Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem52 Structured version   Visualization version   GIF version

Theorem stoweidlem52 42694
Description: There exists a neighborood V as in Lemma 1 of [BrosowskiDeutsh] p. 90. Here Z is used to represent t0 in the paper, and v is used to represent V in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem52.1 𝑡𝑈
stoweidlem52.2 𝑡𝜑
stoweidlem52.3 𝑡𝑃
stoweidlem52.4 𝐾 = (topGen‘ran (,))
stoweidlem52.5 𝑉 = {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
stoweidlem52.7 𝑇 = 𝐽
stoweidlem52.8 𝐶 = (𝐽 Cn 𝐾)
stoweidlem52.9 (𝜑𝐴𝐶)
stoweidlem52.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem52.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem52.12 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
stoweidlem52.13 (𝜑𝐷 ∈ ℝ+)
stoweidlem52.14 (𝜑𝐷 < 1)
stoweidlem52.15 (𝜑𝑈𝐽)
stoweidlem52.16 (𝜑𝑍𝑈)
stoweidlem52.17 (𝜑𝑃𝐴)
stoweidlem52.18 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
stoweidlem52.19 (𝜑 → (𝑃𝑍) = 0)
stoweidlem52.20 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
Assertion
Ref Expression
stoweidlem52 (𝜑 → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
Distinct variable groups:   𝑒,𝑎,𝑡   𝐴,𝑎,𝑡   𝐷,𝑎,𝑡   𝑇,𝑎,𝑡   𝑈,𝑎   𝑉,𝑎,𝑒   𝜑,𝑎,𝑒   𝑒,𝑓,𝑔,𝑡   𝑣,𝑒,𝑥,𝑡   𝐴,𝑓,𝑔   𝐷,𝑓,𝑔   𝑃,𝑓,𝑔   𝑇,𝑓,𝑔   𝑈,𝑓,𝑔   𝑓,𝑉,𝑔   𝜑,𝑓,𝑔   𝑡,𝑍,𝑣   𝑣,𝐴   𝑣,𝐽   𝑣,𝑇,𝑥   𝑣,𝑈,𝑥   𝑣,𝑉,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑣,𝑡)   𝐴(𝑒)   𝐶(𝑥,𝑣,𝑡,𝑒,𝑓,𝑔,𝑎)   𝐷(𝑥,𝑣,𝑒)   𝑃(𝑥,𝑣,𝑡,𝑒,𝑎)   𝑇(𝑒)   𝑈(𝑡,𝑒)   𝐽(𝑥,𝑡,𝑒,𝑓,𝑔,𝑎)   𝐾(𝑥,𝑣,𝑡,𝑒,𝑓,𝑔,𝑎)   𝑉(𝑡)   𝑍(𝑥,𝑒,𝑓,𝑔,𝑎)

Proof of Theorem stoweidlem52
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2955 . . 3 𝑡(𝐷 / 2)
2 stoweidlem52.3 . . 3 𝑡𝑃
3 stoweidlem52.2 . . 3 𝑡𝜑
4 stoweidlem52.4 . . 3 𝐾 = (topGen‘ran (,))
5 stoweidlem52.7 . . 3 𝑇 = 𝐽
6 stoweidlem52.5 . . 3 𝑉 = {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
7 stoweidlem52.13 . . . . . 6 (𝜑𝐷 ∈ ℝ+)
87rpred 12419 . . . . 5 (𝜑𝐷 ∈ ℝ)
98rehalfcld 11872 . . . 4 (𝜑 → (𝐷 / 2) ∈ ℝ)
109rexrd 10680 . . 3 (𝜑 → (𝐷 / 2) ∈ ℝ*)
11 stoweidlem52.9 . . . . 5 (𝜑𝐴𝐶)
12 stoweidlem52.8 . . . . 5 𝐶 = (𝐽 Cn 𝐾)
1311, 12sseqtrdi 3965 . . . 4 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
14 stoweidlem52.17 . . . 4 (𝜑𝑃𝐴)
1513, 14sseldd 3916 . . 3 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
161, 2, 3, 4, 5, 6, 10, 15rfcnpre2 41660 . 2 (𝜑𝑉𝐽)
17 stoweidlem52.15 . . . . . . . 8 (𝜑𝑈𝐽)
18 elssuni 4830 . . . . . . . 8 (𝑈𝐽𝑈 𝐽)
1917, 18syl 17 . . . . . . 7 (𝜑𝑈 𝐽)
2019, 5sseqtrrdi 3966 . . . . . 6 (𝜑𝑈𝑇)
21 stoweidlem52.16 . . . . . 6 (𝜑𝑍𝑈)
2220, 21sseldd 3916 . . . . 5 (𝜑𝑍𝑇)
23 stoweidlem52.19 . . . . . 6 (𝜑 → (𝑃𝑍) = 0)
24 2re 11699 . . . . . . . 8 2 ∈ ℝ
2524a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
267rpgt0d 12422 . . . . . . 7 (𝜑 → 0 < 𝐷)
27 2pos 11728 . . . . . . . 8 0 < 2
2827a1i 11 . . . . . . 7 (𝜑 → 0 < 2)
298, 25, 26, 28divgt0d 11564 . . . . . 6 (𝜑 → 0 < (𝐷 / 2))
3023, 29eqbrtrd 5052 . . . . 5 (𝜑 → (𝑃𝑍) < (𝐷 / 2))
31 nfcv 2955 . . . . . 6 𝑡𝑍
32 nfcv 2955 . . . . . 6 𝑡𝑇
332, 31nffv 6655 . . . . . . 7 𝑡(𝑃𝑍)
34 nfcv 2955 . . . . . . 7 𝑡 <
3533, 34, 1nfbr 5077 . . . . . 6 𝑡(𝑃𝑍) < (𝐷 / 2)
36 fveq2 6645 . . . . . . 7 (𝑡 = 𝑍 → (𝑃𝑡) = (𝑃𝑍))
3736breq1d 5040 . . . . . 6 (𝑡 = 𝑍 → ((𝑃𝑡) < (𝐷 / 2) ↔ (𝑃𝑍) < (𝐷 / 2)))
3831, 32, 35, 37elrabf 3624 . . . . 5 (𝑍 ∈ {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)} ↔ (𝑍𝑇 ∧ (𝑃𝑍) < (𝐷 / 2)))
3922, 30, 38sylanbrc 586 . . . 4 (𝜑𝑍 ∈ {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)})
4039, 6eleqtrrdi 2901 . . 3 (𝜑𝑍𝑉)
41 nfrab1 3337 . . . . 5 𝑡{𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
426, 41nfcxfr 2953 . . . 4 𝑡𝑉
43 stoweidlem52.1 . . . 4 𝑡𝑈
4411, 14sseldd 3916 . . . . . . . . . . 11 (𝜑𝑃𝐶)
454, 5, 12, 44fcnre 41654 . . . . . . . . . 10 (𝜑𝑃:𝑇⟶ℝ)
4645adantr 484 . . . . . . . . 9 ((𝜑𝑡𝑉) → 𝑃:𝑇⟶ℝ)
476rabeq2i 3435 . . . . . . . . . . . 12 (𝑡𝑉 ↔ (𝑡𝑇 ∧ (𝑃𝑡) < (𝐷 / 2)))
4847biimpi 219 . . . . . . . . . . 11 (𝑡𝑉 → (𝑡𝑇 ∧ (𝑃𝑡) < (𝐷 / 2)))
4948adantl 485 . . . . . . . . . 10 ((𝜑𝑡𝑉) → (𝑡𝑇 ∧ (𝑃𝑡) < (𝐷 / 2)))
5049simpld 498 . . . . . . . . 9 ((𝜑𝑡𝑉) → 𝑡𝑇)
5146, 50ffvelrnd 6829 . . . . . . . 8 ((𝜑𝑡𝑉) → (𝑃𝑡) ∈ ℝ)
529adantr 484 . . . . . . . 8 ((𝜑𝑡𝑉) → (𝐷 / 2) ∈ ℝ)
538adantr 484 . . . . . . . 8 ((𝜑𝑡𝑉) → 𝐷 ∈ ℝ)
5449simprd 499 . . . . . . . 8 ((𝜑𝑡𝑉) → (𝑃𝑡) < (𝐷 / 2))
55 halfpos 11855 . . . . . . . . . . 11 (𝐷 ∈ ℝ → (0 < 𝐷 ↔ (𝐷 / 2) < 𝐷))
568, 55syl 17 . . . . . . . . . 10 (𝜑 → (0 < 𝐷 ↔ (𝐷 / 2) < 𝐷))
5726, 56mpbid 235 . . . . . . . . 9 (𝜑 → (𝐷 / 2) < 𝐷)
5857adantr 484 . . . . . . . 8 ((𝜑𝑡𝑉) → (𝐷 / 2) < 𝐷)
5951, 52, 53, 54, 58lttrd 10790 . . . . . . 7 ((𝜑𝑡𝑉) → (𝑃𝑡) < 𝐷)
6059adantr 484 . . . . . 6 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → (𝑃𝑡) < 𝐷)
618ad2antrr 725 . . . . . . 7 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → 𝐷 ∈ ℝ)
6251adantr 484 . . . . . . 7 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → (𝑃𝑡) ∈ ℝ)
63 stoweidlem52.20 . . . . . . . . 9 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
6463ad2antrr 725 . . . . . . . 8 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
6550anim1i 617 . . . . . . . . 9 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → (𝑡𝑇 ∧ ¬ 𝑡𝑈))
66 eldif 3891 . . . . . . . . 9 (𝑡 ∈ (𝑇𝑈) ↔ (𝑡𝑇 ∧ ¬ 𝑡𝑈))
6765, 66sylibr 237 . . . . . . . 8 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → 𝑡 ∈ (𝑇𝑈))
68 rsp 3170 . . . . . . . 8 (∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡) → (𝑡 ∈ (𝑇𝑈) → 𝐷 ≤ (𝑃𝑡)))
6964, 67, 68sylc 65 . . . . . . 7 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → 𝐷 ≤ (𝑃𝑡))
7061, 62, 69lensymd 10780 . . . . . 6 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → ¬ (𝑃𝑡) < 𝐷)
7160, 70condan 817 . . . . 5 ((𝜑𝑡𝑉) → 𝑡𝑈)
7271ex 416 . . . 4 (𝜑 → (𝑡𝑉𝑡𝑈))
733, 42, 43, 72ssrd 3920 . . 3 (𝜑𝑉𝑈)
74 nfv 1915 . . . . . . . . 9 𝑡 𝑒 ∈ ℝ+
753, 74nfan 1900 . . . . . . . 8 𝑡(𝜑𝑒 ∈ ℝ+)
76 nfv 1915 . . . . . . . 8 𝑡 𝑦𝐴
7775, 76nfan 1900 . . . . . . 7 𝑡((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴)
78 nfra1 3183 . . . . . . . 8 𝑡𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)
79 nfra1 3183 . . . . . . . 8 𝑡𝑡𝑉 (1 − 𝑒) < (𝑦𝑡)
80 nfra1 3183 . . . . . . . 8 𝑡𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒
8178, 79, 80nf3an 1902 . . . . . . 7 𝑡(∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)
8277, 81nfan 1900 . . . . . 6 𝑡(((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒))
83 eqid 2798 . . . . . 6 (𝑡𝑇 ↦ (1 − (𝑦𝑡))) = (𝑡𝑇 ↦ (1 − (𝑦𝑡)))
84 eqid 2798 . . . . . 6 (𝑡𝑇 ↦ 1) = (𝑡𝑇 ↦ 1)
85 ssrab2 4007 . . . . . . 7 {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)} ⊆ 𝑇
866, 85eqsstri 3949 . . . . . 6 𝑉𝑇
87 simplr 768 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → 𝑦𝐴)
88 simplll 774 . . . . . . 7 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → 𝜑)
8911sselda 3915 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝑦𝐶)
904, 5, 12, 89fcnre 41654 . . . . . . 7 ((𝜑𝑦𝐴) → 𝑦:𝑇⟶ℝ)
9188, 87, 90syl2anc 587 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → 𝑦:𝑇⟶ℝ)
9211sselda 3915 . . . . . . . 8 ((𝜑𝑓𝐴) → 𝑓𝐶)
934, 5, 12, 92fcnre 41654 . . . . . . 7 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
9488, 93sylan 583 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
95 stoweidlem52.10 . . . . . . 7 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
9688, 95syl3an1 1160 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
97 stoweidlem52.11 . . . . . . 7 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
9888, 97syl3an1 1160 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
99 stoweidlem52.12 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
10088, 99sylan 583 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) ∧ 𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
101 simpllr 775 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → 𝑒 ∈ ℝ+)
102 simpr1 1191 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1))
103 simpr2 1192 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡))
104 simpr3 1193 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)
10582, 83, 84, 86, 87, 91, 94, 96, 98, 100, 101, 102, 103, 104stoweidlem41 42683 . . . . 5 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))
1067adantr 484 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝐷 ∈ ℝ+)
107 stoweidlem52.14 . . . . . . 7 (𝜑𝐷 < 1)
108107adantr 484 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝐷 < 1)
10914adantr 484 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑃𝐴)
11045adantr 484 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑃:𝑇⟶ℝ)
111 stoweidlem52.18 . . . . . . 7 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
112111adantr 484 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
11363adantr 484 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
11493adantlr 714 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
115953adant1r 1174 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
116973adant1r 1174 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
11799adantlr 714 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
118 simpr 488 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
1192, 75, 6, 106, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118stoweidlem49 42691 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒))
120105, 119r19.29a 3248 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))
121120ralrimiva 3149 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))
12240, 73, 121jca31 518 . 2 (𝜑 → ((𝑍𝑉𝑉𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
123 eleq2 2878 . . . . 5 (𝑣 = 𝑉 → (𝑍𝑣𝑍𝑉))
124 sseq1 3940 . . . . 5 (𝑣 = 𝑉 → (𝑣𝑈𝑉𝑈))
125123, 124anbi12d 633 . . . 4 (𝑣 = 𝑉 → ((𝑍𝑣𝑣𝑈) ↔ (𝑍𝑉𝑉𝑈)))
126 nfcv 2955 . . . . . . . 8 𝑡𝑣
127126, 42raleqf 3350 . . . . . . 7 (𝑣 = 𝑉 → (∀𝑡𝑣 (𝑥𝑡) < 𝑒 ↔ ∀𝑡𝑉 (𝑥𝑡) < 𝑒))
1281273anbi2d 1438 . . . . . 6 (𝑣 = 𝑉 → ((∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
129128rexbidv 3256 . . . . 5 (𝑣 = 𝑉 → (∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)) ↔ ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
130129ralbidv 3162 . . . 4 (𝑣 = 𝑉 → (∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)) ↔ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
131125, 130anbi12d 633 . . 3 (𝑣 = 𝑉 → (((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))) ↔ ((𝑍𝑉𝑉𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))))
132131rspcev 3571 . 2 ((𝑉𝐽 ∧ ((𝑍𝑉𝑉𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))) → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
13316, 122, 132syl2anc 587 1 (𝜑 → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wnf 1785  wcel 2111  wnfc 2936  wral 3106  wrex 3107  {crab 3110  cdif 3878  wss 3881   cuni 4800   class class class wbr 5030  cmpt 5110  ran crn 5520  wf 6320  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  +crp 12377  (,)cioo 12726  topGenctg 16703   Cn ccn 21829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ioo 12730  df-fl 13157  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-topgen 16709  df-top 21499  df-topon 21516  df-bases 21551  df-cn 21832
This theorem is referenced by:  stoweidlem56  42698
  Copyright terms: Public domain W3C validator