Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvsymOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of cnvsym 6032 as of 29-Dec-2024. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by SN, 23-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnvsymOLD | ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6022 | . . 3 ⊢ Rel ◡𝑅 | |
2 | ssrel3 5708 | . . 3 ⊢ (Rel ◡𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑦∀𝑥(𝑦◡𝑅𝑥 → 𝑦𝑅𝑥))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑦∀𝑥(𝑦◡𝑅𝑥 → 𝑦𝑅𝑥)) |
4 | alcom 2154 | . 2 ⊢ (∀𝑦∀𝑥(𝑦◡𝑅𝑥 → 𝑦𝑅𝑥) ↔ ∀𝑥∀𝑦(𝑦◡𝑅𝑥 → 𝑦𝑅𝑥)) | |
5 | vex 3441 | . . . . 5 ⊢ 𝑦 ∈ V | |
6 | vex 3441 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | 5, 6 | brcnv 5804 | . . . 4 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
8 | 7 | imbi1i 350 | . . 3 ⊢ ((𝑦◡𝑅𝑥 → 𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
9 | 8 | 2albii 1820 | . 2 ⊢ (∀𝑥∀𝑦(𝑦◡𝑅𝑥 → 𝑦𝑅𝑥) ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
10 | 3, 4, 9 | 3bitri 297 | 1 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ⊆ wss 3892 class class class wbr 5081 ◡ccnv 5599 Rel wrel 5605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-11 2152 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 df-cnv 5608 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |