Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvsymOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of cnvsym 6039 as of 29-Dec-2024. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by SN, 23-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnvsymOLD | ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6029 | . . 3 ⊢ Rel ◡𝑅 | |
2 | ssrel3 5715 | . . 3 ⊢ (Rel ◡𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑦∀𝑥(𝑦◡𝑅𝑥 → 𝑦𝑅𝑥))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑦∀𝑥(𝑦◡𝑅𝑥 → 𝑦𝑅𝑥)) |
4 | alcom 2155 | . 2 ⊢ (∀𝑦∀𝑥(𝑦◡𝑅𝑥 → 𝑦𝑅𝑥) ↔ ∀𝑥∀𝑦(𝑦◡𝑅𝑥 → 𝑦𝑅𝑥)) | |
5 | vex 3444 | . . . . 5 ⊢ 𝑦 ∈ V | |
6 | vex 3444 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | 5, 6 | brcnv 5811 | . . . 4 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
8 | 7 | imbi1i 349 | . . 3 ⊢ ((𝑦◡𝑅𝑥 → 𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
9 | 8 | 2albii 1821 | . 2 ⊢ (∀𝑥∀𝑦(𝑦◡𝑅𝑥 → 𝑦𝑅𝑥) ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
10 | 3, 4, 9 | 3bitri 296 | 1 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 ⊆ wss 3896 class class class wbr 5086 ◡ccnv 5606 Rel wrel 5612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-br 5087 df-opab 5149 df-xp 5613 df-rel 5614 df-cnv 5615 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |