Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem52 Structured version   Visualization version   GIF version

Theorem stoweidlem52 46067
Description: There exists a neighborhood V as in Lemma 1 of [BrosowskiDeutsh] p. 90. Here Z is used to represent t0 in the paper, and v is used to represent V in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem52.1 𝑡𝑈
stoweidlem52.2 𝑡𝜑
stoweidlem52.3 𝑡𝑃
stoweidlem52.4 𝐾 = (topGen‘ran (,))
stoweidlem52.5 𝑉 = {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
stoweidlem52.7 𝑇 = 𝐽
stoweidlem52.8 𝐶 = (𝐽 Cn 𝐾)
stoweidlem52.9 (𝜑𝐴𝐶)
stoweidlem52.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem52.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem52.12 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
stoweidlem52.13 (𝜑𝐷 ∈ ℝ+)
stoweidlem52.14 (𝜑𝐷 < 1)
stoweidlem52.15 (𝜑𝑈𝐽)
stoweidlem52.16 (𝜑𝑍𝑈)
stoweidlem52.17 (𝜑𝑃𝐴)
stoweidlem52.18 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
stoweidlem52.19 (𝜑 → (𝑃𝑍) = 0)
stoweidlem52.20 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
Assertion
Ref Expression
stoweidlem52 (𝜑 → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
Distinct variable groups:   𝑒,𝑎,𝑡   𝐴,𝑎,𝑡   𝐷,𝑎,𝑡   𝑇,𝑎,𝑡   𝑈,𝑎   𝑉,𝑎,𝑒   𝜑,𝑎,𝑒   𝑒,𝑓,𝑔,𝑡   𝑣,𝑒,𝑥,𝑡   𝐴,𝑓,𝑔   𝐷,𝑓,𝑔   𝑃,𝑓,𝑔   𝑇,𝑓,𝑔   𝑈,𝑓,𝑔   𝑓,𝑉,𝑔   𝜑,𝑓,𝑔   𝑡,𝑍,𝑣   𝑣,𝐴   𝑣,𝐽   𝑣,𝑇,𝑥   𝑣,𝑈,𝑥   𝑣,𝑉,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑣,𝑡)   𝐴(𝑒)   𝐶(𝑥,𝑣,𝑡,𝑒,𝑓,𝑔,𝑎)   𝐷(𝑥,𝑣,𝑒)   𝑃(𝑥,𝑣,𝑡,𝑒,𝑎)   𝑇(𝑒)   𝑈(𝑡,𝑒)   𝐽(𝑥,𝑡,𝑒,𝑓,𝑔,𝑎)   𝐾(𝑥,𝑣,𝑡,𝑒,𝑓,𝑔,𝑎)   𝑉(𝑡)   𝑍(𝑥,𝑒,𝑓,𝑔,𝑎)

Proof of Theorem stoweidlem52
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2905 . . 3 𝑡(𝐷 / 2)
2 stoweidlem52.3 . . 3 𝑡𝑃
3 stoweidlem52.2 . . 3 𝑡𝜑
4 stoweidlem52.4 . . 3 𝐾 = (topGen‘ran (,))
5 stoweidlem52.7 . . 3 𝑇 = 𝐽
6 stoweidlem52.5 . . 3 𝑉 = {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
7 stoweidlem52.13 . . . . . 6 (𝜑𝐷 ∈ ℝ+)
87rpred 13077 . . . . 5 (𝜑𝐷 ∈ ℝ)
98rehalfcld 12513 . . . 4 (𝜑 → (𝐷 / 2) ∈ ℝ)
109rexrd 11311 . . 3 (𝜑 → (𝐷 / 2) ∈ ℝ*)
11 stoweidlem52.9 . . . . 5 (𝜑𝐴𝐶)
12 stoweidlem52.8 . . . . 5 𝐶 = (𝐽 Cn 𝐾)
1311, 12sseqtrdi 4024 . . . 4 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
14 stoweidlem52.17 . . . 4 (𝜑𝑃𝐴)
1513, 14sseldd 3984 . . 3 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
161, 2, 3, 4, 5, 6, 10, 15rfcnpre2 45036 . 2 (𝜑𝑉𝐽)
17 stoweidlem52.15 . . . . . . . 8 (𝜑𝑈𝐽)
18 elssuni 4937 . . . . . . . 8 (𝑈𝐽𝑈 𝐽)
1917, 18syl 17 . . . . . . 7 (𝜑𝑈 𝐽)
2019, 5sseqtrrdi 4025 . . . . . 6 (𝜑𝑈𝑇)
21 stoweidlem52.16 . . . . . 6 (𝜑𝑍𝑈)
2220, 21sseldd 3984 . . . . 5 (𝜑𝑍𝑇)
23 stoweidlem52.19 . . . . . 6 (𝜑 → (𝑃𝑍) = 0)
24 2re 12340 . . . . . . . 8 2 ∈ ℝ
2524a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
267rpgt0d 13080 . . . . . . 7 (𝜑 → 0 < 𝐷)
27 2pos 12369 . . . . . . . 8 0 < 2
2827a1i 11 . . . . . . 7 (𝜑 → 0 < 2)
298, 25, 26, 28divgt0d 12203 . . . . . 6 (𝜑 → 0 < (𝐷 / 2))
3023, 29eqbrtrd 5165 . . . . 5 (𝜑 → (𝑃𝑍) < (𝐷 / 2))
31 nfcv 2905 . . . . . 6 𝑡𝑍
32 nfcv 2905 . . . . . 6 𝑡𝑇
332, 31nffv 6916 . . . . . . 7 𝑡(𝑃𝑍)
34 nfcv 2905 . . . . . . 7 𝑡 <
3533, 34, 1nfbr 5190 . . . . . 6 𝑡(𝑃𝑍) < (𝐷 / 2)
36 fveq2 6906 . . . . . . 7 (𝑡 = 𝑍 → (𝑃𝑡) = (𝑃𝑍))
3736breq1d 5153 . . . . . 6 (𝑡 = 𝑍 → ((𝑃𝑡) < (𝐷 / 2) ↔ (𝑃𝑍) < (𝐷 / 2)))
3831, 32, 35, 37elrabf 3688 . . . . 5 (𝑍 ∈ {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)} ↔ (𝑍𝑇 ∧ (𝑃𝑍) < (𝐷 / 2)))
3922, 30, 38sylanbrc 583 . . . 4 (𝜑𝑍 ∈ {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)})
4039, 6eleqtrrdi 2852 . . 3 (𝜑𝑍𝑉)
41 nfrab1 3457 . . . . 5 𝑡{𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
426, 41nfcxfr 2903 . . . 4 𝑡𝑉
43 stoweidlem52.1 . . . 4 𝑡𝑈
4411, 14sseldd 3984 . . . . . . . . . . 11 (𝜑𝑃𝐶)
454, 5, 12, 44fcnre 45030 . . . . . . . . . 10 (𝜑𝑃:𝑇⟶ℝ)
4645adantr 480 . . . . . . . . 9 ((𝜑𝑡𝑉) → 𝑃:𝑇⟶ℝ)
476reqabi 3460 . . . . . . . . . . . 12 (𝑡𝑉 ↔ (𝑡𝑇 ∧ (𝑃𝑡) < (𝐷 / 2)))
4847biimpi 216 . . . . . . . . . . 11 (𝑡𝑉 → (𝑡𝑇 ∧ (𝑃𝑡) < (𝐷 / 2)))
4948adantl 481 . . . . . . . . . 10 ((𝜑𝑡𝑉) → (𝑡𝑇 ∧ (𝑃𝑡) < (𝐷 / 2)))
5049simpld 494 . . . . . . . . 9 ((𝜑𝑡𝑉) → 𝑡𝑇)
5146, 50ffvelcdmd 7105 . . . . . . . 8 ((𝜑𝑡𝑉) → (𝑃𝑡) ∈ ℝ)
529adantr 480 . . . . . . . 8 ((𝜑𝑡𝑉) → (𝐷 / 2) ∈ ℝ)
538adantr 480 . . . . . . . 8 ((𝜑𝑡𝑉) → 𝐷 ∈ ℝ)
5449simprd 495 . . . . . . . 8 ((𝜑𝑡𝑉) → (𝑃𝑡) < (𝐷 / 2))
55 halfpos 12496 . . . . . . . . . . 11 (𝐷 ∈ ℝ → (0 < 𝐷 ↔ (𝐷 / 2) < 𝐷))
568, 55syl 17 . . . . . . . . . 10 (𝜑 → (0 < 𝐷 ↔ (𝐷 / 2) < 𝐷))
5726, 56mpbid 232 . . . . . . . . 9 (𝜑 → (𝐷 / 2) < 𝐷)
5857adantr 480 . . . . . . . 8 ((𝜑𝑡𝑉) → (𝐷 / 2) < 𝐷)
5951, 52, 53, 54, 58lttrd 11422 . . . . . . 7 ((𝜑𝑡𝑉) → (𝑃𝑡) < 𝐷)
6059adantr 480 . . . . . 6 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → (𝑃𝑡) < 𝐷)
618ad2antrr 726 . . . . . . 7 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → 𝐷 ∈ ℝ)
6251adantr 480 . . . . . . 7 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → (𝑃𝑡) ∈ ℝ)
63 stoweidlem52.20 . . . . . . . . 9 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
6463ad2antrr 726 . . . . . . . 8 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
6550anim1i 615 . . . . . . . . 9 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → (𝑡𝑇 ∧ ¬ 𝑡𝑈))
66 eldif 3961 . . . . . . . . 9 (𝑡 ∈ (𝑇𝑈) ↔ (𝑡𝑇 ∧ ¬ 𝑡𝑈))
6765, 66sylibr 234 . . . . . . . 8 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → 𝑡 ∈ (𝑇𝑈))
68 rsp 3247 . . . . . . . 8 (∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡) → (𝑡 ∈ (𝑇𝑈) → 𝐷 ≤ (𝑃𝑡)))
6964, 67, 68sylc 65 . . . . . . 7 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → 𝐷 ≤ (𝑃𝑡))
7061, 62, 69lensymd 11412 . . . . . 6 (((𝜑𝑡𝑉) ∧ ¬ 𝑡𝑈) → ¬ (𝑃𝑡) < 𝐷)
7160, 70condan 818 . . . . 5 ((𝜑𝑡𝑉) → 𝑡𝑈)
7271ex 412 . . . 4 (𝜑 → (𝑡𝑉𝑡𝑈))
733, 42, 43, 72ssrd 3988 . . 3 (𝜑𝑉𝑈)
74 nfv 1914 . . . . . . . . 9 𝑡 𝑒 ∈ ℝ+
753, 74nfan 1899 . . . . . . . 8 𝑡(𝜑𝑒 ∈ ℝ+)
76 nfv 1914 . . . . . . . 8 𝑡 𝑦𝐴
7775, 76nfan 1899 . . . . . . 7 𝑡((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴)
78 nfra1 3284 . . . . . . . 8 𝑡𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)
79 nfra1 3284 . . . . . . . 8 𝑡𝑡𝑉 (1 − 𝑒) < (𝑦𝑡)
80 nfra1 3284 . . . . . . . 8 𝑡𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒
8178, 79, 80nf3an 1901 . . . . . . 7 𝑡(∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)
8277, 81nfan 1899 . . . . . 6 𝑡(((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒))
83 eqid 2737 . . . . . 6 (𝑡𝑇 ↦ (1 − (𝑦𝑡))) = (𝑡𝑇 ↦ (1 − (𝑦𝑡)))
84 eqid 2737 . . . . . 6 (𝑡𝑇 ↦ 1) = (𝑡𝑇 ↦ 1)
85 ssrab2 4080 . . . . . . 7 {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)} ⊆ 𝑇
866, 85eqsstri 4030 . . . . . 6 𝑉𝑇
87 simplr 769 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → 𝑦𝐴)
88 simplll 775 . . . . . . 7 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → 𝜑)
8911sselda 3983 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝑦𝐶)
904, 5, 12, 89fcnre 45030 . . . . . . 7 ((𝜑𝑦𝐴) → 𝑦:𝑇⟶ℝ)
9188, 87, 90syl2anc 584 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → 𝑦:𝑇⟶ℝ)
9211sselda 3983 . . . . . . . 8 ((𝜑𝑓𝐴) → 𝑓𝐶)
934, 5, 12, 92fcnre 45030 . . . . . . 7 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
9488, 93sylan 580 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
95 stoweidlem52.10 . . . . . . 7 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
9688, 95syl3an1 1164 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
97 stoweidlem52.11 . . . . . . 7 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
9888, 97syl3an1 1164 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
99 stoweidlem52.12 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
10088, 99sylan 580 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) ∧ 𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
101 simpllr 776 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → 𝑒 ∈ ℝ+)
102 simpr1 1195 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1))
103 simpr2 1196 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡))
104 simpr3 1197 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)
10582, 83, 84, 86, 87, 91, 94, 96, 98, 100, 101, 102, 103, 104stoweidlem41 46056 . . . . 5 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦𝐴) ∧ (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒)) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))
1067adantr 480 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝐷 ∈ ℝ+)
107 stoweidlem52.14 . . . . . . 7 (𝜑𝐷 < 1)
108107adantr 480 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝐷 < 1)
10914adantr 480 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑃𝐴)
11045adantr 480 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑃:𝑇⟶ℝ)
111 stoweidlem52.18 . . . . . . 7 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
112111adantr 480 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
11363adantr 480 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
11493adantlr 715 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
115953adant1r 1178 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
116973adant1r 1178 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
11799adantlr 715 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
118 simpr 484 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
1192, 75, 6, 106, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118stoweidlem49 46064 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝑒) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝑒))
120105, 119r19.29a 3162 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))
121120ralrimiva 3146 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))
12240, 73, 121jca31 514 . 2 (𝜑 → ((𝑍𝑉𝑉𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
123 eleq2 2830 . . . . 5 (𝑣 = 𝑉 → (𝑍𝑣𝑍𝑉))
124 sseq1 4009 . . . . 5 (𝑣 = 𝑉 → (𝑣𝑈𝑉𝑈))
125123, 124anbi12d 632 . . . 4 (𝑣 = 𝑉 → ((𝑍𝑣𝑣𝑈) ↔ (𝑍𝑉𝑉𝑈)))
126 nfcv 2905 . . . . . . . 8 𝑡𝑣
127126, 42raleqf 3353 . . . . . . 7 (𝑣 = 𝑉 → (∀𝑡𝑣 (𝑥𝑡) < 𝑒 ↔ ∀𝑡𝑉 (𝑥𝑡) < 𝑒))
1281273anbi2d 1443 . . . . . 6 (𝑣 = 𝑉 → ((∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
129128rexbidv 3179 . . . . 5 (𝑣 = 𝑉 → (∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)) ↔ ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
130129ralbidv 3178 . . . 4 (𝑣 = 𝑉 → (∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)) ↔ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
131125, 130anbi12d 632 . . 3 (𝑣 = 𝑉 → (((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))) ↔ ((𝑍𝑉𝑉𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))))
132131rspcev 3622 . 2 ((𝑉𝐽 ∧ ((𝑍𝑉𝑉𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡)))) → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
13316, 122, 132syl2anc 584 1 (𝜑 → ∃𝑣𝐽 ((𝑍𝑣𝑣𝑈) ∧ ∀𝑒 ∈ ℝ+𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑣 (𝑥𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑥𝑡))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wnf 1783  wcel 2108  wnfc 2890  wral 3061  wrex 3070  {crab 3436  cdif 3948  wss 3951   cuni 4907   class class class wbr 5143  cmpt 5225  ran crn 5686  wf 6557  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  +crp 13034  (,)cioo 13387  topGenctg 17482   Cn ccn 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-ioo 13391  df-fl 13832  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-topgen 17488  df-top 22900  df-topon 22917  df-bases 22953  df-cn 23235
This theorem is referenced by:  stoweidlem56  46071
  Copyright terms: Public domain W3C validator