![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cotrgOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cotrg 6113 as of 29-Dec-2024. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6116. (Revised by Richard Penner, 24-Dec-2019.) (Proof shortened by SN, 19-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cotrgOLD | ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 6112 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
2 | ssrel3 5788 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧)) |
4 | vex 3475 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | vex 3475 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
6 | 4, 5 | brco 5873 | . . . . . . 7 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑧 ↔ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) |
7 | 6 | imbi1i 349 | . . . . . 6 ⊢ ((𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
8 | 19.23v 1938 | . . . . . 6 ⊢ (∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | |
9 | 7, 8 | bitr4i 278 | . . . . 5 ⊢ ((𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
10 | 9 | albii 1814 | . . . 4 ⊢ (∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑧∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
11 | alcom 2149 | . . . 4 ⊢ (∀𝑧∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | |
12 | 10, 11 | bitri 275 | . . 3 ⊢ (∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
13 | 12 | albii 1814 | . 2 ⊢ (∀𝑥∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
14 | 3, 13 | bitri 275 | 1 ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 ∃wex 1774 ⊆ wss 3947 class class class wbr 5148 ∘ ccom 5682 Rel wrel 5683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-11 2147 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5684 df-rel 5685 df-co 5687 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |