Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem59 Structured version   Visualization version   GIF version

Theorem stoweidlem59 42716
 Description: This lemma proves that there exists a function 𝑥 as in the proof in [BrosowskiDeutsh] p. 91, after Lemma 2: xj is in the subalgebra, 0 <= xj <= 1, xj < ε / n on Aj (meaning A in the paper), xj > 1 - \epsilon / n on Bj. Here 𝐷 is used to represent A in the paper (because A is used for the subalgebra of functions), 𝐸 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem59.1 𝑡𝐹
stoweidlem59.2 𝑡𝜑
stoweidlem59.3 𝐾 = (topGen‘ran (,))
stoweidlem59.4 𝑇 = 𝐽
stoweidlem59.5 𝐶 = (𝐽 Cn 𝐾)
stoweidlem59.6 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
stoweidlem59.7 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
stoweidlem59.8 𝑌 = {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)}
stoweidlem59.9 𝐻 = (𝑗 ∈ (0...𝑁) ↦ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
stoweidlem59.10 (𝜑𝐽 ∈ Comp)
stoweidlem59.11 (𝜑𝐴𝐶)
stoweidlem59.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem59.13 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem59.14 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
stoweidlem59.15 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem59.16 (𝜑𝐹𝐶)
stoweidlem59.17 (𝜑𝐸 ∈ ℝ+)
stoweidlem59.18 (𝜑𝐸 < (1 / 3))
stoweidlem59.19 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
stoweidlem59 (𝜑 → ∃𝑥(𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥𝑗)‘𝑡))))
Distinct variable groups:   𝑡,𝑗,𝑦   𝑦,𝐵   𝑦,𝐷   𝑗,𝑁,𝑡,𝑦   𝑗,𝑌   𝑓,𝑔,𝑗,𝑞,𝑟,𝑡,𝑁   𝑥,𝑓,𝑔,𝑗,𝑡,𝑁   𝑦,𝑓,𝑞,𝑟,𝐴   𝐴,𝑔,𝑞,𝑟,𝑡   𝐵,𝑓,𝑔,𝑞,𝑟   𝐷,𝑓,𝑔,𝑞,𝑟   𝑓,𝐸,𝑔,𝑟,𝑡   𝑓,𝐽,𝑔,𝑟,𝑡   𝑇,𝑓,𝑔,𝑞,𝑟,𝑡   𝜑,𝑓,𝑔,𝑗,𝑞,𝑟   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸,𝑦   𝑥,𝑇,𝑦   𝜑,𝑦   𝑡,𝐾   𝑥,𝐻   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑗)   𝐵(𝑡,𝑗)   𝐶(𝑥,𝑦,𝑡,𝑓,𝑔,𝑗,𝑟,𝑞)   𝐷(𝑡,𝑗)   𝑇(𝑗)   𝐸(𝑗,𝑞)   𝐹(𝑥,𝑦,𝑡,𝑓,𝑔,𝑗,𝑟,𝑞)   𝐻(𝑦,𝑡,𝑓,𝑔,𝑗,𝑟,𝑞)   𝐽(𝑥,𝑦,𝑗,𝑞)   𝐾(𝑥,𝑦,𝑓,𝑔,𝑗,𝑟,𝑞)   𝑌(𝑦,𝑡,𝑓,𝑔,𝑟,𝑞)

Proof of Theorem stoweidlem59
Dummy variables 𝑎 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem59.8 . . . . . . . . . 10 𝑌 = {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)}
2 nfrab1 3337 . . . . . . . . . 10 𝑦{𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)}
31, 2nfcxfr 2953 . . . . . . . . 9 𝑦𝑌
4 nfcv 2955 . . . . . . . . 9 𝑧𝑌
5 nfv 1915 . . . . . . . . 9 𝑧(∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))
6 nfv 1915 . . . . . . . . 9 𝑦(∀𝑡 ∈ (𝐷𝑗)(𝑧𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑧𝑡))
7 fveq1 6644 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝑡) = (𝑧𝑡))
87breq1d 5040 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑦𝑡) < (𝐸 / 𝑁) ↔ (𝑧𝑡) < (𝐸 / 𝑁)))
98ralbidv 3162 . . . . . . . . . 10 (𝑦 = 𝑧 → (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ↔ ∀𝑡 ∈ (𝐷𝑗)(𝑧𝑡) < (𝐸 / 𝑁)))
107breq2d 5042 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((1 − (𝐸 / 𝑁)) < (𝑦𝑡) ↔ (1 − (𝐸 / 𝑁)) < (𝑧𝑡)))
1110ralbidv 3162 . . . . . . . . . 10 (𝑦 = 𝑧 → (∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡) ↔ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑧𝑡)))
129, 11anbi12d 633 . . . . . . . . 9 (𝑦 = 𝑧 → ((∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡)) ↔ (∀𝑡 ∈ (𝐷𝑗)(𝑧𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑧𝑡))))
133, 4, 5, 6, 12cbvrabw 3437 . . . . . . . 8 {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} = {𝑧𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑧𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑧𝑡))}
14 ovexd 7170 . . . . . . . . . 10 (𝜑 → (𝐽 Cn 𝐾) ∈ V)
15 stoweidlem59.11 . . . . . . . . . . 11 (𝜑𝐴𝐶)
16 stoweidlem59.5 . . . . . . . . . . 11 𝐶 = (𝐽 Cn 𝐾)
1715, 16sseqtrdi 3965 . . . . . . . . . 10 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
1814, 17ssexd 5192 . . . . . . . . 9 (𝜑𝐴 ∈ V)
191, 18rabexd 5200 . . . . . . . 8 (𝜑𝑌 ∈ V)
2013, 19rabexd 5200 . . . . . . 7 (𝜑 → {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ∈ V)
2120ralrimivw 3150 . . . . . 6 (𝜑 → ∀𝑗 ∈ (0...𝑁){𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ∈ V)
22 stoweidlem59.9 . . . . . . 7 𝐻 = (𝑗 ∈ (0...𝑁) ↦ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
2322fnmpt 6460 . . . . . 6 (∀𝑗 ∈ (0...𝑁){𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ∈ V → 𝐻 Fn (0...𝑁))
2421, 23syl 17 . . . . 5 (𝜑𝐻 Fn (0...𝑁))
25 fzfi 13337 . . . . 5 (0...𝑁) ∈ Fin
26 fnfi 8782 . . . . 5 ((𝐻 Fn (0...𝑁) ∧ (0...𝑁) ∈ Fin) → 𝐻 ∈ Fin)
2724, 25, 26sylancl 589 . . . 4 (𝜑𝐻 ∈ Fin)
28 rnfi 8793 . . . 4 (𝐻 ∈ Fin → ran 𝐻 ∈ Fin)
2927, 28syl 17 . . 3 (𝜑 → ran 𝐻 ∈ Fin)
30 fnchoice 41673 . . 3 (ran 𝐻 ∈ Fin → ∃( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)))
3129, 30syl 17 . 2 (𝜑 → ∃( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)))
32 simprl 770 . . . . 5 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → Fn ran 𝐻)
33 ovex 7168 . . . . . . . 8 (0...𝑁) ∈ V
3433mptex 6963 . . . . . . 7 (𝑗 ∈ (0...𝑁) ↦ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))}) ∈ V
3522, 34eqeltri 2886 . . . . . 6 𝐻 ∈ V
3635rnex 7601 . . . . 5 ran 𝐻 ∈ V
37 fnex 6957 . . . . 5 (( Fn ran 𝐻 ∧ ran 𝐻 ∈ V) → ∈ V)
3832, 36, 37sylancl 589 . . . 4 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → ∈ V)
39 coexg 7618 . . . 4 (( ∈ V ∧ 𝐻 ∈ V) → (𝐻) ∈ V)
4038, 35, 39sylancl 589 . . 3 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → (𝐻) ∈ V)
41 dffn3 6499 . . . . . . 7 ( Fn ran 𝐻:ran 𝐻⟶ran )
4232, 41sylib 221 . . . . . 6 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → :ran 𝐻⟶ran )
43 nfv 1915 . . . . . . . . . 10 𝑤𝜑
44 nfv 1915 . . . . . . . . . . 11 𝑤 Fn ran 𝐻
45 nfra1 3183 . . . . . . . . . . 11 𝑤𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)
4644, 45nfan 1900 . . . . . . . . . 10 𝑤( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))
4743, 46nfan 1900 . . . . . . . . 9 𝑤(𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)))
48 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑤 ∈ ran 𝐻) → ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))
49 simpr 488 . . . . . . . . . . 11 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑤 ∈ ran 𝐻) → 𝑤 ∈ ran 𝐻)
50 fvelrnb 6701 . . . . . . . . . . . . . . . 16 (𝐻 Fn (0...𝑁) → (𝑤 ∈ ran 𝐻 ↔ ∃𝑎 ∈ (0...𝑁)(𝐻𝑎) = 𝑤))
51 nfv 1915 . . . . . . . . . . . . . . . . 17 𝑎(𝐻𝑗) = 𝑤
52 nfmpt1 5128 . . . . . . . . . . . . . . . . . . . 20 𝑗(𝑗 ∈ (0...𝑁) ↦ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
5322, 52nfcxfr 2953 . . . . . . . . . . . . . . . . . . 19 𝑗𝐻
54 nfcv 2955 . . . . . . . . . . . . . . . . . . 19 𝑗𝑎
5553, 54nffv 6655 . . . . . . . . . . . . . . . . . 18 𝑗(𝐻𝑎)
56 nfcv 2955 . . . . . . . . . . . . . . . . . 18 𝑗𝑤
5755, 56nfeq 2968 . . . . . . . . . . . . . . . . 17 𝑗(𝐻𝑎) = 𝑤
58 fveq2 6645 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑎 → (𝐻𝑗) = (𝐻𝑎))
5958eqeq1d 2800 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑎 → ((𝐻𝑗) = 𝑤 ↔ (𝐻𝑎) = 𝑤))
6051, 57, 59cbvrexw 3388 . . . . . . . . . . . . . . . 16 (∃𝑗 ∈ (0...𝑁)(𝐻𝑗) = 𝑤 ↔ ∃𝑎 ∈ (0...𝑁)(𝐻𝑎) = 𝑤)
6150, 60bitr4di 292 . . . . . . . . . . . . . . 15 (𝐻 Fn (0...𝑁) → (𝑤 ∈ ran 𝐻 ↔ ∃𝑗 ∈ (0...𝑁)(𝐻𝑗) = 𝑤))
6224, 61syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑤 ∈ ran 𝐻 ↔ ∃𝑗 ∈ (0...𝑁)(𝐻𝑗) = 𝑤))
6362biimpa 480 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ran 𝐻) → ∃𝑗 ∈ (0...𝑁)(𝐻𝑗) = 𝑤)
64 simp3 1135 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...𝑁) ∧ (𝐻𝑗) = 𝑤) → (𝐻𝑗) = 𝑤)
65 simpr 488 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑁))
6620adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑁)) → {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ∈ V)
6722fvmpt2 6756 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ (0...𝑁) ∧ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ∈ V) → (𝐻𝑗) = {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
6865, 66, 67syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐻𝑗) = {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
69 stoweidlem59.6 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
70 nfcv 2955 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑡(0...𝑁)
71 nfrab1 3337 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑡{𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}
7270, 71nfmpt 5127 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑡(𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
7369, 72nfcxfr 2953 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡𝐷
74 nfcv 2955 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡𝑗
7573, 74nffv 6655 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡(𝐷𝑗)
76 nfcv 2955 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡𝑇
77 stoweidlem59.7 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
78 nfrab1 3337 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑡{𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)}
7970, 78nfmpt 5127 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑡(𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
8077, 79nfcxfr 2953 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑡𝐵
8180, 74nffv 6655 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡(𝐵𝑗)
8276, 81nfdif 4053 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡(𝑇 ∖ (𝐵𝑗))
83 stoweidlem59.2 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡𝜑
84 nfv 1915 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡 𝑗 ∈ (0...𝑁)
8583, 84nfan 1900 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡(𝜑𝑗 ∈ (0...𝑁))
86 stoweidlem59.3 . . . . . . . . . . . . . . . . . . . . . . 23 𝐾 = (topGen‘ran (,))
87 stoweidlem59.4 . . . . . . . . . . . . . . . . . . . . . . 23 𝑇 = 𝐽
88 stoweidlem59.10 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐽 ∈ Comp)
8988adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑁)) → 𝐽 ∈ Comp)
9015adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑁)) → 𝐴𝐶)
91 stoweidlem59.12 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
92913adant1r 1174 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
93 stoweidlem59.13 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
94933adant1r 1174 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
95 stoweidlem59.14 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
9695adantlr 714 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
97 stoweidlem59.15 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
9897adantlr 714 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
9988uniexd 7450 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 𝐽 ∈ V)
10087, 99eqeltrid 2894 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑇 ∈ V)
101100adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑇 ∈ V)
102 rabexg 5198 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑇 ∈ V → {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ∈ V)
103101, 102syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (0...𝑁)) → {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ∈ V)
10477fvmpt2 6756 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗 ∈ (0...𝑁) ∧ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ∈ V) → (𝐵𝑗) = {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
10565, 103, 104syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐵𝑗) = {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
106 stoweidlem59.1 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑡𝐹
107 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} = {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)}
108 elfzelz 12904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ)
109108zred 12077 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℝ)
110 3re 11707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 ∈ ℝ
111 3ne0 11733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 ≠ 0
112110, 111rereccli 11396 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (1 / 3) ∈ ℝ
113 readdcl 10611 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℝ ∧ (1 / 3) ∈ ℝ) → (𝑗 + (1 / 3)) ∈ ℝ)
114109, 112, 113sylancl 589 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 ∈ (0...𝑁) → (𝑗 + (1 / 3)) ∈ ℝ)
115114adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑗 + (1 / 3)) ∈ ℝ)
116 stoweidlem59.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐸 ∈ ℝ+)
117116rpred 12421 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐸 ∈ ℝ)
118117adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ (0...𝑁)) → 𝐸 ∈ ℝ)
119115, 118remulcld 10662 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑗 + (1 / 3)) · 𝐸) ∈ ℝ)
120 stoweidlem59.16 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐹𝐶)
121120, 16eleqtrdi 2900 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
122121adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (0...𝑁)) → 𝐹 ∈ (𝐽 Cn 𝐾))
123106, 86, 87, 107, 119, 122rfcnpre3 41677 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (0...𝑁)) → {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ∈ (Clsd‘𝐽))
124105, 123eqeltrd 2890 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐵𝑗) ∈ (Clsd‘𝐽))
125 rabexg 5198 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑇 ∈ V → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ V)
126101, 125syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (0...𝑁)) → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ V)
12769fvmpt2 6756 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗 ∈ (0...𝑁) ∧ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ V) → (𝐷𝑗) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
12865, 126, 127syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐷𝑗) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
129 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}
130 resubcl 10941 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℝ ∧ (1 / 3) ∈ ℝ) → (𝑗 − (1 / 3)) ∈ ℝ)
131109, 112, 130sylancl 589 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 ∈ (0...𝑁) → (𝑗 − (1 / 3)) ∈ ℝ)
132131adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑗 − (1 / 3)) ∈ ℝ)
133132, 118remulcld 10662 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑗 − (1 / 3)) · 𝐸) ∈ ℝ)
134106, 86, 87, 129, 133, 122rfcnpre4 41678 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (0...𝑁)) → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ∈ (Clsd‘𝐽))
135128, 134eqeltrd 2890 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐷𝑗) ∈ (Clsd‘𝐽))
136133adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → ((𝑗 − (1 / 3)) · 𝐸) ∈ ℝ)
137119adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → ((𝑗 + (1 / 3)) · 𝐸) ∈ ℝ)
13886, 87, 16, 120fcnre 41669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐹:𝑇⟶ℝ)
139138ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → 𝐹:𝑇⟶ℝ)
140 ssrab2 4007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ⊆ 𝑇
141105, 140eqsstrdi 3969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐵𝑗) ⊆ 𝑇)
142141sselda 3915 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → 𝑡𝑇)
143139, 142ffvelrnd 6829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → (𝐹𝑡) ∈ ℝ)
144112, 130mpan2 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℝ → (𝑗 − (1 / 3)) ∈ ℝ)
145 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℝ → 𝑗 ∈ ℝ)
146112, 113mpan2 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℝ → (𝑗 + (1 / 3)) ∈ ℝ)
147 3pos 11732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 0 < 3
148110, 147recgt0ii 11537 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 0 < (1 / 3)
149112, 148elrpii 12382 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (1 / 3) ∈ ℝ+
150 ltsubrp 12415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑗 ∈ ℝ ∧ (1 / 3) ∈ ℝ+) → (𝑗 − (1 / 3)) < 𝑗)
151149, 150mpan2 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℝ → (𝑗 − (1 / 3)) < 𝑗)
152 ltaddrp 12416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑗 ∈ ℝ ∧ (1 / 3) ∈ ℝ+) → 𝑗 < (𝑗 + (1 / 3)))
153149, 152mpan2 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑗 ∈ ℝ → 𝑗 < (𝑗 + (1 / 3)))
154144, 145, 146, 151, 153lttrd 10792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑗 ∈ ℝ → (𝑗 − (1 / 3)) < (𝑗 + (1 / 3)))
155109, 154syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑗 ∈ (0...𝑁) → (𝑗 − (1 / 3)) < (𝑗 + (1 / 3)))
156155adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑗 − (1 / 3)) < (𝑗 + (1 / 3)))
157116rpregt0d 12427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
158157adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
159 ltmul1 11481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑗 − (1 / 3)) ∈ ℝ ∧ (𝑗 + (1 / 3)) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → ((𝑗 − (1 / 3)) < (𝑗 + (1 / 3)) ↔ ((𝑗 − (1 / 3)) · 𝐸) < ((𝑗 + (1 / 3)) · 𝐸)))
160132, 115, 158, 159syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑗 − (1 / 3)) < (𝑗 + (1 / 3)) ↔ ((𝑗 − (1 / 3)) · 𝐸) < ((𝑗 + (1 / 3)) · 𝐸)))
161156, 160mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑗 − (1 / 3)) · 𝐸) < ((𝑗 + (1 / 3)) · 𝐸))
162161adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → ((𝑗 − (1 / 3)) · 𝐸) < ((𝑗 + (1 / 3)) · 𝐸))
163105eleq2d 2875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑡 ∈ (𝐵𝑗) ↔ 𝑡 ∈ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)}))
164163biimpa 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → 𝑡 ∈ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
165 rabid 3331 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 ∈ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ↔ (𝑡𝑇 ∧ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)))
166164, 165sylib 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → (𝑡𝑇 ∧ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)))
167166simprd 499 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡))
168136, 137, 143, 162, 167ltletrd 10791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → ((𝑗 − (1 / 3)) · 𝐸) < (𝐹𝑡))
169136, 143ltnled 10778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → (((𝑗 − (1 / 3)) · 𝐸) < (𝐹𝑡) ↔ ¬ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)))
170168, 169mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → ¬ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))
171170intnand 492 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → ¬ (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)))
172 rabid 3331 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} ↔ (𝑡𝑇 ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)))
173171, 172sylnibr 332 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → ¬ 𝑡 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
174128adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → (𝐷𝑗) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
175173, 174neleqtrrd 2912 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑡 ∈ (𝐵𝑗)) → ¬ 𝑡 ∈ (𝐷𝑗))
176175ex 416 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑡 ∈ (𝐵𝑗) → ¬ 𝑡 ∈ (𝐷𝑗)))
17785, 176ralrimi 3180 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑗 ∈ (0...𝑁)) → ∀𝑡 ∈ (𝐵𝑗) ¬ 𝑡 ∈ (𝐷𝑗))
178 disj 4355 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐵𝑗) ∩ (𝐷𝑗)) = ∅ ↔ ∀𝑎 ∈ (𝐵𝑗) ¬ 𝑎 ∈ (𝐷𝑗))
179 nfcv 2955 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑎(𝐵𝑗)
18075nfcri 2943 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑡 𝑎 ∈ (𝐷𝑗)
181180nfn 1858 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑡 ¬ 𝑎 ∈ (𝐷𝑗)
182 nfv 1915 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑎 ¬ 𝑡 ∈ (𝐷𝑗)
183 eleq1 2877 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = 𝑡 → (𝑎 ∈ (𝐷𝑗) ↔ 𝑡 ∈ (𝐷𝑗)))
184183notbid 321 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑡 → (¬ 𝑎 ∈ (𝐷𝑗) ↔ ¬ 𝑡 ∈ (𝐷𝑗)))
185179, 81, 181, 182, 184cbvralfw 3382 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑎 ∈ (𝐵𝑗) ¬ 𝑎 ∈ (𝐷𝑗) ↔ ∀𝑡 ∈ (𝐵𝑗) ¬ 𝑡 ∈ (𝐷𝑗))
186178, 185bitri 278 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵𝑗) ∩ (𝐷𝑗)) = ∅ ↔ ∀𝑡 ∈ (𝐵𝑗) ¬ 𝑡 ∈ (𝐷𝑗))
187177, 186sylibr 237 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝐵𝑗) ∩ (𝐷𝑗)) = ∅)
188 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑇 ∖ (𝐵𝑗)) = (𝑇 ∖ (𝐵𝑗))
189 stoweidlem59.19 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑁 ∈ ℕ)
190189nnrpd 12419 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 ∈ ℝ+)
191116, 190rpdivcld 12438 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐸 / 𝑁) ∈ ℝ+)
192191adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐸 / 𝑁) ∈ ℝ+)
193117, 189nndivred 11681 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐸 / 𝑁) ∈ ℝ)
194112a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (1 / 3) ∈ ℝ)
195189nnge1d 11675 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → 1 ≤ 𝑁)
196 1re 10632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1 ∈ ℝ
197 0lt1 11153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 < 1
198196, 197pm3.2i 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (1 ∈ ℝ ∧ 0 < 1)
199198a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (1 ∈ ℝ ∧ 0 < 1))
200189nnred 11642 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑁 ∈ ℝ)
201189nngt0d 11676 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → 0 < 𝑁)
202 lediv2 11521 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (1 ≤ 𝑁 ↔ (𝐸 / 𝑁) ≤ (𝐸 / 1)))
203199, 200, 201, 157, 202syl121anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (1 ≤ 𝑁 ↔ (𝐸 / 𝑁) ≤ (𝐸 / 1)))
204195, 203mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐸 / 𝑁) ≤ (𝐸 / 1))
205116rpcnd 12423 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐸 ∈ ℂ)
206205div1d 11399 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐸 / 1) = 𝐸)
207204, 206breqtrd 5056 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐸 / 𝑁) ≤ 𝐸)
208 stoweidlem59.18 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐸 < (1 / 3))
209193, 117, 194, 207, 208lelttrd 10789 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐸 / 𝑁) < (1 / 3))
210209adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐸 / 𝑁) < (1 / 3))
21175, 82, 85, 86, 87, 16, 89, 90, 92, 94, 96, 98, 124, 135, 187, 188, 192, 210stoweidlem58 42715 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑁)) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))
212 df-rex 3112 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)) ↔ ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡))))
213211, 212sylib 221 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0...𝑁)) → ∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡))))
214 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))) → 𝑥𝐴)
215 simprr1 1218 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))) → ∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1))
216 fveq1 6644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = 𝑥 → (𝑦𝑡) = (𝑥𝑡))
217216breq2d 5042 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = 𝑥 → (0 ≤ (𝑦𝑡) ↔ 0 ≤ (𝑥𝑡)))
218216breq1d 5040 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = 𝑥 → ((𝑦𝑡) ≤ 1 ↔ (𝑥𝑡) ≤ 1))
219217, 218anbi12d 633 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = 𝑥 → ((0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ↔ (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1)))
220219ralbidv 3162 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑥 → (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1)))
221220, 1elrab2 3631 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑌 ↔ (𝑥𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1)))
222214, 215, 221sylanbrc 586 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))) → 𝑥𝑌)
223 simprr2 1219 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))) → ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁))
224 simprr3 1220 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡))
225223, 224jca 515 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))) → (∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))
226 nfcv 2955 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑦𝑥
227 nfv 1915 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑦(∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡))
228216breq1d 5040 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = 𝑥 → ((𝑦𝑡) < (𝐸 / 𝑁) ↔ (𝑥𝑡) < (𝐸 / 𝑁)))
229228ralbidv 3162 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑥 → (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ↔ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁)))
230216breq2d 5042 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = 𝑥 → ((1 − (𝐸 / 𝑁)) < (𝑦𝑡) ↔ (1 − (𝐸 / 𝑁)) < (𝑥𝑡)))
231230ralbidv 3162 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑥 → (∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡) ↔ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))
232229, 231anbi12d 633 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑥 → ((∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡)) ↔ (∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡))))
233226, 3, 227, 232elrabf 3624 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ↔ (𝑥𝑌 ∧ (∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡))))
234222, 225, 233sylanbrc 586 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡)))) → 𝑥 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
235234ex 416 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡))) → 𝑥 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))}))
236235eximdv 1918 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0...𝑁)) → (∃𝑥(𝑥𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(𝑥𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑥𝑡))) → ∃𝑥 𝑥 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))}))
237213, 236mpd 15 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑁)) → ∃𝑥 𝑥 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
238 ne0i 4250 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} → {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ≠ ∅)
239238exlimiv 1931 . . . . . . . . . . . . . . . . . . . 20 (∃𝑥 𝑥 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} → {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ≠ ∅)
240237, 239syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...𝑁)) → {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ≠ ∅)
24168, 240eqnetrd 3054 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑁)) → (𝐻𝑗) ≠ ∅)
2422413adant3 1129 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...𝑁) ∧ (𝐻𝑗) = 𝑤) → (𝐻𝑗) ≠ ∅)
24364, 242eqnetrrd 3055 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0...𝑁) ∧ (𝐻𝑗) = 𝑤) → 𝑤 ≠ ∅)
2442433exp 1116 . . . . . . . . . . . . . . 15 (𝜑 → (𝑗 ∈ (0...𝑁) → ((𝐻𝑗) = 𝑤𝑤 ≠ ∅)))
245244rexlimdv 3242 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑗 ∈ (0...𝑁)(𝐻𝑗) = 𝑤𝑤 ≠ ∅))
246245adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ran 𝐻) → (∃𝑗 ∈ (0...𝑁)(𝐻𝑗) = 𝑤𝑤 ≠ ∅))
24763, 246mpd 15 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ran 𝐻) → 𝑤 ≠ ∅)
248247adantlr 714 . . . . . . . . . . 11 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑤 ∈ ran 𝐻) → 𝑤 ≠ ∅)
249 rsp 3170 . . . . . . . . . . 11 (∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤) → (𝑤 ∈ ran 𝐻 → (𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)))
25048, 49, 248, 249syl3c 66 . . . . . . . . . 10 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑤 ∈ ran 𝐻) → (𝑤) ∈ 𝑤)
251250ex 416 . . . . . . . . 9 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → (𝑤 ∈ ran 𝐻 → (𝑤) ∈ 𝑤))
25247, 251ralrimi 3180 . . . . . . . 8 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → ∀𝑤 ∈ ran 𝐻(𝑤) ∈ 𝑤)
253 chfnrn 6796 . . . . . . . 8 (( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤) ∈ 𝑤) → ran ran 𝐻)
25432, 252, 253syl2anc 587 . . . . . . 7 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → ran ran 𝐻)
255 nfv 1915 . . . . . . . . . 10 𝑦𝜑
256 nfcv 2955 . . . . . . . . . . . 12 𝑦
257 nfcv 2955 . . . . . . . . . . . . . . 15 𝑦(0...𝑁)
258 nfrab1 3337 . . . . . . . . . . . . . . 15 𝑦{𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))}
259257, 258nfmpt 5127 . . . . . . . . . . . . . 14 𝑦(𝑗 ∈ (0...𝑁) ↦ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
26022, 259nfcxfr 2953 . . . . . . . . . . . . 13 𝑦𝐻
261260nfrn 5788 . . . . . . . . . . . 12 𝑦ran 𝐻
262256, 261nffn 6422 . . . . . . . . . . 11 𝑦 Fn ran 𝐻
263 nfv 1915 . . . . . . . . . . . 12 𝑦(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)
264261, 263nfralw 3189 . . . . . . . . . . 11 𝑦𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)
265262, 264nfan 1900 . . . . . . . . . 10 𝑦( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))
266255, 265nfan 1900 . . . . . . . . 9 𝑦(𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)))
267261nfuni 4807 . . . . . . . . 9 𝑦 ran 𝐻
268 fnunirn 6990 . . . . . . . . . . . . . . 15 (𝐻 Fn (0...𝑁) → (𝑦 ran 𝐻 ↔ ∃𝑧 ∈ (0...𝑁)𝑦 ∈ (𝐻𝑧)))
269 nfcv 2955 . . . . . . . . . . . . . . . . . 18 𝑗𝑧
27053, 269nffv 6655 . . . . . . . . . . . . . . . . 17 𝑗(𝐻𝑧)
271270nfcri 2943 . . . . . . . . . . . . . . . 16 𝑗 𝑦 ∈ (𝐻𝑧)
272 nfv 1915 . . . . . . . . . . . . . . . 16 𝑧 𝑦 ∈ (𝐻𝑗)
273 fveq2 6645 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑗 → (𝐻𝑧) = (𝐻𝑗))
274273eleq2d 2875 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑗 → (𝑦 ∈ (𝐻𝑧) ↔ 𝑦 ∈ (𝐻𝑗)))
275271, 272, 274cbvrexw 3388 . . . . . . . . . . . . . . 15 (∃𝑧 ∈ (0...𝑁)𝑦 ∈ (𝐻𝑧) ↔ ∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻𝑗))
276268, 275syl6bb 290 . . . . . . . . . . . . . 14 (𝐻 Fn (0...𝑁) → (𝑦 ran 𝐻 ↔ ∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻𝑗)))
27724, 276syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ran 𝐻 ↔ ∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻𝑗)))
278277biimpa 480 . . . . . . . . . . . 12 ((𝜑𝑦 ran 𝐻) → ∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻𝑗))
279 nfv 1915 . . . . . . . . . . . . . 14 𝑗𝜑
28053nfrn 5788 . . . . . . . . . . . . . . . 16 𝑗ran 𝐻
281280nfuni 4807 . . . . . . . . . . . . . . 15 𝑗 ran 𝐻
282281nfcri 2943 . . . . . . . . . . . . . 14 𝑗 𝑦 ran 𝐻
283279, 282nfan 1900 . . . . . . . . . . . . 13 𝑗(𝜑𝑦 ran 𝐻)
284 nfv 1915 . . . . . . . . . . . . 13 𝑗 𝑦𝑌
285 simp1l 1194 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ran 𝐻) ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑦 ∈ (𝐻𝑗)) → 𝜑)
286 simp2 1134 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ran 𝐻) ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑦 ∈ (𝐻𝑗)) → 𝑗 ∈ (0...𝑁))
287 simp3 1135 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ran 𝐻) ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑦 ∈ (𝐻𝑗)) → 𝑦 ∈ (𝐻𝑗))
28868eleq2d 2875 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑦 ∈ (𝐻𝑗) ↔ 𝑦 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))}))
289288biimpa 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) → 𝑦 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
290 rabid 3331 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))} ↔ (𝑦𝑌 ∧ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))))
291289, 290sylib 221 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) → (𝑦𝑌 ∧ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))))
292291simpld 498 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) → 𝑦𝑌)
293285, 286, 287, 292syl21anc 836 . . . . . . . . . . . . . 14 (((𝜑𝑦 ran 𝐻) ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑦 ∈ (𝐻𝑗)) → 𝑦𝑌)
2942933exp 1116 . . . . . . . . . . . . 13 ((𝜑𝑦 ran 𝐻) → (𝑗 ∈ (0...𝑁) → (𝑦 ∈ (𝐻𝑗) → 𝑦𝑌)))
295283, 284, 294rexlimd 3276 . . . . . . . . . . . 12 ((𝜑𝑦 ran 𝐻) → (∃𝑗 ∈ (0...𝑁)𝑦 ∈ (𝐻𝑗) → 𝑦𝑌))
296278, 295mpd 15 . . . . . . . . . . 11 ((𝜑𝑦 ran 𝐻) → 𝑦𝑌)
297296adantlr 714 . . . . . . . . . 10 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑦 ran 𝐻) → 𝑦𝑌)
298297ex 416 . . . . . . . . 9 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → (𝑦 ran 𝐻𝑦𝑌))
299266, 267, 3, 298ssrd 3920 . . . . . . . 8 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → ran 𝐻𝑌)
300 ssrab2 4007 . . . . . . . . 9 {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} ⊆ 𝐴
3011, 300eqsstri 3949 . . . . . . . 8 𝑌𝐴
302299, 301sstrdi 3927 . . . . . . 7 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → ran 𝐻𝐴)
303254, 302sstrd 3925 . . . . . 6 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → ran 𝐴)
30442, 303fssd 6502 . . . . 5 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → :ran 𝐻𝐴)
305 dffn3 6499 . . . . . . 7 (𝐻 Fn (0...𝑁) ↔ 𝐻:(0...𝑁)⟶ran 𝐻)
30624, 305sylib 221 . . . . . 6 (𝜑𝐻:(0...𝑁)⟶ran 𝐻)
307306adantr 484 . . . . 5 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → 𝐻:(0...𝑁)⟶ran 𝐻)
308 fco 6505 . . . . 5 ((:ran 𝐻𝐴𝐻:(0...𝑁)⟶ran 𝐻) → (𝐻):(0...𝑁)⟶𝐴)
309304, 307, 308syl2anc 587 . . . 4 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → (𝐻):(0...𝑁)⟶𝐴)
310 nfcv 2955 . . . . . . . 8 𝑗
311310, 280nffn 6422 . . . . . . 7 𝑗 Fn ran 𝐻
312 nfv 1915 . . . . . . . 8 𝑗(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)
313280, 312nfralw 3189 . . . . . . 7 𝑗𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)
314311, 313nfan 1900 . . . . . 6 𝑗( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))
315279, 314nfan 1900 . . . . 5 𝑗(𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤)))
316 simpll 766 . . . . . . . . . 10 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → 𝜑)
317 simpr 488 . . . . . . . . . 10 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑁))
31824ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → 𝐻 Fn (0...𝑁))
319 fvco2 6735 . . . . . . . . . . . 12 ((𝐻 Fn (0...𝑁) ∧ 𝑗 ∈ (0...𝑁)) → ((𝐻)‘𝑗) = (‘(𝐻𝑗)))
320318, 319sylancom 591 . . . . . . . . . . 11 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ((𝐻)‘𝑗) = (‘(𝐻𝑗)))
321 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))
322 fnfun 6423 . . . . . . . . . . . . . . . 16 (𝐻 Fn (0...𝑁) → Fun 𝐻)
32324, 322syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐻)
324323ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → Fun 𝐻)
32524fndmd 6427 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐻 = (0...𝑁))
326325adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0...𝑁)) → dom 𝐻 = (0...𝑁))
32765, 326eleqtrrd 2893 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑗 ∈ dom 𝐻)
328327adantlr 714 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ dom 𝐻)
329 fvelrn 6821 . . . . . . . . . . . . . 14 ((Fun 𝐻𝑗 ∈ dom 𝐻) → (𝐻𝑗) ∈ ran 𝐻)
330324, 328, 329syl2anc 587 . . . . . . . . . . . . 13 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (𝐻𝑗) ∈ ran 𝐻)
331321, 330jca 515 . . . . . . . . . . . 12 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤) ∧ (𝐻𝑗) ∈ ran 𝐻))
332241adantlr 714 . . . . . . . . . . . 12 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (𝐻𝑗) ≠ ∅)
333 neeq1 3049 . . . . . . . . . . . . . 14 (𝑤 = (𝐻𝑗) → (𝑤 ≠ ∅ ↔ (𝐻𝑗) ≠ ∅))
334 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑤 = (𝐻𝑗) → (𝑤) = (‘(𝐻𝑗)))
335 id 22 . . . . . . . . . . . . . . 15 (𝑤 = (𝐻𝑗) → 𝑤 = (𝐻𝑗))
336334, 335eleq12d 2884 . . . . . . . . . . . . . 14 (𝑤 = (𝐻𝑗) → ((𝑤) ∈ 𝑤 ↔ (‘(𝐻𝑗)) ∈ (𝐻𝑗)))
337333, 336imbi12d 348 . . . . . . . . . . . . 13 (𝑤 = (𝐻𝑗) → ((𝑤 ≠ ∅ → (𝑤) ∈ 𝑤) ↔ ((𝐻𝑗) ≠ ∅ → (‘(𝐻𝑗)) ∈ (𝐻𝑗))))
338337rspccva 3570 . . . . . . . . . . . 12 ((∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤) ∧ (𝐻𝑗) ∈ ran 𝐻) → ((𝐻𝑗) ≠ ∅ → (‘(𝐻𝑗)) ∈ (𝐻𝑗)))
339331, 332, 338sylc 65 . . . . . . . . . . 11 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (‘(𝐻𝑗)) ∈ (𝐻𝑗))
340320, 339eqeltrd 2890 . . . . . . . . . 10 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ((𝐻)‘𝑗) ∈ (𝐻𝑗))
341256, 260nfco 5700 . . . . . . . . . . . . 13 𝑦(𝐻)
342 nfcv 2955 . . . . . . . . . . . . 13 𝑦𝑗
343341, 342nffv 6655 . . . . . . . . . . . 12 𝑦((𝐻)‘𝑗)
344 nfv 1915 . . . . . . . . . . . . . 14 𝑦(𝜑𝑗 ∈ (0...𝑁))
345260, 342nffv 6655 . . . . . . . . . . . . . . 15 𝑦(𝐻𝑗)
346343, 345nfel 2969 . . . . . . . . . . . . . 14 𝑦((𝐻)‘𝑗) ∈ (𝐻𝑗)
347344, 346nfan 1900 . . . . . . . . . . . . 13 𝑦((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗))
348343, 3nfel 2969 . . . . . . . . . . . . 13 𝑦((𝐻)‘𝑗) ∈ 𝑌
349347, 348nfim 1897 . . . . . . . . . . . 12 𝑦(((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ((𝐻)‘𝑗) ∈ 𝑌)
350 eleq1 2877 . . . . . . . . . . . . . 14 (𝑦 = ((𝐻)‘𝑗) → (𝑦 ∈ (𝐻𝑗) ↔ ((𝐻)‘𝑗) ∈ (𝐻𝑗)))
351350anbi2d 631 . . . . . . . . . . . . 13 (𝑦 = ((𝐻)‘𝑗) → (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) ↔ ((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗))))
352 eleq1 2877 . . . . . . . . . . . . 13 (𝑦 = ((𝐻)‘𝑗) → (𝑦𝑌 ↔ ((𝐻)‘𝑗) ∈ 𝑌))
353351, 352imbi12d 348 . . . . . . . . . . . 12 (𝑦 = ((𝐻)‘𝑗) → ((((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) → 𝑦𝑌) ↔ (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ((𝐻)‘𝑗) ∈ 𝑌)))
354343, 349, 353, 292vtoclgf 3513 . . . . . . . . . . 11 (((𝐻)‘𝑗) ∈ (𝐻𝑗) → (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ((𝐻)‘𝑗) ∈ 𝑌))
355354anabsi7 670 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ((𝐻)‘𝑗) ∈ 𝑌)
356316, 317, 340, 355syl21anc 836 . . . . . . . . 9 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ((𝐻)‘𝑗) ∈ 𝑌)
3571eleq2i 2881 . . . . . . . . . 10 (((𝐻)‘𝑗) ∈ 𝑌 ↔ ((𝐻)‘𝑗) ∈ {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)})
358 nfcv 2955 . . . . . . . . . . 11 𝑦𝐴
359 nfcv 2955 . . . . . . . . . . . 12 𝑦𝑇
360 nfcv 2955 . . . . . . . . . . . . . 14 𝑦0
361 nfcv 2955 . . . . . . . . . . . . . 14 𝑦
362 nfcv 2955 . . . . . . . . . . . . . . 15 𝑦𝑡
363343, 362nffv 6655 . . . . . . . . . . . . . 14 𝑦(((𝐻)‘𝑗)‘𝑡)
364360, 361, 363nfbr 5077 . . . . . . . . . . . . 13 𝑦0 ≤ (((𝐻)‘𝑗)‘𝑡)
365 nfcv 2955 . . . . . . . . . . . . . 14 𝑦1
366363, 361, 365nfbr 5077 . . . . . . . . . . . . 13 𝑦(((𝐻)‘𝑗)‘𝑡) ≤ 1
367364, 366nfan 1900 . . . . . . . . . . . 12 𝑦(0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1)
368359, 367nfralw 3189 . . . . . . . . . . 11 𝑦𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1)
369 nfcv 2955 . . . . . . . . . . . . 13 𝑡𝑦
370 nfcv 2955 . . . . . . . . . . . . . . 15 𝑡
371 nfra1 3183 . . . . . . . . . . . . . . . . . . 19 𝑡𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁)
372 nfra1 3183 . . . . . . . . . . . . . . . . . . 19 𝑡𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡)
373371, 372nfan 1900 . . . . . . . . . . . . . . . . . 18 𝑡(∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))
374 nfra1 3183 . . . . . . . . . . . . . . . . . . . 20 𝑡𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)
375 nfcv 2955 . . . . . . . . . . . . . . . . . . . 20 𝑡𝐴
376374, 375nfrabw 3338 . . . . . . . . . . . . . . . . . . 19 𝑡{𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)}
3771, 376nfcxfr 2953 . . . . . . . . . . . . . . . . . 18 𝑡𝑌
378373, 377nfrabw 3338 . . . . . . . . . . . . . . . . 17 𝑡{𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))}
37970, 378nfmpt 5127 . . . . . . . . . . . . . . . 16 𝑡(𝑗 ∈ (0...𝑁) ↦ {𝑦𝑌 ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))})
38022, 379nfcxfr 2953 . . . . . . . . . . . . . . 15 𝑡𝐻
381370, 380nfco 5700 . . . . . . . . . . . . . 14 𝑡(𝐻)
382381, 74nffv 6655 . . . . . . . . . . . . 13 𝑡((𝐻)‘𝑗)
383369, 382nfeq 2968 . . . . . . . . . . . 12 𝑡 𝑦 = ((𝐻)‘𝑗)
384 fveq1 6644 . . . . . . . . . . . . . 14 (𝑦 = ((𝐻)‘𝑗) → (𝑦𝑡) = (((𝐻)‘𝑗)‘𝑡))
385384breq2d 5042 . . . . . . . . . . . . 13 (𝑦 = ((𝐻)‘𝑗) → (0 ≤ (𝑦𝑡) ↔ 0 ≤ (((𝐻)‘𝑗)‘𝑡)))
386384breq1d 5040 . . . . . . . . . . . . 13 (𝑦 = ((𝐻)‘𝑗) → ((𝑦𝑡) ≤ 1 ↔ (((𝐻)‘𝑗)‘𝑡) ≤ 1))
387385, 386anbi12d 633 . . . . . . . . . . . 12 (𝑦 = ((𝐻)‘𝑗) → ((0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ↔ (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1)))
388383, 387ralbid 3195 . . . . . . . . . . 11 (𝑦 = ((𝐻)‘𝑗) → (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1)))
389343, 358, 368, 388elrabf 3624 . . . . . . . . . 10 (((𝐻)‘𝑗) ∈ {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} ↔ (((𝐻)‘𝑗) ∈ 𝐴 ∧ ∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1)))
390357, 389bitri 278 . . . . . . . . 9 (((𝐻)‘𝑗) ∈ 𝑌 ↔ (((𝐻)‘𝑗) ∈ 𝐴 ∧ ∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1)))
391356, 390sylib 221 . . . . . . . 8 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (((𝐻)‘𝑗) ∈ 𝐴 ∧ ∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1)))
392391simprd 499 . . . . . . 7 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1))
393 nfcv 2955 . . . . . . . . . . . 12 𝑦(𝐷𝑗)
394 nfcv 2955 . . . . . . . . . . . . 13 𝑦 <
395 nfcv 2955 . . . . . . . . . . . . 13 𝑦(𝐸 / 𝑁)
396363, 394, 395nfbr 5077 . . . . . . . . . . . 12 𝑦(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)
397393, 396nfralw 3189 . . . . . . . . . . 11 𝑦𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)
398347, 397nfim 1897 . . . . . . . . . 10 𝑦(((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁))
399384breq1d 5040 . . . . . . . . . . . 12 (𝑦 = ((𝐻)‘𝑗) → ((𝑦𝑡) < (𝐸 / 𝑁) ↔ (((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)))
400383, 399ralbid 3195 . . . . . . . . . . 11 (𝑦 = ((𝐻)‘𝑗) → (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ↔ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)))
401351, 400imbi12d 348 . . . . . . . . . 10 (𝑦 = ((𝐻)‘𝑗) → ((((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁)) ↔ (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁))))
402291simprd 499 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) → (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡)))
403402simpld 498 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑁))
404343, 398, 401, 403vtoclgf 3513 . . . . . . . . 9 (((𝐻)‘𝑗) ∈ (𝐻𝑗) → (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)))
405404anabsi7 670 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁))
406316, 317, 340, 405syl21anc 836 . . . . . . 7 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁))
407 nfcv 2955 . . . . . . . . . . . 12 𝑦(𝐵𝑗)
408 nfcv 2955 . . . . . . . . . . . . 13 𝑦(1 − (𝐸 / 𝑁))
409408, 394, 363nfbr 5077 . . . . . . . . . . . 12 𝑦(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)
410407, 409nfralw 3189 . . . . . . . . . . 11 𝑦𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)
411347, 410nfim 1897 . . . . . . . . . 10 𝑦(((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡))
412384breq2d 5042 . . . . . . . . . . . 12 (𝑦 = ((𝐻)‘𝑗) → ((1 − (𝐸 / 𝑁)) < (𝑦𝑡) ↔ (1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)))
413383, 412ralbid 3195 . . . . . . . . . . 11 (𝑦 = ((𝐻)‘𝑗) → (∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡) ↔ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)))
414351, 413imbi12d 348 . . . . . . . . . 10 (𝑦 = ((𝐻)‘𝑗) → ((((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡)) ↔ (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡))))
415402simprd 499 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑦 ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (𝑦𝑡))
416343, 411, 414, 415vtoclgf 3513 . . . . . . . . 9 (((𝐻)‘𝑗) ∈ (𝐻𝑗) → (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)))
417416anabsi7 670 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝐻)‘𝑗) ∈ (𝐻𝑗)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡))
418316, 317, 340, 417syl21anc 836 . . . . . . 7 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡))
419392, 406, 4183jca 1125 . . . . . 6 (((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) ∧ 𝑗 ∈ (0...𝑁)) → (∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)))
420419ex 416 . . . . 5 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → (𝑗 ∈ (0...𝑁) → (∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡))))
421315, 420ralrimi 3180 . . . 4 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)))
422309, 421jca 515 . . 3 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → ((𝐻):(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡))))
423 feq1 6468 . . . . 5 (𝑥 = (𝐻) → (𝑥:(0...𝑁)⟶𝐴 ↔ (𝐻):(0...𝑁)⟶𝐴))
424 nfcv 2955 . . . . . . 7 𝑗𝑥
425310, 53nfco 5700 . . . . . . 7 𝑗(𝐻)
426424, 425nfeq 2968 . . . . . 6 𝑗 𝑥 = (𝐻)
427 nfcv 2955 . . . . . . . . 9 𝑡𝑥
428427, 381nfeq 2968 . . . . . . . 8 𝑡 𝑥 = (𝐻)
429 fveq1 6644 . . . . . . . . . . 11 (𝑥 = (𝐻) → (𝑥𝑗) = ((𝐻)‘𝑗))
430429fveq1d 6647 . . . . . . . . . 10 (𝑥 = (𝐻) → ((𝑥𝑗)‘𝑡) = (((𝐻)‘𝑗)‘𝑡))
431430breq2d 5042 . . . . . . . . 9 (𝑥 = (𝐻) → (0 ≤ ((𝑥𝑗)‘𝑡) ↔ 0 ≤ (((𝐻)‘𝑗)‘𝑡)))
432430breq1d 5040 . . . . . . . . 9 (𝑥 = (𝐻) → (((𝑥𝑗)‘𝑡) ≤ 1 ↔ (((𝐻)‘𝑗)‘𝑡) ≤ 1))
433431, 432anbi12d 633 . . . . . . . 8 (𝑥 = (𝐻) → ((0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ↔ (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1)))
434428, 433ralbid 3195 . . . . . . 7 (𝑥 = (𝐻) → (∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1)))
435430breq1d 5040 . . . . . . . 8 (𝑥 = (𝐻) → (((𝑥𝑗)‘𝑡) < (𝐸 / 𝑁) ↔ (((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)))
436428, 435ralbid 3195 . . . . . . 7 (𝑥 = (𝐻) → (∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑁) ↔ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁)))
437430breq2d 5042 . . . . . . . 8 (𝑥 = (𝐻) → ((1 − (𝐸 / 𝑁)) < ((𝑥𝑗)‘𝑡) ↔ (1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)))
438428, 437ralbid 3195 . . . . . . 7 (𝑥 = (𝐻) → (∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥𝑗)‘𝑡) ↔ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)))
439434, 436, 4383anbi123d 1433 . . . . . 6 (𝑥 = (𝐻) → ((∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥𝑗)‘𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡))))
440426, 439ralbid 3195 . . . . 5 (𝑥 = (𝐻) → (∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥𝑗)‘𝑡)) ↔ ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡))))
441423, 440anbi12d 633 . . . 4 (𝑥 = (𝐻) → ((𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥𝑗)‘𝑡))) ↔ ((𝐻):(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡)))))
442441spcegv 3545 . . 3 ((𝐻) ∈ V → (((𝐻):(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ (((𝐻)‘𝑗)‘𝑡) ∧ (((𝐻)‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)(((𝐻)‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < (((𝐻)‘𝑗)‘𝑡))) → ∃𝑥(𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥𝑗)‘𝑡)))))
44340, 422, 442sylc 65 . 2 ((𝜑 ∧ ( Fn ran 𝐻 ∧ ∀𝑤 ∈ ran 𝐻(𝑤 ≠ ∅ → (𝑤) ∈ 𝑤))) → ∃𝑥(𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥𝑗)‘𝑡))))
44431, 443exlimddv 1936 1 (𝜑 → ∃𝑥(𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥𝑗)‘𝑡))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ∃wex 1781  Ⅎwnf 1785   ∈ wcel 2111  Ⅎwnfc 2936   ≠ wne 2987  ∀wral 3106  ∃wrex 3107  {crab 3110  Vcvv 3441   ∖ cdif 3878   ∩ cin 3880   ⊆ wss 3881  ∅c0 4243  ∪ cuni 4800   class class class wbr 5030   ↦ cmpt 5110  dom cdm 5519  ran crn 5520   ∘ ccom 5523  Fun wfun 6318   Fn wfn 6319  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135  Fincfn 8494  ℝcr 10527  0cc0 10528  1c1 10529   + caddc 10531   · cmul 10533   < clt 10666   ≤ cle 10667   − cmin 10861   / cdiv 11288  ℕcn 11627  3c3 11683  ℝ+crp 12379  (,)cioo 12728  ...cfz 12887  topGenctg 16705  Clsdccld 21628   Cn ccn 21836  Compccmp 21998 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-inf2 9090  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606  ax-mulf 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7390  df-om 7563  df-1st 7673  df-2nd 7674  df-supp 7816  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-er 8274  df-map 8393  df-pm 8394  df-ixp 8447  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-fsupp 8820  df-fi 8861  df-sup 8892  df-inf 8893  df-oi 8960  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-5 11693  df-6 11694  df-7 11695  df-8 11696  df-9 11697  df-n0 11888  df-z 11972  df-dec 12089  df-uz 12234  df-q 12339  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ioc 12733  df-ico 12734  df-icc 12735  df-fz 12888  df-fzo 13031  df-fl 13159  df-seq 13367  df-exp 13428  df-hash 13689  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18220  df-cntz 18442  df-cmn 18903  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-cnfld 20095  df-top 21506  df-topon 21523  df-topsp 21545  df-bases 21558  df-cld 21631  df-cn 21839  df-cnp 21840  df-cmp 21999  df-tx 22174  df-hmeo 22367  df-xms 22934  df-ms 22935  df-tms 22936 This theorem is referenced by:  stoweidlem60  42717
 Copyright terms: Public domain W3C validator