MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrel2 Structured version   Visualization version   GIF version

Theorem ssrel2 5412
Description: A subclass relationship depends only on a relation's ordered pairs. This version of ssrel 5409 is restricted to the relation's domain. (Contributed by Thierry Arnoux, 25-Jan-2018.)
Assertion
Ref Expression
ssrel2 (𝑅 ⊆ (𝐴 × 𝐵) → (𝑅𝑆 ↔ ∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦

Proof of Theorem ssrel2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssel 3792 . . . 4 (𝑅𝑆 → (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
21a1d 25 . . 3 (𝑅𝑆 → ((𝑥𝐴𝑦𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
32ralrimivv 3158 . 2 (𝑅𝑆 → ∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
4 eleq1 2873 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
5 eleq1 2873 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑆 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑆))
64, 5imbi12d 335 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝑧𝑅𝑧𝑆) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
76biimprcd 241 . . . . . . . . 9 ((⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
872ralimi 3141 . . . . . . . 8 (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → ∀𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
9 r19.23v 3211 . . . . . . . . . 10 (∀𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)) ↔ (∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
109ralbii 3168 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)) ↔ ∀𝑥𝐴 (∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
11 r19.23v 3211 . . . . . . . . 9 (∀𝑥𝐴 (∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)) ↔ (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
1210, 11bitri 266 . . . . . . . 8 (∀𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)) ↔ (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
138, 12sylib 209 . . . . . . 7 (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅𝑧𝑆)))
1413com23 86 . . . . . 6 (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (𝑧𝑅 → (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝑆)))
1514a2d 29 . . . . 5 (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → ((𝑧𝑅 → ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩) → (𝑧𝑅𝑧𝑆)))
1615alimdv 2007 . . . 4 (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (∀𝑧(𝑧𝑅 → ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩) → ∀𝑧(𝑧𝑅𝑧𝑆)))
17 dfss2 3786 . . . . 5 (𝑅 ⊆ (𝐴 × 𝐵) ↔ ∀𝑧(𝑧𝑅𝑧 ∈ (𝐴 × 𝐵)))
18 elxp2 5334 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩)
1918imbi2i 327 . . . . . 6 ((𝑧𝑅𝑧 ∈ (𝐴 × 𝐵)) ↔ (𝑧𝑅 → ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩))
2019albii 1904 . . . . 5 (∀𝑧(𝑧𝑅𝑧 ∈ (𝐴 × 𝐵)) ↔ ∀𝑧(𝑧𝑅 → ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩))
2117, 20bitri 266 . . . 4 (𝑅 ⊆ (𝐴 × 𝐵) ↔ ∀𝑧(𝑧𝑅 → ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩))
22 dfss2 3786 . . . 4 (𝑅𝑆 ↔ ∀𝑧(𝑧𝑅𝑧𝑆))
2316, 21, 223imtr4g 287 . . 3 (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → (𝑅 ⊆ (𝐴 × 𝐵) → 𝑅𝑆))
2423com12 32 . 2 (𝑅 ⊆ (𝐴 × 𝐵) → (∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆) → 𝑅𝑆))
253, 24impbid2 217 1 (𝑅 ⊆ (𝐴 × 𝐵) → (𝑅𝑆 ↔ ∀𝑥𝐴𝑦𝐵 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wal 1635   = wceq 1637  wcel 2156  wral 3096  wrex 3097  wss 3769  cop 4376   × cxp 5309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pr 5096
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ral 3101  df-rex 3102  df-v 3393  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-sn 4371  df-pr 4373  df-op 4377  df-opab 4907  df-xp 5317
This theorem is referenced by:  metuel2  22583  isarchi  30061
  Copyright terms: Public domain W3C validator