MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotrgOLD Structured version   Visualization version   GIF version

Theorem cotrgOLD 6114
Description: Obsolete version of cotrg 6113 as of 29-Dec-2024. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6116. (Revised by Richard Penner, 24-Dec-2019.) (Proof shortened by SN, 19-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cotrgOLD ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧

Proof of Theorem cotrgOLD
StepHypRef Expression
1 relco 6112 . . 3 Rel (𝐴𝐵)
2 ssrel3 5788 . . 3 (Rel (𝐴𝐵) → ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑧(𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧)))
31, 2ax-mp 5 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑧(𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧))
4 vex 3475 . . . . . . . 8 𝑥 ∈ V
5 vex 3475 . . . . . . . 8 𝑧 ∈ V
64, 5brco 5873 . . . . . . 7 (𝑥(𝐴𝐵)𝑧 ↔ ∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧))
76imbi1i 349 . . . . . 6 ((𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
8 19.23v 1938 . . . . . 6 (∀𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
97, 8bitr4i 278 . . . . 5 ((𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧) ↔ ∀𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
109albii 1814 . . . 4 (∀𝑧(𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧) ↔ ∀𝑧𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
11 alcom 2149 . . . 4 (∀𝑧𝑦((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
1210, 11bitri 275 . . 3 (∀𝑧(𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧) ↔ ∀𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
1312albii 1814 . 2 (∀𝑥𝑧(𝑥(𝐴𝐵)𝑧𝑥𝐶𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
143, 13bitri 275 1 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1532  wex 1774  wss 3947   class class class wbr 5148  ccom 5682  Rel wrel 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-11 2147  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-xp 5684  df-rel 5685  df-co 5687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator