) ∈ V → (((ℎ ∘ 𝐻):(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ∧ (((ℎ ∘ 𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)(((ℎ ∘ 𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (((ℎ ∘ 𝐻)‘𝑗)‘𝑡))) → ∃𝑥(𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ ((𝑥‘𝑗)‘𝑡) ∧ ((𝑥‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)((𝑥‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥‘𝑗)‘𝑡))))) |
445 | 40, 424, 444 | sylc 65 |
. 2
⊢ ((𝜑 ∧ (ℎ Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (ℎ‘𝑤) ∈ 𝑤))) → ∃𝑥(𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ ((𝑥‘𝑗)‘𝑡) ∧ ((𝑥‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)((𝑥‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥‘𝑗)‘𝑡)))) |
446 | 31, 445 | exlimddv 1913 |
1
⊢ (𝜑 → ∃𝑥(𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ ((𝑥‘𝑗)‘𝑡) ∧ ((𝑥‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)((𝑥‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥‘𝑗)‘𝑡)))) |