MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrel2 Structured version   Visualization version   GIF version

Theorem ssrel2 5685
Description: A subclass relationship depends only on a relation's ordered pairs. This version of ssrel 5683 is restricted to the relation's domain. (Contributed by Thierry Arnoux, 25-Jan-2018.)
Assertion
Ref Expression
ssrel2 (𝑅 ⊆ (𝐴 × 𝐵) → (𝑅𝑆 ↔ ∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦

Proof of Theorem ssrel2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssel 3910 . . . 4 (𝑅𝑆 → (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
21a1d 25 . . 3 (𝑅𝑆 → ((𝑥𝐴𝑦𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
32ralrimivv 3113 . 2 (𝑅𝑆 → ∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
4 eleq1 2826 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
5 eleq1 2826 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑆 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑆))
64, 5imbi12d 344 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝑧𝑅𝑧𝑆) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
76biimprcd 249 . . . . . . . . 9 ((⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
872ralimi 3087 . . . . . . . 8 (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → ∀𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
9 r19.23v 3207 . . . . . . . . . 10 (∀𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)) ↔ (∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
109ralbii 3090 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)) ↔ ∀𝑥𝐴 (∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
11 r19.23v 3207 . . . . . . . . 9 (∀𝑥𝐴 (∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)) ↔ (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
1210, 11bitri 274 . . . . . . . 8 (∀𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)) ↔ (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
138, 12sylib 217 . . . . . . 7 (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
1413com23 86 . . . . . 6 (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (𝑧𝑅 → (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝑆)))
1514a2d 29 . . . . 5 (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → ((𝑧𝑅 → ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩) → (𝑧𝑅𝑧𝑆)))
1615alimdv 1920 . . . 4 (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (∀𝑧(𝑧𝑅 → ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩) → ∀𝑧(𝑧𝑅𝑧𝑆)))
17 dfss2 3903 . . . . 5 (𝑅 ⊆ (𝐴 × 𝐵) ↔ ∀𝑧(𝑧𝑅𝑧 ∈ (𝐴 × 𝐵)))
18 elxp2 5604 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩)
1918imbi2i 335 . . . . . 6 ((𝑧𝑅𝑧 ∈ (𝐴 × 𝐵)) ↔ (𝑧𝑅 → ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩))
2019albii 1823 . . . . 5 (∀𝑧(𝑧𝑅𝑧 ∈ (𝐴 × 𝐵)) ↔ ∀𝑧(𝑧𝑅 → ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩))
2117, 20bitri 274 . . . 4 (𝑅 ⊆ (𝐴 × 𝐵) ↔ ∀𝑧(𝑧𝑅 → ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩))
22 dfss2 3903 . . . 4 (𝑅𝑆 ↔ ∀𝑧(𝑧𝑅𝑧𝑆))
2316, 21, 223imtr4g 295 . . 3 (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (𝑅 ⊆ (𝐴 × 𝐵) → 𝑅𝑆))
2423com12 32 . 2 (𝑅 ⊆ (𝐴 × 𝐵) → (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → 𝑅𝑆))
253, 24impbid2 225 1 (𝑅 ⊆ (𝐴 × 𝐵) → (𝑅𝑆 ↔ ∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883  cop 4564   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-xp 5586
This theorem is referenced by:  metuel2  23627  isarchi  31338
  Copyright terms: Public domain W3C validator