Step | Hyp | Ref
| Expression |
1 | | ssel 3942 |
. . . 4
⊢ (𝑅 ⊆ 𝑆 → (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)) |
2 | 1 | a1d 25 |
. . 3
⊢ (𝑅 ⊆ 𝑆 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))) |
3 | 2 | ralrimivv 3196 |
. 2
⊢ (𝑅 ⊆ 𝑆 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)) |
4 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)) |
5 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ 𝑆 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑆)) |
6 | 4, 5 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))) |
7 | 6 | biimprcd 250 |
. . . . . . . . 9
⊢
((⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
8 | 7 | 2ralimi 3127 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
9 | | r19.23v 3180 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆)) ↔ (∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
10 | 9 | ralbii 3097 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆)) ↔ ∀𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
11 | | r19.23v 3180 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 (∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆)) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
12 | 10, 11 | bitri 275 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆)) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
13 | 8, 12 | sylib 217 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
14 | 13 | com23 86 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (𝑧 ∈ 𝑅 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 ∈ 𝑆))) |
15 | 14 | a2d 29 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → ((𝑧 ∈ 𝑅 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩) → (𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
16 | 15 | alimdv 1920 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (∀𝑧(𝑧 ∈ 𝑅 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩) → ∀𝑧(𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆))) |
17 | | dfss2 3935 |
. . . . 5
⊢ (𝑅 ⊆ (𝐴 × 𝐵) ↔ ∀𝑧(𝑧 ∈ 𝑅 → 𝑧 ∈ (𝐴 × 𝐵))) |
18 | | elxp2 5662 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩) |
19 | 18 | imbi2i 336 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑅 → 𝑧 ∈ (𝐴 × 𝐵)) ↔ (𝑧 ∈ 𝑅 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩)) |
20 | 19 | albii 1822 |
. . . . 5
⊢
(∀𝑧(𝑧 ∈ 𝑅 → 𝑧 ∈ (𝐴 × 𝐵)) ↔ ∀𝑧(𝑧 ∈ 𝑅 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩)) |
21 | 17, 20 | bitri 275 |
. . . 4
⊢ (𝑅 ⊆ (𝐴 × 𝐵) ↔ ∀𝑧(𝑧 ∈ 𝑅 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩)) |
22 | | dfss2 3935 |
. . . 4
⊢ (𝑅 ⊆ 𝑆 ↔ ∀𝑧(𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑆)) |
23 | 16, 21, 22 | 3imtr4g 296 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (𝑅 ⊆ (𝐴 × 𝐵) → 𝑅 ⊆ 𝑆)) |
24 | 23 | com12 32 |
. 2
⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → 𝑅 ⊆ 𝑆)) |
25 | 3, 24 | impbid2 225 |
1
⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑅 ⊆ 𝑆 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))) |