| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cotrgOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of cotrg 6101 as of 29-Dec-2024. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6104. (Revised by Richard Penner, 24-Dec-2019.) (Proof shortened by SN, 19-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cotrgOLD | ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6100 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
| 2 | ssrel3 5770 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧)) |
| 4 | vex 3468 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 5 | vex 3468 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 6 | 4, 5 | brco 5855 | . . . . . . 7 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑧 ↔ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) |
| 7 | 6 | imbi1i 349 | . . . . . 6 ⊢ ((𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
| 8 | 19.23v 1942 | . . . . . 6 ⊢ (∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | |
| 9 | 7, 8 | bitr4i 278 | . . . . 5 ⊢ ((𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
| 10 | 9 | albii 1819 | . . . 4 ⊢ (∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑧∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
| 11 | alcom 2160 | . . . 4 ⊢ (∀𝑧∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | |
| 12 | 10, 11 | bitri 275 | . . 3 ⊢ (∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
| 13 | 12 | albii 1819 | . 2 ⊢ (∀𝑥∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
| 14 | 3, 13 | bitri 275 | 1 ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ⊆ wss 3931 class class class wbr 5124 ∘ ccom 5663 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-co 5668 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |