Step | Hyp | Ref
| Expression |
1 | | nfcv 2920 |
. . 3
⊢
Ⅎ𝑡(𝐷 / 2) |
2 | | stoweidlem52.3 |
. . 3
⊢
Ⅎ𝑡𝑃 |
3 | | stoweidlem52.2 |
. . 3
⊢
Ⅎ𝑡𝜑 |
4 | | stoweidlem52.4 |
. . 3
⊢ 𝐾 = (topGen‘ran
(,)) |
5 | | stoweidlem52.7 |
. . 3
⊢ 𝑇 = ∪
𝐽 |
6 | | stoweidlem52.5 |
. . 3
⊢ 𝑉 = {𝑡 ∈ 𝑇 ∣ (𝑃‘𝑡) < (𝐷 / 2)} |
7 | | stoweidlem52.13 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈
ℝ+) |
8 | 7 | rpred 12462 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ ℝ) |
9 | 8 | rehalfcld 11911 |
. . . 4
⊢ (𝜑 → (𝐷 / 2) ∈ ℝ) |
10 | 9 | rexrd 10719 |
. . 3
⊢ (𝜑 → (𝐷 / 2) ∈
ℝ*) |
11 | | stoweidlem52.9 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
12 | | stoweidlem52.8 |
. . . . 5
⊢ 𝐶 = (𝐽 Cn 𝐾) |
13 | 11, 12 | sseqtrdi 3943 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ (𝐽 Cn 𝐾)) |
14 | | stoweidlem52.17 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ 𝐴) |
15 | 13, 14 | sseldd 3894 |
. . 3
⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) |
16 | 1, 2, 3, 4, 5, 6, 10, 15 | rfcnpre2 42023 |
. 2
⊢ (𝜑 → 𝑉 ∈ 𝐽) |
17 | | stoweidlem52.15 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ 𝐽) |
18 | | elssuni 4828 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝐽 → 𝑈 ⊆ ∪ 𝐽) |
19 | 17, 18 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ⊆ ∪ 𝐽) |
20 | 19, 5 | sseqtrrdi 3944 |
. . . . . 6
⊢ (𝜑 → 𝑈 ⊆ 𝑇) |
21 | | stoweidlem52.16 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ 𝑈) |
22 | 20, 21 | sseldd 3894 |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝑇) |
23 | | stoweidlem52.19 |
. . . . . 6
⊢ (𝜑 → (𝑃‘𝑍) = 0) |
24 | | 2re 11738 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
25 | 24 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℝ) |
26 | 7 | rpgt0d 12465 |
. . . . . . 7
⊢ (𝜑 → 0 < 𝐷) |
27 | | 2pos 11767 |
. . . . . . . 8
⊢ 0 <
2 |
28 | 27 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 < 2) |
29 | 8, 25, 26, 28 | divgt0d 11603 |
. . . . . 6
⊢ (𝜑 → 0 < (𝐷 / 2)) |
30 | 23, 29 | eqbrtrd 5052 |
. . . . 5
⊢ (𝜑 → (𝑃‘𝑍) < (𝐷 / 2)) |
31 | | nfcv 2920 |
. . . . . 6
⊢
Ⅎ𝑡𝑍 |
32 | | nfcv 2920 |
. . . . . 6
⊢
Ⅎ𝑡𝑇 |
33 | 2, 31 | nffv 6666 |
. . . . . . 7
⊢
Ⅎ𝑡(𝑃‘𝑍) |
34 | | nfcv 2920 |
. . . . . . 7
⊢
Ⅎ𝑡
< |
35 | 33, 34, 1 | nfbr 5077 |
. . . . . 6
⊢
Ⅎ𝑡(𝑃‘𝑍) < (𝐷 / 2) |
36 | | fveq2 6656 |
. . . . . . 7
⊢ (𝑡 = 𝑍 → (𝑃‘𝑡) = (𝑃‘𝑍)) |
37 | 36 | breq1d 5040 |
. . . . . 6
⊢ (𝑡 = 𝑍 → ((𝑃‘𝑡) < (𝐷 / 2) ↔ (𝑃‘𝑍) < (𝐷 / 2))) |
38 | 31, 32, 35, 37 | elrabf 3599 |
. . . . 5
⊢ (𝑍 ∈ {𝑡 ∈ 𝑇 ∣ (𝑃‘𝑡) < (𝐷 / 2)} ↔ (𝑍 ∈ 𝑇 ∧ (𝑃‘𝑍) < (𝐷 / 2))) |
39 | 22, 30, 38 | sylanbrc 587 |
. . . 4
⊢ (𝜑 → 𝑍 ∈ {𝑡 ∈ 𝑇 ∣ (𝑃‘𝑡) < (𝐷 / 2)}) |
40 | 39, 6 | eleqtrrdi 2864 |
. . 3
⊢ (𝜑 → 𝑍 ∈ 𝑉) |
41 | | nfrab1 3303 |
. . . . 5
⊢
Ⅎ𝑡{𝑡 ∈ 𝑇 ∣ (𝑃‘𝑡) < (𝐷 / 2)} |
42 | 6, 41 | nfcxfr 2918 |
. . . 4
⊢
Ⅎ𝑡𝑉 |
43 | | stoweidlem52.1 |
. . . 4
⊢
Ⅎ𝑡𝑈 |
44 | 11, 14 | sseldd 3894 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ 𝐶) |
45 | 4, 5, 12, 44 | fcnre 42017 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃:𝑇⟶ℝ) |
46 | 45 | adantr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑉) → 𝑃:𝑇⟶ℝ) |
47 | 6 | rabeq2i 3401 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ 𝑉 ↔ (𝑡 ∈ 𝑇 ∧ (𝑃‘𝑡) < (𝐷 / 2))) |
48 | 47 | biimpi 219 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ 𝑉 → (𝑡 ∈ 𝑇 ∧ (𝑃‘𝑡) < (𝐷 / 2))) |
49 | 48 | adantl 486 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑉) → (𝑡 ∈ 𝑇 ∧ (𝑃‘𝑡) < (𝐷 / 2))) |
50 | 49 | simpld 499 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑉) → 𝑡 ∈ 𝑇) |
51 | 46, 50 | ffvelrnd 6841 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑉) → (𝑃‘𝑡) ∈ ℝ) |
52 | 9 | adantr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑉) → (𝐷 / 2) ∈ ℝ) |
53 | 8 | adantr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑉) → 𝐷 ∈ ℝ) |
54 | 49 | simprd 500 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑉) → (𝑃‘𝑡) < (𝐷 / 2)) |
55 | | halfpos 11894 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ ℝ → (0 <
𝐷 ↔ (𝐷 / 2) < 𝐷)) |
56 | 8, 55 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (0 < 𝐷 ↔ (𝐷 / 2) < 𝐷)) |
57 | 26, 56 | mpbid 235 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷 / 2) < 𝐷) |
58 | 57 | adantr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑉) → (𝐷 / 2) < 𝐷) |
59 | 51, 52, 53, 54, 58 | lttrd 10829 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑉) → (𝑃‘𝑡) < 𝐷) |
60 | 59 | adantr 485 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑉) ∧ ¬ 𝑡 ∈ 𝑈) → (𝑃‘𝑡) < 𝐷) |
61 | 8 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑉) ∧ ¬ 𝑡 ∈ 𝑈) → 𝐷 ∈ ℝ) |
62 | 51 | adantr 485 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑉) ∧ ¬ 𝑡 ∈ 𝑈) → (𝑃‘𝑡) ∈ ℝ) |
63 | | stoweidlem52.20 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝐷 ≤ (𝑃‘𝑡)) |
64 | 63 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑉) ∧ ¬ 𝑡 ∈ 𝑈) → ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝐷 ≤ (𝑃‘𝑡)) |
65 | 50 | anim1i 618 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑉) ∧ ¬ 𝑡 ∈ 𝑈) → (𝑡 ∈ 𝑇 ∧ ¬ 𝑡 ∈ 𝑈)) |
66 | | eldif 3869 |
. . . . . . . . 9
⊢ (𝑡 ∈ (𝑇 ∖ 𝑈) ↔ (𝑡 ∈ 𝑇 ∧ ¬ 𝑡 ∈ 𝑈)) |
67 | 65, 66 | sylibr 237 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑉) ∧ ¬ 𝑡 ∈ 𝑈) → 𝑡 ∈ (𝑇 ∖ 𝑈)) |
68 | | rsp 3135 |
. . . . . . . 8
⊢
(∀𝑡 ∈
(𝑇 ∖ 𝑈)𝐷 ≤ (𝑃‘𝑡) → (𝑡 ∈ (𝑇 ∖ 𝑈) → 𝐷 ≤ (𝑃‘𝑡))) |
69 | 64, 67, 68 | sylc 65 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑉) ∧ ¬ 𝑡 ∈ 𝑈) → 𝐷 ≤ (𝑃‘𝑡)) |
70 | 61, 62, 69 | lensymd 10819 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑉) ∧ ¬ 𝑡 ∈ 𝑈) → ¬ (𝑃‘𝑡) < 𝐷) |
71 | 60, 70 | condan 818 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑉) → 𝑡 ∈ 𝑈) |
72 | 71 | ex 417 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ 𝑉 → 𝑡 ∈ 𝑈)) |
73 | 3, 42, 43, 72 | ssrd 3898 |
. . 3
⊢ (𝜑 → 𝑉 ⊆ 𝑈) |
74 | | nfv 1916 |
. . . . . . . . 9
⊢
Ⅎ𝑡 𝑒 ∈
ℝ+ |
75 | 3, 74 | nfan 1901 |
. . . . . . . 8
⊢
Ⅎ𝑡(𝜑 ∧ 𝑒 ∈ ℝ+) |
76 | | nfv 1916 |
. . . . . . . 8
⊢
Ⅎ𝑡 𝑦 ∈ 𝐴 |
77 | 75, 76 | nfan 1901 |
. . . . . . 7
⊢
Ⅎ𝑡((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑦 ∈ 𝐴) |
78 | | nfra1 3148 |
. . . . . . . 8
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) |
79 | | nfra1 3148 |
. . . . . . . 8
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑉 (1 − 𝑒) < (𝑦‘𝑡) |
80 | | nfra1 3148 |
. . . . . . . 8
⊢
Ⅎ𝑡∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝑒 |
81 | 78, 79, 80 | nf3an 1903 |
. . . . . . 7
⊢
Ⅎ𝑡(∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝑒) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝑒) |
82 | 77, 81 | nfan 1901 |
. . . . . 6
⊢
Ⅎ𝑡(((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑦 ∈ 𝐴) ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝑒) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝑒)) |
83 | | eqid 2759 |
. . . . . 6
⊢ (𝑡 ∈ 𝑇 ↦ (1 − (𝑦‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (1 − (𝑦‘𝑡))) |
84 | | eqid 2759 |
. . . . . 6
⊢ (𝑡 ∈ 𝑇 ↦ 1) = (𝑡 ∈ 𝑇 ↦ 1) |
85 | | ssrab2 3985 |
. . . . . . 7
⊢ {𝑡 ∈ 𝑇 ∣ (𝑃‘𝑡) < (𝐷 / 2)} ⊆ 𝑇 |
86 | 6, 85 | eqsstri 3927 |
. . . . . 6
⊢ 𝑉 ⊆ 𝑇 |
87 | | simplr 769 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑦 ∈ 𝐴) ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝑒) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝑒)) → 𝑦 ∈ 𝐴) |
88 | | simplll 775 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑦 ∈ 𝐴) ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝑒) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝑒)) → 𝜑) |
89 | 11 | sselda 3893 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐶) |
90 | 4, 5, 12, 89 | fcnre 42017 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦:𝑇⟶ℝ) |
91 | 88, 87, 90 | syl2anc 588 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑦 ∈ 𝐴) ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝑒) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝑒)) → 𝑦:𝑇⟶ℝ) |
92 | 11 | sselda 3893 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓 ∈ 𝐶) |
93 | 4, 5, 12, 92 | fcnre 42017 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
94 | 88, 93 | sylan 584 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑒 ∈ ℝ+)
∧ 𝑦 ∈ 𝐴) ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝑒) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝑒)) ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
95 | | stoweidlem52.10 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
96 | 88, 95 | syl3an1 1161 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑒 ∈ ℝ+)
∧ 𝑦 ∈ 𝐴) ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝑒) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝑒)) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
97 | | stoweidlem52.11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
98 | 88, 97 | syl3an1 1161 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑒 ∈ ℝ+)
∧ 𝑦 ∈ 𝐴) ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝑒) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝑒)) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
99 | | stoweidlem52.12 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
100 | 88, 99 | sylan 584 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑒 ∈ ℝ+)
∧ 𝑦 ∈ 𝐴) ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝑒) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝑒)) ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
101 | | simpllr 776 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑦 ∈ 𝐴) ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝑒) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝑒)) → 𝑒 ∈ ℝ+) |
102 | | simpr1 1192 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑦 ∈ 𝐴) ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝑒) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝑒)) → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1)) |
103 | | simpr2 1193 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑦 ∈ 𝐴) ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝑒) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝑒)) → ∀𝑡 ∈ 𝑉 (1 − 𝑒) < (𝑦‘𝑡)) |
104 | | simpr3 1194 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑦 ∈ 𝐴) ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝑒) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝑒)) → ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝑒) |
105 | 82, 83, 84, 86, 87, 91, 94, 96, 98, 100, 101, 102, 103, 104 | stoweidlem41 43039 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑦 ∈ 𝐴) ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝑒) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝑒)) → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡))) |
106 | 7 | adantr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) → 𝐷 ∈
ℝ+) |
107 | | stoweidlem52.14 |
. . . . . . 7
⊢ (𝜑 → 𝐷 < 1) |
108 | 107 | adantr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) → 𝐷 < 1) |
109 | 14 | adantr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) → 𝑃 ∈ 𝐴) |
110 | 45 | adantr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) → 𝑃:𝑇⟶ℝ) |
111 | | stoweidlem52.18 |
. . . . . . 7
⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1)) |
112 | 111 | adantr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) →
∀𝑡 ∈ 𝑇 (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1)) |
113 | 63 | adantr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) →
∀𝑡 ∈ (𝑇 ∖ 𝑈)𝐷 ≤ (𝑃‘𝑡)) |
114 | 93 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
115 | 95 | 3adant1r 1175 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
116 | 97 | 3adant1r 1175 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
117 | 99 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
118 | | simpr 489 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈
ℝ+) |
119 | 2, 75, 6, 106, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118 | stoweidlem49 43047 |
. . . . 5
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) →
∃𝑦 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝑒) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝑒)) |
120 | 105, 119 | r19.29a 3214 |
. . . 4
⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) →
∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡))) |
121 | 120 | ralrimiva 3114 |
. . 3
⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡))) |
122 | 40, 73, 121 | jca31 519 |
. 2
⊢ (𝜑 → ((𝑍 ∈ 𝑉 ∧ 𝑉 ⊆ 𝑈) ∧ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡)))) |
123 | | eleq2 2841 |
. . . . 5
⊢ (𝑣 = 𝑉 → (𝑍 ∈ 𝑣 ↔ 𝑍 ∈ 𝑉)) |
124 | | sseq1 3918 |
. . . . 5
⊢ (𝑣 = 𝑉 → (𝑣 ⊆ 𝑈 ↔ 𝑉 ⊆ 𝑈)) |
125 | 123, 124 | anbi12d 634 |
. . . 4
⊢ (𝑣 = 𝑉 → ((𝑍 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑈) ↔ (𝑍 ∈ 𝑉 ∧ 𝑉 ⊆ 𝑈))) |
126 | | nfcv 2920 |
. . . . . . . 8
⊢
Ⅎ𝑡𝑣 |
127 | 126, 42 | raleqf 3316 |
. . . . . . 7
⊢ (𝑣 = 𝑉 → (∀𝑡 ∈ 𝑣 (𝑥‘𝑡) < 𝑒 ↔ ∀𝑡 ∈ 𝑉 (𝑥‘𝑡) < 𝑒)) |
128 | 127 | 3anbi2d 1439 |
. . . . . 6
⊢ (𝑣 = 𝑉 → ((∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑣 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡)) ↔ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡)))) |
129 | 128 | rexbidv 3222 |
. . . . 5
⊢ (𝑣 = 𝑉 → (∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑣 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡)) ↔ ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡)))) |
130 | 129 | ralbidv 3127 |
. . . 4
⊢ (𝑣 = 𝑉 → (∀𝑒 ∈ ℝ+ ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑣 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡)) ↔ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡)))) |
131 | 125, 130 | anbi12d 634 |
. . 3
⊢ (𝑣 = 𝑉 → (((𝑍 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑈) ∧ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑣 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡))) ↔ ((𝑍 ∈ 𝑉 ∧ 𝑉 ⊆ 𝑈) ∧ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡))))) |
132 | 131 | rspcev 3542 |
. 2
⊢ ((𝑉 ∈ 𝐽 ∧ ((𝑍 ∈ 𝑉 ∧ 𝑉 ⊆ 𝑈) ∧ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡)))) → ∃𝑣 ∈ 𝐽 ((𝑍 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑈) ∧ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑣 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡)))) |
133 | 16, 122, 132 | syl2anc 588 |
1
⊢ (𝜑 → ∃𝑣 ∈ 𝐽 ((𝑍 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑈) ∧ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑣 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡)))) |